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Abstract

Information Extraction from the Web: Techniques and Applications

Alexander Yates

Chair of the Supervisory Committee:
Professor Oren Etzioni

Computer Science & Engineering

Web Information Extraction (WIE) systems have recently been able to extract massive

quantities of relational data from online text. This has opened the possibility of achieving

an elusive goal in Artificial Intelligence (AI): broad-coverage domain knowledge. AI systems

depend to a great extent on having knowledge about the domains in which they operate, and

such knowledge is typically expensive to enter into the system. Furthermore, the knowledge

must be entered for every different domain in which an application is to operate. The Web

contains knowledge about all kinds of different domains, but in a format that is not readily

usable by AI systems. WIE promises to bridge the gap between the Web and AI.

Natural Language Processing is an example of an area in AI in which knowledge can

make a dramatic difference in the performance of an application. Understanding or inter-

preting language depends on the ability to understand the words used in a domain. The

meanings, usages, and syntactic properties of words, and the relative frequency with which

certain words are used, are necessary pieces of information for effective language processing,

and much of this information can be extracted from text. In one case study, this thesis ex-

amines methods for using extracted information in improving a particular kind of language

processing tool, a parser.

Before information extraction can become broadly useful, however, more research must

be done to improve the quality of the extracted information. A number of factors affect the

quality, including correctness, importance or relevance, and the sophistication of meaning





representation. The second case study in this thesis investigates a method for resolving

synonyms in extracted information. This technique changes the meaning representation of

extractions from one that relates words or names to one that relates entities to one another.
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Chapter 1

INFORMATION EXTRACTION FROM THE WEB: TASKS AND
APPLICATIONS

In recent years researchers have extracted huge amounts of structured information from

large corpora like the Web. Novel systems like KnowItAll, KnowItNow, TextRunner,

and others have demonstrated that it is possible to process huge corpora efficiently, and at

the same time extract millions of facts with high accuracy. [42, 41, 43, 17, 8, 111, 2, 104, 16]

As the field grows, it promises to provide vast resources of information organized into

structured formats.

The large collections of knowledge produced by such systems give rise to new chal-

lenges and opportunities. In particular, they provide the opportunity to create domain-

independent knowledge-based systems. However, several technical challenges stand in the

way. Extracted information is only part of the way towards being fully machine-processable;

much more research is required to convert text into logical representations of knowledge.

Second, building a knowledge-based system using extracted information requires figuring

out how to incorporate the extracted knowledge into complicated systems. And third, it

requires building scalable solutions to dealing with the large amounts of knowledge. This

thesis investigates techniques for meeting these challenges.

1.1 Information Extraction from the Web

Information Extraction is the process of retrieving structured information from unstruc-

tured text. Web Information Extraction (WIE) systems differ significantly from traditional

systems in both methods and goals. Whereas traditional IE systems focus on squeezing as

much juice as possible from small corpora, WIE systems focus on domain independent ex-

traction from relatively simple sentences, and rely on the redundancy of the Web to provide
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large quantities of information.

WIE systems face several new challenges because they must cope with the huge scale

of the Web efficiently. Numerous authors contribute to the Web, so WIE systems must

deal with contrasting linguistic styles and differing levels of linguistic proficiency, which can

cause many language processing tools to degrade in performance. And most research in

information extraction focuses on extracting instances for a set of predicates of interest,

which depends on the domain. [55, 89, 108, 3, 2, 14, 43] To achieve domain independence,

and thus to be able to extract information from arbitrary documents on the Web, WIE

systems must somehow minimize or eliminate the number of inputs required per domain or

predicate.

Several methodological innovations have helped make WIE possible and practical. Tur-

ney [116, 113] was the first to recognize that Web search engines could cheaply provide

hitcounts for a statistical computation, Pointwise Mutual Information for Information Re-

trieval (PMI-IR), that is useful for information extraction. The KnowItAll system [42]

extracts instances of any given class from the Web, using the PMI-IR statistics as evidence

for validating extractions.

Hearst pioneered the use of generic patterns for information extraction [50]. Many

systems since then have improved on the basic notion of pattern-based extraction by scaling

it up to the Web and learning new patterns during the extraction process. [55, 89, 3, 43].

This form of learning, known as bootstrapping, can greatly increase the recall of extraction

systems and enable them to specialize to a domain.

Bootstrapping can help reduce the cost of extraction for a new domain by automatically

creating and learning new patterns for the relations in the domain, but it cannot determine

the relations. In another advance for WIE, newer systems [8, 104] perform Open Information

Extraction, in which all possible relations of interest are extracted from a corpus at the same

time as the instances of those relations. This greatly increases the speed of WIE and the

scale of the output.
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1.2 Applications of Information Extraction

For information extraction, the Web is worth the trouble because it opens the possibility of

achieving an elusive goal in Artificial Intelligence (AI): broad-coverage domain knowledge.

AI systems depend to a great extent on having knowledge about the domains in which they

operate, and such knowledge is typically expensive to enter into the system. Furthermore,

the knowledge must be entered for every different domain in which an application is to

operate. The Web contains knowledge about all kinds of different domains, but in a format

that is not readily usable by AI systems. WIE promises to bridge the gap between the Web

and AI.

The output of information extraction systems has been applied in several different types

of applications, including Question-Answering [4, 75, 71] and review and opinion mining

[116, 113, 92, 53, 58]. Typically, these applications are search-oriented, where a human

user is a significant part of the process and can help to overcome mistakes or noise in

the extraction process. Furthermore, the text-like extractions can be integrated into such

applications relatively easily.

Several systems have gone further afield in applying information extraction output. Pent-

ney et al. [90] use the results of information extraction as background knowledge to help

determine what household activity a human subject might be performing, given observations

from RFID tags about what objects the subject has touched. Several Open Mind [109, 110]

projects have used the Open Mind entries in applications like word sense disambiguation

[69], determining affect in text [70], and even robot navigation and control [47]. In these

systems, however, the information extraction process is highly constrained and tailored to

the domain of interest, so that the output is cleaner and more relevant to the domain.

The Cyc project [46] aims to build a large database of common-sense world knowledge,

and has been used in a number of research and industrial knowledge-based applications.

Most Cyc data is entered manually, but recent work has looked at populating part of the

database automatically from the Web. [74] The segment of the database that is populated

automatically must still be segregated from the rest, in order to ensure that the cleaner,

manually-entered data is not polluted by the automatically extracted data.
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1.2.1 Using Extracted Information in Natural Language Processing

Natural Language Processing (NLP) is an example of an area in AI in which knowledge

can make a dramatic difference in the performance of an application. Understanding or

interpreting language depends on the ability to understand the words used in a domain.

The meanings, usages, and syntactic properties of words, and the relative frequency with

which certain words are used, are necessary pieces of information for effective language

processing, and much of this information can be extracted from text. The first case study

in this thesis examines the application of WIE in improving a language processing tool.

One facet of language understanding that has particularly interested researchers in NLP

is parsing, or the process of identifying the grammatical structure of a sentence. Statistical

parsers, tools that automatically parse sentences, have been used as the backbone for a

number of different NLP applications, including Question-Answering [62, 75, 82], Natural

Language Interfaces [93, 124], and Information Extraction [20, 80]. Unfortunately, statis-

tical parsers have relatively low accuracy, especially on texts (like Web text) that differ

significantly in style and substance from the text they are trained on. [45]

The Woodward system applies the techniques and knowledge from WIE to statistical

parsing, improving the performance of the widely-used Collins parser [29, 28] by 20%. [121]

Woodward works by eliminating semantically implausible parses produced by a parser.

The semantic plausibility of a sentence is judged by how close the semantic form of the

sentence is to knowledge extracted from the Web.

Woodward introduces a novel method for incorporating extracted knowledge into a

complex, statistical system. The semantic filters it employs require very small amounts

of training data, and yet they are able to leverage the size and content of the Web to

significantly boost the performance of an important NLP system.

A promising aspect of this avenue of research is the potential for positive feedback be-

tween information extraction and natural language processing. As systems like Woodward

develop, they boost the performance of NLP tools using WIE. WIE, in turn, depends on

NLP tools to help make correct extractions. [42] There is the potential for parsers that have

been improved by WIE to yield better WIE systems in turn.
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Chapter 3 describes the Woodward system in full, and presents experiments that

demonstrate its ability to improve the Collins parser.

1.3 Extensions to Basic Information Extraction

While the use of extracted information in applications has begun to grow, much work

remains to be done to make the quality of information more suitable to applications. Several

salient factors affect the quality of IE, including:

1. correctness.

2. importance or relevance — it would be easy to generate an unlimited number of correct

facts, simply by generating isAnInteger(n) for all integers n; what matters more is

that the information is relevant and useful.

3. sophistication of meaning representation — whether the intended referent of object

strings are identified or not; or whether the implied quantification in complex expres-

sions is identified.

Most WIE researchers have focused on improving the correctness, or the precision and

recall, of extraction (e.g., [43, 39]). State-of-the-art WIE systems currently can produce

large quantities of relational extractions with high precision. However, extractions differ

from the full-blown First-Order Logic representations or other advanced representation lan-

guages that AI reasoning systems understand. For example, extractions may not distinguish

between collective and distributive readings; they may not properly treat universal, exis-

tential, or other quantifiers; they may use the same string to represent several logically

distinct objects or relations; and they may use several different strings to represent logically

equivalent objects or relations. The translation from natural language to logic is extremely

difficult, and these are some of the remaining unsolved sub-problems in that translation.

But without solving these problems, the promise of WIE may be unfulfilled, as the extrac-

tions remain disconnected from the AI reasoning systems that stand to benefit so much

from them.
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Several projects have addressed one aspect of extending the meaning representation

by handling polysemy in information extraction, although the problem is far from solved.

[65, 19] Others have looked at handling polysemy in unsupervised settings [87, 125], which

is similar to the WIE setting. Polysemy is a difficult problem, both to solve and to measure,

and more research is needed to make such systems more accurate for Web text.

Other dimensions in which information extraction has been extended involve extract-

ing meta-information about relations. The VerbOcean project [21] measures verb pairs in

five ways: similarity, strength (e.g., kill is stronger than wound), antonymy, enablement,

and temporal sequentiality. Several systems have considered how to measure the relative

strength of adjectival relations, such as that huge is stronger than big. [49, 48, 92]

1.3.1 Synonym Resolution for Information Extraction from the Web

Synonym Resolution is one important aspect of the problem of extending information ex-

traction systems. The second case study in this thesis describes the Resolver system,

which leverages WIE’s large number of extractions and their relational structure to merge

synonymous strings into clusters of co-referential names. Resolver can cluster both object

strings and relation strings with high accuracy, and without the use of manually-labeled

training data. Furthermore, it operates efficiently on the large data sets produced by WIE

systems. [122]

Resolver uses a novel probabilistic model to measure the distributional similarity be-

tween terms. It then uses a novel clustering algorithm, which places efficient limits on

the number of comparisons made between strings, to cluster strings in a set of extractions

such that each cluster contains strings with high similarity to one another. Chapter 4 de-

scribes the Resolver system in detail, and presents experiments which demonstrate that

Resolver outperforms other attempts at measuring similarity and clustering synonymous

terms.

1.4 Contributions of the Thesis

This thesis investigates the following hypothesis: that it is possible to resolve synonyms in

Web-scale information extraction, and to use the extracted knowledge to improve natural
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language processing tasks.

Contributions of the thesis include:

1. an empirical demonstration that information extracted from the Web can improve

natural language parsers, tools that are of particular interest to the natural language

processing and computational linguistics communities.

2. a new technique for incorporating extracted information into natural language tech-

nology, via semantic filters.

3. a state of the art system for synonym resolution in large collections of extracted

information.

4. a new, unsupervised probabilistic model for determining the probability that two

strings are synonyms, given a set of extractions for each.

5. a fast clustering algorithm designed for synonym resolution, which provides a new

upper bound on the number of pairwise comparisons required between strings.

The rest of the thesis is organized as follows. Chapter 2 discusses Web Information

Extraction in depth, and describes two existing systems for performing WIE, KnowItAll

and TextRunner. Chapter 3 presents the Woodward system for improving natural

language parsers using Web-based semantic filters. Chapter 4 describes the Resolver

system for synonym resolution on the Web. Chapter 5 concludes.



8

Chapter 2

WEB INFORMATION EXTRACTION SYSTEMS

This chapter describes two Web Information Extraction systems, KnowItAll [41, 43,

42] and TextRunner [8], which form the basis for the work for this thesis. Woodward

and Resolver both adapt techniques and ideas from KnowItAll, and they both use Tex-

tRunner extractions as a source of knowledge. The next section describes KnowItAll,

with an emphasis on ideas related to future chapters. Section 2.2 presents TextRunner,

and focuses on its ability to extract massive quantities of information from unlabeled text

without requiring manual identification of the relations to be extracted.

2.1 The KnowItAll System1

2.1.1 Introduction and Motivation

Information Extraction is the task of automatically extracting knowledge from text. Unsu-

pervised information extraction dispenses with hand-tagged training data. Because unsuper-

vised extraction systems do not require human intervention, they can recursively discover

new relations, attributes, and instances in a fully automated, scalable manner. Know-

ItAll is an unsupervised, domain-independent system that extracts information from the

Web.

Collecting a large body of information by searching the Web can be a tedious, manual

process. Consider, for example, compiling a comprehensive, international list of astronauts,

politicians, or cities. Unless you find the “right” document or database, you are reduced to

an error-prone, piecemeal search. One of KnowItAll’s goals is to address the problem of

accumulating large collections of facts.

Initial experiments with KnowItAll have focused on a sub-problem of information

extraction, building lists of named entities found on the Web, such as instances of the

1This description of KnowItAll is a condensed version of [42].
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class City or the class Film. KnowItAll is able to extract instances of relations, such as

capitalOf(City,Country) or starsIn(Actor,Film), but the focus here is on extracting

comprehensive lists of named entities.

KnowItAll introduces a novel, generate-and-test architecture that extracts informa-

tion in two stages. Inspired by Hearst [50], KnowItAll utilizes a set of eight domain-

independent extraction patterns to generate candidate facts.2 For example, the generic

pattern “NP1 such as NPList2” indicates that the head of each simple noun phrase (NP) in

the list NPList2 is a member of the class named in NP1. By instantiating the pattern for

the class City, KnowItAll extracts three candidate cities from the sentence: “We provide

tours to cities such as Paris, London, and Berlin.”

Next, KnowItAll automatically tests the plausibility of the candidate facts it extracts

using pointwise mutual information (PMI) statistics computed by treating the Web as a

massive corpus of text. Extending Turney’s PMI-IR algorithm [115], KnowItAll leverages

existing Web search engines to compute these statistics efficiently.3 Based on these PMI

statistics, KnowItAll associates a probability with every fact it extracts, enabling it to

automatically manage the tradeoff between precision and recall. Since we cannot compute

“true recall” on the Web, the paper uses the term “recall” to refer to the size of the set of

facts extracted.

Etzioni [40] introduced the metaphor of an Information Food Chain where search engines

are herbivores “grazing” on the Web and intelligent agents are information carnivores that

consume output from various herbivores. In terms of this metaphor, KnowItAll is an

information carnivore that consumes the output of existing search engines. In its first major

run, KnowItAll extracted over 50,000 facts regarding cities, states, countries, actors, and

films [41].

The two main contributions of KnowItAll covered here are:

2Hearst proposed a set of generic patterns that identify a hyponym relation between two noun phrases.

Examples are the pattern “NP {,} such as NP” and the pattern “NP {,} and other NP”.

3Turney measured the similarity of two term based on how often the terms appear in proximity to each

other in Web search-engine indices.
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1. It demonstrates that it is feasible to carry out unsupervised, domain-independent

information extraction from the Web with high precision. Much of the previous work

on information extraction focused on small document collections and required hand-

labeled examples.

2. It shows that Web-based mutual information statistics can be effective in validating

the output of an information extraction system.

Additions to KnowItAll have demonstrated ways to greatly increase the recall of the

baseline KnowItAll system [43, 42], but the description below focuses on the core system.

The remainder of this section is organized as follows. It begins with an overview of

KnowItAll’s central design decisions. Sections 2.1.3 through 2.1.7 provide details about

the key components of KnowItAll. Experiments in Section 2.1.8 demonstrate the ability

of KnowItAll to extract information from the Web with high precision. Section 2.1.9

discusses related work, and Section 2.1.10 presents conclusions.

2.1.2 Overview of KnowItAll

The only domain-specific input to KnowItAll is a set of predicates that specify Know-

ItAll’s focus (e.g., Figure 2.6). While experiments to date have focused on unary pred-

icates, which encode class membership, KnowItAll can also handle n-ary relations as

explained below. KnowItAll’s Bootstrapping step uses a set of domain-independent ex-

traction patterns (e.g., Figure 2.1) to create its set of extraction rules and “discriminator”

phrases (described below) for each predicate in its focus. The bootstrapping is fully auto-

matic, in contrast to other bootstrapping methods that require a set of manually created

training seeds. A system flowchart is shown in Figure 2.2 and pseudocode in Figure 2.3 for

the baseline KnowItAll system.

The two main KnowItAll modules are the Extractor and the Assessor. The Extractor

creates a query from keywords in each rule, sends the query to a Web search engine, and

applies the rule to extract information from the resulting Web pages. The Assessor computes

a probability that each extraction is correct before adding the extraction to KnowItAll’s
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Predicate: Class1

Pattern: NP1 “such as” NPList2

Constraints: head(NP1)= plural(label(Class1)) &

properNoun(head(each(NPList2)))

Bindings: Class1(head(each(NPList2)))

Figure 2.1: This generic extraction pattern can be instantiated automatically with the
pluralized class label to create a domain-specific extraction rule. For example, if Class1
is set to “City” then the rule looks for the words “cities such as” and extracts the heads
of the proper nouns following that phrase as potential cities.

Bootstrapping

AssessorExtractor

Search
Engine

Knowledge
Base

Information focus
Rule templates

Extraction rules Discriminators

Extractions
Assessed 

Extractions

Hit counts

Result URLs Hit counts

Result URLs

Figure 2.2: Flowchart of the main components in KnowItAll. Bootstrapping creates ex-
tractions rules and “discriminators” automatically with no hand-tagged training. Extractor fetches
Web pages and applies extraction rules, then Assessor computes the probability of correctness before
inserting into the Knowledge Base.
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KNOWITALL(information focus I, rule templates T )

Bootstrap(I, T ) sets rules R, queries Q, and discriminators D

Do until queries in Q are exhausted (or other termination criterion)

Extractor(R, Q) writes extractions list E

Assessor(E, D) adds extractions to the knowledgebase

Extractor(rules R, queries Q)

Select queries from Q, set the number of downloads for each query

Send selected queries to search engines

For each webpage w whose URL was returned by a search engine

Extract fact e from w using the rule associated with the query

Write e to extractions list E

Assessor(extraction list E, discriminators D)

For each extraction e in E

Assign a probability p to e using a Bayesian classifier based on D

Add e,p to the knowledgebase

Figure 2.3: High-level pseudocode for KnowItAll. (See Figure 2.10 for pseudocode of
Bootstrap(I,T).)
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knowledge base. The Assessor bases its probability computation on search engine hit counts

used to compute the mutual information between the extracted instance of a class and

a set of automatically generated discriminator phrases associated with that class.4 This

assessment process is an extension of Turney’s PMI-IR algorithm [115].

A Bootstrapping step creates extraction rules and discriminators for each predicate in

the focus. KnowItAll creates a list of search engine queries associated with the extrac-

tion rules, then executes the main loop. At the start of each loop, KnowItAll selects

queries, favoring predicates and rules that have been most productive in previous iterations

of the main loop. The Extractor sends the selected queries to a search engine and extracts

information from the resulting Web pages. The Assessor computes the probability that

each extraction is correct and adds it to the knowledge base. This loop is repeated until all

queries are exhausted or deemed too unproductive. KnowItAll’s running time increases

linearly with the size and number of web pages it examines.

We now elaborate on KnowItAll’s Extraction Rules and Discriminators, and the Boot-

strapping, Extraction, and Assessor modules.

2.1.3 Extraction Rules and Discriminators

KnowItAll automatically creates a set of extraction rules for each predicate, as described

in Section 2.1.4. Each rule consists of a predicate, an extraction pattern, constraints, bind-

ings, and keywords. The predicate gives the relation name and class name of each predicate

argument. In the rule shown in Figure 2.4, the unary predicate is “City”. The extraction

pattern is applied to a sentence and has a sequence of alternating context strings and slots,

where each slot represents a string from the sentence. The rule may set constraints on a

slot, and may bind it to one of the predicate arguments as a phrase to be extracted. In

the example rule, the extraction pattern consists of three elements: a slot named NP1, a

context string “such as”, and a slot named NPList2. There is an implicit constraint on

slots with name NP<digit>. They must match simple noun phrases and those with name

NPList<digit> match a list of simple noun phrases. Slot names of P<digit> can match

4We refer to discriminator phrases as “discriminators” throughout.
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arbitrary phrases.

The Extractor uses regular expressions based on part-of-speech tags from the Brill tagger

[13] to identify simple noun phrases and NPLists. The head of a noun phrase is generally

the last word of the phrase. If the last word is capitalized, the Extractor searches left for the

start of the proper noun, based on orthographic clues. Take for example, the sentence “The

tour includes major cities such as New York, central Los Angeles, and Dallas”. The head

of the NP “major cities” is just “cities”, whereas the head of “New York” is “New York”

and the head of “central Los Angeles” is “Los Angeles”. This simple syntactic analysis was

chosen for processing efficiency, and because our domain-independent architecture avoids

more knowledge intensive analysis.

Predicate: City

Pattern: NP1 “such as” NPList2

Constraints: head(NP1)= “cities”

properNoun(head(each(NPList2)))

Bindings: City(head(each(NPList2)))

Keywords: “cities such as”

Figure 2.4: An extraction rule generated by substituting the class name City and the
plural of the class label “city” into a generic rule template. The rule looks for Web
pages containing the phrase “cities such as” and extracts the proper nouns following
that phrase as instances of the unary predicate City.

The constraints of a rule can specify the entire phrase that matches the slot, the head

of the phrase, or the head of each simple NP in an NPList slot. One type of constraint

is an exact string constraint, such as the constraint head(NP1) = “cities” in the rule

shown in Figure 2.4. Other constraints can specify that a phrase or its head must follow

the orthographic pattern of a proper noun, or of a common noun. The rule bindings specify

which slots or slot heads are extracted for each argument of the predicate. If the bindings

have an NPList slot, a separate extraction is created for each simple NP in the list that
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satisfies all constraints. In the example rule, an extraction is created with the City argument

bound to each simple NP in NPList2 that passes the proper noun constraint.

A final part of the rule is a list of keywords that is created from the context strings and

any slots that have an exact word constraint. In our example rule, there is a single keyword

phrase “cities such as” that is derived from slot NP1 and the immediately following context.

A rule may have multiple keyword phrases if context or slots with exact string constraints

are not immediately adjacent.

KnowItAll uses the keywords as search engine queries, then applies the rule to the

Web page that is retrieved, after locating sentences on that page that contain the keywords.

More details of how rules are applied is given in Section 2.1.5. A BNF description of the rule

language is given in Figure 2.8. The example given here is a rule for a unary predicate, City.

The rule language also covers n-ary predicates with arbitrary relation name and multiple

predicate arguments, such as the rule for CeoOf(Person,Company) shown in Figure 2.9.

KnowItAll’s Extractor module uses extraction rules that apply to single Web pages

and carry out shallow syntactic analysis. In contrast, the Assessor module uses discrimi-

nators that apply to search engine indices. These discriminators are analogous to simple

extraction rules that ignore syntax, punctuation, capitalization, and even sentence breaks,

limitations that are imposed by use of commercial search engine queries. On the other hand,

discriminators are equivalent to applying an extraction pattern simultaneously to the entire

set of Web pages indexed by the search engine.

A discriminator consists of an extraction pattern with alternating context strings and

slots. There are no explicit or implicit constraints on the slots, and the pattern matches Web

pages where the context strings and slots are immediately adjacent, ignoring punctuation,

whitespace, or HTML tags. The discriminator for a unary predicate has a single slot, which

we represent as an X here, for clarity of exposition. Discriminators for binary predicates

have two slots, here represented as X and Y, for arguments 1 and 2 of the predicate, and

so forth.

When a discriminator is used to validate a particular extraction, the extracted phrases

are substituted into the slots of the discriminator to form a search query. This is described

in more detail in Section 2.1.6. Figure 2.5 shows one of several possible discriminators that
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can be used for the predicate City and for the binary predicate CeoOf(Person,Company).

Discriminator for: City

“city X”

Discriminator for: CeoOf(Person,Company)

“X CEO of Y”

Figure 2.5: When the discriminator for City is used to validate the extraction “Paris”,
the Assessor finds hit counts for the search query phrase “city Paris”. Similarly, the
discriminator for CeoOf validates Jeff Bezos as CEO of Amazon with the search query,
“Jeff Bezos CEO of Amazon”.

We now describe how KnowItAll automatically creates a set of extraction rules and

discriminator phrases for a predicate.

2.1.4 Bootstrapping

KnowItAll’s input is a set of predicates that represent classes or relationships of interest.

The predicates supply symbolic names for each class (e.g. “MovieActor”), and also give one

or more labels for each class (e.g. “actor” and “movie star”). These labels are the surface

form in which a class may appear in an actual sentence. Bootstrapping uses the labels to

instantiate extraction rules for the predicate from generic rule templates.

Figure 2.6 shows some examples of predicates for a geography domain and for a movies

domain. Some of these are “unary” predicates, used to find instances of a class such as City

and Country; some are “n-ary” predicates, such as the capitalOf relationship between City

and Country and the starsIn relationship between MovieActor and Film. In this paper,

we concentrate primarily on unary predicates and how KnowItAll uses them to extract

instances of classes from the Web. Preliminary experiments show that the same methods

work well on n-ary predicates.
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Predicate: City Predicate: Film

labels: “city”, “town” labels: “film”, “movie”

Predicate: Country Predicate: MovieActor

labels: “country”, “nation” labels: “actor”, “movie star”

Predicate: capitalOf(City,Country) Predicate: starsIn(MovieActor,Film)

relation labels: “capital of” relation labels: “stars in”, “star of”

class-1 labels: “city”, “town” class-1 labels: “actor”, “movie star”

class-2 labels: “country”, “nation” class-2 labels: “film”, “movie”

Figure 2.6: Example predicates for a geography domain and for a movies domain. The
class labels and relation labels are used in creating extraction rules for the class from
generic rule templates.

The first step of Bootstrapping uses a set of domain-independent generic extraction

patterns (e.g. Figure 2.1). The pattern in Figure 2.1 can be summarized informally as

<class1> ‘‘such as’’ NPList That is, given a sentence that contains the class label

followed by “such as”, followed by a list of simple noun phrases, KnowItAll extracts the

head of each noun phrase as a candidate member of the class, after testing that it is a proper

noun.

Combining this template with the predicate City produces two instantiated rules, one

for the class label “city” (shown in Figure 2.4 in Section 2.1.3) and a similar rule for the

label “town”. The class-specific extraction patterns are:

“cities such as ” NPList

“towns such as ” NPList

Each instantiated extraction rule has a list of keywords that are sent as phrasal query terms

to a search engine.
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A sample of the syntactic patterns that underlie KnowItAll’s rule templates is shown

in Figure 2.7. Some of our rule templates are adapted from Marti Hearst’s hyponym pat-

terns [50] and others were developed independently. The first eight patterns shown are

for unary predicates whose pluralized English name (or “label”) matches <class1>. To

instantiate the rules, the pluralized class label is automatically substituted for <class1>,

producing patterns like “cities such as” NPList.

NP “and other” <class1>

NP “or other” <class1>

<class1> “especially” NPList

<class1> “including” NPList

<class1> “such as” NPList

“such” <class1> “as” NPList

NP “is a” <class1>

NP “is the” <class1>

<class1> “is the” <relation> <class2>

<class1> “,” <relation> <class2>

Figure 2.7: The eight generic extraction patterns used for unary extraction rules, plus
two examples of binary extraction patterns. The first five patterns also have an alternate form
with a comma, e.g. NP “, and other” <class1>. (If a rule pattern includes punctuation, a search
engine will return some Web pages that do not match the rule. Nothing is extracted from such
pages.) The terms <class1> and <class2> stand for an NP in the rule pattern with a constraint
binding the head of the phrase to a label of predicate argument 1 or 2. Similarly, <relation> stands
for a phrase in the rule pattern with a constraint binding it to a relation label of a binary predicate.

We have also experimented with rule templates for binary predicates, such as the last two

examples. These are for the generic predicate, relation(Class1,Class2). The first pro-

duces the pattern <city> “is the capital of” <country> for the predicate capitalOf(City,Country),

and the pattern <person> “is the CEO of” <company> for the predicate CeoOf(Person,Company).
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Bootstrapping also initializes the Assessor for each predicate in a fully automated man-

ner. It first generates a set of discriminator phrases for the predicate based on class labels

and on keywords in the extraction rules for that predicate. Bootstrapping then uses the

extraction rules to find a set of seed instances to train the discriminators for each predicate,

as described in Section 2.1.7.

2.1.5 Extractor

To see how KnowItAll’s extraction rules operate, suppose that <class1> in the pattern

<class1> “such as” NPList

is bound to the name of a class in the ontology. Then each simple noun phrase in NPList

is likely to be an instance of that class. When this pattern is used for the class Country

it would match a sentence that includes the phrase “countries such as X, Y, and Z” where

X, Y, and Z are names of countries. The same pattern is used to generate rules to find

instances of the class Actor, where the rule looks for “actors such as X, Y, and Z”.

In using these patterns as the basis for extraction rule templates, we add syntactic con-

straints that look for simple noun phrases (a nominal preceded by zero or more modifiers).

NP must be a simple noun phrase; NPList must be a list of simple NPs; and what is denoted

by <class1> is a simple noun phrase with the class name as its head. Rules that look for

proper names also include an orthographic constraint that tests capitalization. To see why

noun phrase analysis is essential, compare these two sentences.

A) “China is a country in Asia.”

B) “Garth Brooks is a country singer.”

In sentence A the word “country” is the head of a simple noun phrase, and China is indeed

an instance of the class Country. In sentence B, noun phrase analysis can detect that

“country” is not the head of a noun phrase, so Garth Brooks won’t be extracted as the

name of a country.

Let’s consider a rule template (Figure 2.1) and see how it is instantiated for a particular

class. The Bootstrapping module generates a rule for City from this rule template by

substituting “City” for “Class1”, plugging in the plural “cities” as a constraint on the head
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of NP1. This produces the rule shown in Figure 2.4. Bootstrapping also creates a similar

rule with “towns” as the constraint on NP1, if the predicate specifies “town” as well as “city”

as surface forms associated with the class name. Bootstrapping then takes the literals of

the rule and forms a set of keywords that the Extractor sends to a search engine as a query.

In this case, the search query is the phrase “cities such as”.

The Extractor matches the rule in Figure 2.4 to sentences in Web pages returned for

the query. NP1 matches a simple noun phrase; it must be immediately followed by the

string “such as”; following that must be a list of simple NPs. If the match is successful, the

Extractor applies constraints from the rule. The head of NP1 must match the string “cities”.

The Extractor checks that the head of each NP in the list NPList2 has the capitalization

pattern of a proper noun. Any NPs that do not pass this test are ignored. If all constraints

are met, the Extractor creates one or more extractions: an instance of the class City for

each proper noun in NPList2. The BNF for KnowItAll’s extraction rules appears in

Figure 2.8.

The rule in Figure 2.4 would extract three instances of City from the sentence “We

service corporate and business clients in all major European cities such as London, Paris,

and Berlin.” If all the tests for proper nouns fail, nothing is extracted, as in the sentence

“Detailed maps and information for several cities such as airport maps, city and downtown

maps”.

The Extractor can also utilize rules for binary or n-ary relations. Figure 2.9 shows a rule

that finds instances of the relation CeoOf(Person,Company) where the predicate specifies

one or more labels for the relation, such as “CEO of” that are substituted into the generic

pattern in the rule template

<class1> “,” <relation> <class2>

This particular rule has the second argument bound to an instance of Company, “Amazon”,

which KnowItAll has previously added to its knowledgebase.

KnowItAll automatically formulates queries based on its extraction rules. Each rule

has an associated search query composed of the rule’s keywords. For example, if the pattern

in Figure 2.4 was instantiated for the class City, it would lead KnowItAll to 1) issue the

search-engine query “cities such as”, 2) download in parallel all pages named in the engine’s
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<rule> |= <predicate> <pattern> <constraints> <bindings> <keywords>

<predicate> |= ‘Predicate: ’ ( <predName> |

<predName> ‘(’ <class> ( ‘,’ <class> )+ ‘)’ )

<pattern> |= ‘Pattern: ’ <context> ( <slot> <context> )+

<context> |= ( ‘ ” ’ string ‘ ” ’ | <null> )

<slot> |= ( ‘NP’<d> | ‘NPList’<d> | ‘P’<d> )

<d> |= digit

<constraints> |= ‘Constraints: ’ ( <constr> )*

<constr> |= <phrase> ‘= ” ’ string ‘ ” ’ | ‘properNoun(’ <phrase> ‘)’

<phrase> |= ( ‘NP’<d> | ‘P’<d> | ‘head(NP’<d> ‘)’ |

‘each(NPList’ <d> ‘)’ | ‘head(each(NPList’ <d> ‘))’ )

<bindings> |= ‘Bindings: ’ <predName> ‘(’ <phrase> (‘,’ <phrase>)* ‘)’

<predName> |= string

<class> |= string

<keywords> |= ‘Keywords: ’ ( ‘ ” ’ string ‘ ” ’ )+

Figure 2.8: BNF description of the extraction rule language. An extraction pattern alter-
nates context (exact string match) with slots that can be a simple noun phrase (NP), a list of NPs,
or an arbitrary phrase (P). Constraints may require a phrase or its head to match an exact string or
to be a proper noun. The “each” operator applies a constraint to each simple NP of an NPList. Rule
bindings specify how extracted phrases are bound to predicate arguments. Keywords are formed
from literals in the rule, and are sent as queries to search engines.
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results, and 3) apply the Extractor to sentences on each downloaded page. For robustness

and scalability KnowItAll queries multiple different search engines.

2.1.6 Assessor

KnowItAll uses statistics computed by querying search engines to assess the likelihood

that the Extractor’s conjectures are correct. Specifically, the Assessor uses a form of point-

wise mutual information (PMI) between words and phrases that is estimated from Web

search engine hit counts in a manner similar to Turney’s PMI-IR algorithm [115]. The

Assessor computes the PMI between each extracted instance and multiple, automatically

generated discriminator phrases associated with the class (such as “X is a city” for the class

City).5 For example, in order to estimate the likelihood that “Liege” is the name of a city,

the Assessor might check to see if there is a high PMI between “Liege” and phrases such as

“Liege is a city”.

Predicate: CeoOf(Person,Company)

Pattern: NP1 “,” P2 NP3

Constraints: properNoun(NP1)

P2 = “CEO of”

NP3 = ”Amazon”

Bindings: CeoOf(NP1,NP3)

Keywords: “CEO of Amazon”

Figure 2.9: An example of an extraction rule for a binary predicate that finds the CEO
of a company. In this case, the second argument is bound to a known instance of
company from the knowledgebase, Amazon.

5We use class names and the keywords of extraction rules to automatically generate these discriminator

phrases; they can also be derived from rules learned using pattern-learning techniques. [43, 42]
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More formally, let I be an instance and D be a discriminator phrase. We compute the

PMI score as follows:

PMI(I,D) =
|Hits(D + I)|
|Hits(I)|

(2.1)

The PMI score is the number of hits for a query that combines the discriminator and

instance, divided by the hits for the instance alone. The raw PMI score for an instance

and a given discriminator phrase is typically a tiny fraction, perhaps as low as 1 in 100,000

even for positive instances of the class. This does not give the probability that the instance

is a member of the class, only the probability of seeing the discriminator on Web pages

containing the instance.

These mutual information statistics are treated as features that are input to a Naive

Bayes Classifier (NBC) using the formula given in Equation 2.2. This is the probability

that fact φ is correct, given features f1, f2, . . . fn, with an assumption of independence

between the features.

P (φ|f1, f2, . . . fn) =
P (φ)

∏
i P (fi|φ)

P (φ)
∏

i P (fi|φ) + P (¬φ)
∏

i P (fi|¬φ)
(2.2)

Our method to turn a PMI score into the conditional probabilities needed for Equation

2.2 is straightforward. The Assessor takes a set of k positive and k negative seeds for

each class and finds a threshold on PMI scores that splits the positive and negative seeds.

It then uses a tuning set of another k positive and k negative seeds to estimate P (PMI >

thresh|class), P (PMI > thresh|¬class), P (PMI ≤ thresh|class), and P (PMI ≤ thresh|¬class),

by counting the positive and negative seeds (plus a smoothing term) that are above or below

the threshold. We used k = 10 and a smoothing term of 1 in the experiments reported here.

In a standard NBC, if a candidate fact is more likely to be true than false, it is classified

as true. However, since we wish to be able to trade precision against recall, we record

the crude probability estimates computed by the NBC for each extracted fact. By raising

the probability threshold required for a fact to be deemed true, we increase precision and

decrease recall; lowering the threshold has the opposite effect. We found that, despite its
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BOOTSTRAP(information focus I, rule templates T)

R = generate rules from T for each predicate in I

Q = generate queries associated with each rule in R

U = generate untrained discriminators from rules in R, class names in I

Use Q to find at least n candidate seeds for each predicate in I

with hit counts > h

First Iteration:

S = select m candidate seeds for each predicate in I

with highest average PMI over U

D = train U on S, select best k discriminators for each predicate in I

Subsequent Iterations:

S = select m candidate seeds for each predicate in I

with highest probability from D

D = train U on S, select best k discriminators for each predicate in I

Figure 2.10: Pseudocode for Bootstrapping.

limitations, NBC gave better probability estimates than the logistic regression and Gaussian

models we tried.

Several open questions remain about the use of PMI for information extraction. Even

with the entire Web as a text corpus, the problem of sparse data remains. The most precise

discriminators tend to have low PMI scores for numerous positive instances, often as low

as 10−5 or 10−6. This is not a problem for prominent instances that have several million

hits on the Web. If an instance is found on only a few thousand Web pages, the expected

number of hits for a positive instance will be less than 1 for such a discriminator. This leads

to false negatives for the more obscure positive instances.

A different problem with using PMI is homonyms — words that have the same spelling,

but different meanings. For example, Georgia refers to both a state and country, Normal

refers to a city in Illinois and a socially acceptable condition, and Amazon is both a rain

forest and an on-line shopping destination. When a homonym is used more frequently in a



25

sense distinct from the one we are interested in, then the PMI scores may be low and may

fall below threshold. This is because PMI scores measure whether membership in the class

is the most common meaning of a noun denoting an instance, not whether membership in

the class is a legitimate but less frequent usage of that noun.

Another issue is in the choice of a Naive Bayes Classifier. Since the Naive Bayes Classifier

is notorious for producing polarized probability estimates that are close to zero or to one,

the estimated probabilities are often inaccurate. However, as [35] points out, the classifier

is surprisingly effective because it only needs to make an ordinal judgment (which class is

more likely) to classify instances correctly. Similarly, our formula produces a reasonable

ordering on the likelihood of extracted facts for a given class. This ordering is sufficient for

KnowItAll to implement the desired precision/recall tradeoff.

2.1.7 Training Discriminators

In order to estimate the probabilities P (fi|φ) and P (fi|¬φ) needed in Equation 2.2, Know-

ItAll needs a training set of positive and negative instances of the target class. We want

our method to scale readily to new classes, however, which requires that we eliminate human

intervention. To achieve this goal we rely on a bootstrapping technique that induces seeds

from generic extraction patterns and automatically-generated discriminators.

Bootstrapping begins by instantiating a set of extraction rules and queries for each

predicate from generic rule templates, and also generates a set of discriminator phrases

from keyword phrases of the rules and from the class names. This gives a set of a few dozen

possible discriminator phrases such as “country X”, “X country”, “countries such as X”, “X

is a country”. We found it best to supply the system with two names for each class, such as

“country” and “nation” for the class Country. This compensates for inherent ambiguity in a

single name: “country” might be a music genre or refer to countryside; instances with high

mutual information with both “country” and “nation” are more likely to have the desired

semantic class.

Bootstrapping is able to find its own set of seeds to train the discriminators, without

requiring any hand-chosen examples. It does this by using the queries and extraction rules
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to find a set of candidate seeds for each predicate. Each of these candidate seeds must have

a minimum number of hit counts for the instance itself; otherwise the PMI scores from this

seed will be unreliable.

After assembling the set of candidate seeds, Bootstrapping computes PMI(c,u) for each

candidate seed c, and each untrained discriminator phrase u. The candidate seeds are ranked

by average PMI score and the best m become the first set of bootstrapped seeds. Thus we can

use untrained discriminator phrases to generate our first set of seeds, which we use to train

the discriminators. Half of the seeds are used to find PMI thresholds for each discriminator,

and the remaining seeds used to estimate conditional probabilities. An equal number of

negative seeds is taken from among the positive seeds for other classes. Bootstrapping selects

the best k discriminators to use for the Assessor, favoring those with the best split of positive

and negative instances. Now that it has a set of trained discriminators, KnowItAll does

two more bootstrapping cycles: first, it uses the discriminators to re-rank the candidate

seeds by probability; next, it selects a new set of seeds and re-trains the discriminators.

In the experiments reported below, we used 100 candidate seeds, each with a hit count of

at least 1,000, and picked the best 20 (m = 20). Finally, we set the number of discriminators

k to 5. These settings have been sufficient to produce correct seeds for all the classes we

have experimented with thus far.

2.1.8 Experiments with Baseline KnowItAll

We ran an experiment to evaluate the performance of KnowItAll as thus far described.

We were particularly interested in quantifying the impact of the Assessor on the precision

and recall of the system. The Assessor assigns probabilities to each extraction. These prob-

abilities are the system’s confidence in each extraction and can be thought of as analogous

to a ranking function in information retrieval: the goal is for the set of extractions with

high probability to have high precision, and for the precision to decline gracefully as the

probability threshold is lowered. This is, indeed, what we found.

We ran the system with an information focus consisting of five classes: City, USState,

Country, Actor, and Film. The first three had been used in system development and the
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last two, Actor and Film, were new classes. The Assessor used PMI score thresholds as

Boolean features to assign a probability to each extraction, with the system selecting the

best five discriminator phrases as described in Section 2.1.6.

We use the standard metrics of precision and recall to measure KnowItAll’s perfor-

mance. At each probability p assigned by the Assessor, we count the number of correct

extractions at or above probability p. This is done by first comparing the extracted in-

stances automatically with an external knowledge base, the Tipster Gazetteer for locations

and the Internet Movie Database (IMDB) for actors and films. We manually checked any

instances not found in the Gazetteer or the IMDB to ensure that they were indeed errors.

Precision at p is the number of correct extractions divided by the total extractions at or

above p. Recall at p is defined as the number of correct extractions at or above p divided

by the total number of correct extractions at all probabilities. Note that this is recall with

respect to sentences that the system has actually seen, and the extraction rules it utilizes,

rather than a hypothetical, but unknown, number of correct extractions possible with an

arbitrary set of extraction rules applied to the entire Web.

Experiments 4 and 5 show precision and recall at the end of running KnowItAll for

four days. Each point on the curves shows the precision and recall for extractions with

probability at or above a given level. The curve for City has precision 0.98 at recall 0.76,

then drops to precision 0.71 at recall 1.0. The curve for USState has precision 1.0 at recall

0.98; Country has precision 0.97 at recall 0.58, and precision 0.79 at recall 0.87.

Performance on the two new classes (Actor and Film) is on par with the geography

domain we used for system development. The class Actor has precision 0.96 at recall 0.85.

KnowItAll had more difficulty with the class Film, where the precision-recall curve is

fairly flat, with precision 0.90 at recall 0.27, and precision 0.78 at recall 0.57.

Our precision/recall curves also enable us to precisely quantify the impact of the Assessor

on KnowItAll’s performance. If the Assessor is turned off, then KnowItAll’s output

corresponds to the point on the curve where the recall is 1.00. The precision, with the

Assessor off, varies between classes: for City 0.71, USState 0.96, Country 0.35, Film 0.49,

and Actor 0.69. Turning the Assessor on enables KnowItAll to achieve substantially

higher precision. For example, the Assessor raised precision for Country from 0.35 to 0.79
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Experiment 1: Precision and recall at the end of four days at varying probability thresh-

olds for the classes City, USState, and Country. KnowItAll maintains high precision up

to recall .80 for these classes.
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Experiment 2: Precision and recall at the end of four days for two new classes: Actor

and Film. KnowItAll maintains high precision for actors, but has less success with film

titles.
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at recall 0.87.

The Assessor is able to do a good job of assigning high probabilities to correct instances

with only a few false positives. Most of the extraction errors are of instances that are

semantically close to the target class. The incorrect extractions for Country with probability

> 0.80 are nearly all names of collections of countries: “NAFTA”, “North America”, and

so forth. Some of the errors at lower probability are American Indian tribes, which are

often referred to as “nations”. Common errors for the class Film are names of directors, or

partial names of films (a film named “Dalmatians” instead of “101 Dalmatians”).

The Assessor has more trouble with false negatives than with false positives. Even

though a majority of the instances at the lowest probabilities are incorrect extractions,

many are actually correct. An instance that has a relatively low number of hit counts will

often fall below the PMI threshold for discriminator phrases, even if it is a valid instance of

the class. An instance receives a low probability if it fails more than half of the discriminator

thresholds, even if it is only slightly below the threshold each time.

2.1.9 Related Work

One of KnowItAll’s main contributions is adapting Turney’s PMI-IR algorithm [115, 116,

117] to serve as validation for information extraction. PMI-IR uses search engine hit counts

to compute pointwise mutual information that measures the degree of correlation between

a pair of words. Turney used PMI from hit counts to select among candidate synonyms of a

word, and to detect the semantic orientation of a phrase by comparing its PMI with positive

words (e.g. “excellent”) and with negative words (e.g. “poor”). Other researchers have also

made use of PMI from hit counts. Magnini et al. [71] validate proposed question-answer

pairs for a QA system by learning “validation patterns” that look for the contexts in which

the proposed question and answer occur in proximity. Uryupina [118] classifies proposed

instances of geographical classes by embedding the instance in discriminator phrases much

like KnowItAll’s, which are then given as features to the Ripper classifier.

KnowItAll is distinguished from many Information Extraction (IE) systems by its

novel approach to bootstrap learning, which obviates hand-labeled training examples. Un-
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like IE systems that use supervised learning techniques such as hidden Markov models

(HMMs) [44], rule learning [108, 18, 23], maximum entropy [85], or Conditional Random

Fields [76], KnowItAll does not require any manually-tagged training data.

Bootstrap learning is an iterative approach that alternates between learning rules from a

set of instances, and finding instances from a set of rules. This is closely related to co-training

[11], which alternately learns using two orthogonal view of the data. Jones et al. [55] gives

a good overview of methods used in bootstrap learning. IE systems that use bootstrapping

include [99, 1, 14, 86, 27, 24]. These systems begin with a set of hand-tagged seed instances,

then alternately learn rules from seeds, and further seeds from rules. KnowItAll is unique

in not requiring hand-tagged seeds, but instead begins with a domain-independent set of

generic extraction patterns from which it induces a set of seed instances. KnowItAll’s use

of PMI validation helps overcomes the problem of maintaining high precision, which has

plagued previous bootstrap IE systems.

KnowItAll is able to use weaker input than previous IE systems because it relies on

the scale and redundancy of the Web for an ample supply of simple sentences. This notion

of redundancy-based extraction was introduced in Mulder [62] and further articulated in

AskMSR [75]. Of course, many previous IE systems have extracted more complex relational

information than KnowItAll. KnowItAll is effective in extracting n-ary relations from

the Web, but we have yet to demonstrate this experimentally.

Several previous projects have automated the collection of information from the Web

with some success. Information extraction systems such as Google’s Froogle, Whizbang’s

Flipdog, and Elion, collected large bodies of facts but only in carefully circumscribed do-

mains (e.g., job postings), and only after extensive domain-specific hand tuning. Know-

ItAll is both highly automated and domain independent. In fairness, though, Know-

ItAll’s redundancy-based extraction task is easier than Froogle and Flipdog’s task of

extracting “rare” facts each of which only appears on a single Web page. Semantic tagging

systems, notably SemTag [34], perform a task that is complementary to that of Know-

ItAll. SemTag starts with the TAP knowledge base and computes semantic tags for a

large number of Web pages. KnowItAll’s task is to automatically extract the knowledge

that SemTag takes as input.
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KnowItAll was inspired, in part, by the WebKB project [31]. However, the two

projects rely on very different architectures and learning techniques. For example, WebKB

relies on supervised learning methods that take as input hand-labeled hypertext regions

to classify Web pages, whereas KnowItAll employs unsupervised learning methods that

extract facts by using search engines to home in on easy-to-understand sentences scattered

throughout the Web. Finally, KnowItAll also shares the motivation of Schubert’s project

[102], which seeks to derive general world knowledge from texts. However, Schubert and his

colleagues have focused on highly-structured texts such as WordNet and the Brown corpus

whereas KnowItAll has focused on the Web.

2.1.10 Conclusions

The bulk of previous work on Information Extraction has been carried out on small corpora

using hand-labeled training examples. The use of hand-labeled training examples has en-

abled mechanisms such as Hidden Markov Models or Conditional Random Fields to extract

information from complex sentences. In contrast, KnowItAll’s focus is on unsupervised

information extraction from the Web. KnowItAll takes as input a set of predicate names,

but no hand-labeled training examples of any kind, and bootstraps its extraction process

from a small set of generic extraction patterns. To achieve high precision, KnowItAll

utilizes a novel generate-and-test architecture, which relies on mutual-information statistics

computed over the Web corpus.

KnowItAll suggests futuristic possibilities for systems that scale up information ex-

traction, new kinds of search engines based on massive Web-based information extraction,

and the automatic accumulation of large collections of facts to support knowledge-based

AI systems. However, several drawbacks to the KnowItAll architecture, including the

inherent slow speed in using search engine queries and the need for users to specify the rela-

tions of interest, have led to a new system and architecture for Web Information Extraction,

described next.
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2.2 TextRunner and Open Information Extraction6

2.2.1 Introduction and Motivation

Traditional information extraction systems have focused on satisfying precise, narrow, pre-

specified requests from small, homogeneous corpora. In contrast, the TextRunner system

demonstrates a new kind of information extraction, called Open Information Extraction

(Open IE), in which the system makes a single, data-driven pass over the entire corpus and

extracts a large set of relational tuples, without requiring any human input. [8] TextRun-

ner is a fully-implemented, highly scalable example of Open IE. TextRunner’s extractions

are indexed, allowing a fast query mechanism.

Systems designed for extracting instances of particular relations on small, homogeneous

corpora have trouble with the new requirements of Open IE. KnowItAll, which is de-

signed for unsupervised Web IE, can handle the heterogeneity of the Web without requiring

manually labeled training examples. However, even KnowItAll still requires manual in-

puts in the form of target relations, and it is significantly slowed down by its search engine

queries. Open IE has even more stringent automation requirements, and aims for much

greater scalability.

OIE marks a significant departure from traditional information extraction in two main

ways:

Automation and Scalability: The first step in automating IE came with the use of ma-

chine learning techniques to replace the early, brittle, hand-crafted rule-based sys-

tems. [98, 31] These systems were able to extract information in specialized domains

by learning patterns from manually labeled data. Later techniques showed how boot-

strapping methods could do the same with much less seed data, or starting with a few

hand-crafted extraction patterns. [14, 3, 96] Nevertheless, all of these systems require

some manual input for every relation, and potentially a substantial effort to create

hand-tagged data. Open IE seeks to do away with any amount of manual effort that is

specific to a relation. This greater degree of automation also entails better scalability,

6This description of TextRunner is based on Banko et al.’s description in [8] and Yates et al.’s descrip-
tion in [123].
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since an Open IE system is free to extract information about all relations in a corpus,

without the prohibitive manual effort required by traditional IE systems.

Corpus Heterogeneity: Previous work has used a wide variety of statistical methods

for information extraction, including kernel-based methods [15], maximum-entropy

models [56], graphical models [100, 32], and co-occurrence statistics [68, 22]. However,

they all tend to be united in the use of heavyweight linguistic tools, such as named-

entity recognizers, parsers, or dependency parsers. These tools tend to perform well

when trained and tested on the same genre or style of text, such as the newswire text

in the Penn Treebank corpus. However, they tend to have difficulty when applied to

highly heterogeneous text like that found on the Web. [45] Named entities on the

Web can fall into many more categories than the traditional Person, Location, and

Organization categories identified by named entity recognizers, so these systems have

particular difficulty on Web text. [37]

The TextRunner system, a fully-automated, highly-scalable, and efficient Open Infor-

mation Extraction system, demonstrates the feasibility and benefits of Open IE. The main

contributions are:

1. A demonstration that Open IE can work, using novel techniques such as an extraction

mechanism that extracts relations at the same time that it extracts arguments to the

relations.

2. A comparison between TextRunner and KnowItAll that shows that TextRun-

ner can extract the same amount of information per relation as KnowItAll, but

with a 33% lower error rate and with far less CPU time spent on each relation.

3. An analysis of TextRunner’s 11 million highest probability extractions from a corpus

of 9 million Web documents, which provides a better understanding of the type and

quality of information TextRunner is able to extract.



34

2.2.2 Overview of the TextRunner System

Much like KnowItAll, TextRunner is divided into extraction and assessment modules,

with a separate phase for training the extractor that has similarities to the KnowItAll

bootstrapping paradigm. However, each module is fundamentally different from the Know-

ItAll analog in order to support Open IE. The Single-Pass Extractor module reads through

the entire corpus once, processing each sentence separately and efficiently, and produces ex-

tractions as it goes. Its only input is the corpus. The Assessor module uses the set of

extractions to make judgments about the probability that each extraction is correct. Again,

it requires only the extracted data as input; it does not require search engine counts, like

KnowItAll, or manually labeled examples, like many traditional information extraction

systems. The bootstrapping module, called a Self-Supervised Classifier, trains the extractor

using an unlabeled corpus, a parser, and a set of general heuristics about which subtrees

of a parse provide reliably good extractions. Figure 2.11 shows the architecture of the full

TextRunner system.

In the following sections, we present the main modules of TextRunner in detail. Sec-

tion 2.2.3 presents the Single-Pass Extractor and the TextRunner data model. Section

2.2.4 shows how the Self-Supervised Classifier is trained. Section 2.2.5 illustrates the Asses-

sor module. Section 2.2.7 analyzes TextRunner’s efficiency in extraction, both theoret-

ically and in practice. Section 2.2.8 experimentally compares TextRunner with Know-

ItAll, and Section 2.2.9 gives an overall evaluation of TextRunner’s extraction accuracy.

Section 2.2.11 concludes.

2.2.3 Single Pass Extractor

The TextRunner Extractor makes a single pass over all documents, processing each sen-

tence in three stages. First, it tags the sentence with part-of-speech tags and noun phrase

chunks. Second, for each pair of noun phrases that are not too far apart, and subject

to several other constraints, it identifies candidate extractions. It then applies a classifier

described below to determine whether or not to extract the relationship. If the classifier

deems the extraction trustworthy, a tuple of the form t = (ei, rj, ek) is extracted, where
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Figure 2.11: Flowchart of the main components in TextRunner. The Self-Supervised
Classifier automatically labels a set of extractions, and then trains itself from it. The Extractor
uses the classifier to find high-quality extractions from unlabeled Web text. The Assessor assigns
probabilities to each extraction.

ei, ek are entities and rj is the relation between them. For example, given the sentence

“Everybody knows Edison invented the light bulb,” TextRunner can extract the tuple

(Edison, invented, light bulb).

The first phase of TextRunner’s extraction process, tagging and chunking, uses lightweight,

maximum-entropy models [94] from the OpenNLP Toolkit.7 It explicitly avoids the use of

a parser or dependency parser, which would make the processing time super-linear in the

length of the sentence. Furthermore, the tagging and chunking are easier to transport to

other languages than are parsers, and they are more robust in the face of the diversity of

language on the Web.

The second step of the extraction process finds candidate tuples. For each pair of noun

chunks in the same sentence, TextRunner creates a candidate tuple using the pair of

noun chunks as the argument strings, and the text between them as the relation string.

7http://opennlp.sourceforge.net/
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The relation string is heuristically cleaned up by removing stopwords and non-essential

adverbial or prepositional phrases.

The third step analyzes the candidate tuples and decides whether or not they are trust-

worthy extractions by applying the Self-Supervised Classifier. This classifier is a standard

Näıve Bayes model whose features are part-of-speech tags and chunk tags from the sentence

that a candidate tuple is taken from, plus some features that describe the length of the

extracted strings. A partial list of the features used for the classifier is shown in Figure

2.12. As its name suggests, the classifier is trained using an automatic labeling process,

which is described in the next section.

Whether or not the relation string contains POS sequence (VBD, IN)

The number of tokens in the relation string

The number of stop words in the relation string

Whether argument 1 is a proper noun

Whether argument 2 is a proper noun

The POS tag to the left of argument 1

The POS tag to the right of argument 2

Figure 2.12: Example features used by the Self-Supervised Classifier in TextRunner.

Finally, all extractions are sorted and merged such that the final set of extractions

contains only one copy of every extraction, together with a count of how often each was

extracted.

2.2.4 Self-Supervised Classifier

Just as KnowItAll uses a bootstrapping process to train itself (see Section 2.1.4), the

Self-Supervised Classifier module in TextRunner trains a classifier for predicting whether

or not an extraction is good or not by automatically labeling a set of candidate extractions.

The classifier for TextRunner, however, is much faster than KnowItAll’s Assessor, since

it does not rely on any search engine queries. Because of its speed, it is called directly by
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The path connects two constituents that each span an argument to the relation.

The path is no longer than a certain maximum length.

The path does not cross a sentence-like boundary (S, SQ, SBAR, SINV constituents).

Neither argument consists solely of a pronoun.

Figure 2.13: Example constraints on paths through a parse tree that span likely extrac-
tions. The Self-Supervised Classifier in TextRunner uses these constraints to automat-
ically label an extraction as being correct or incorrect.

the inner loop of the Single-Pass Extractor: as a candidate tuple is extracted, the classifier

determines which candidates should be part of the final set of extractions.

The Self-Supervised Classifier is able to train itself because it is able to automatically

label a set of example extractions taken from an unlabeled training corpus. To generate

labeled examples, it parses a set of sentences using an unlexicalized parser. [59] For each

pair of base noun phrases (ei, ej), the system finds a minimal path through the parse tree

that connects them, and creates a relation string and candidate extraction from the words

spanned. It then applies a set of heuristic constraints to the path through the parse tree,

and labels the candidate extraction correct if all constraints are met; otherwise, it is labeled

incorrect. The constraints capture general notions about what type of grammatical relations

indicate that there is likely to be a semantic relation; some example constraints are listed

in Figure 2.13.

Full parsing is an expensive operation to apply to the Web. However, this startup process

can be applied to a small sample of sentences, and the parser is then never used during the

extraction process.

Once a labeled training set is created, the Näıve Bayes model can be trained in the

standard way, by counting the frequency of each feature for both correct and incorrect

extractions. The trained classifier is language-specific, but it contains no relation-specific

or lexical features. As a result, it can be applied to arbitrary relations, and to arbitrary

domains.
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2.2.5 Redundancy-Based Assessor

While the Self-Supervised Classifier can determine which extractions are likely to be correct

with high accuracy, there is another source of unused evidence in the extracted data that can

be exploited to improve the accuracy further. The Redundancy-Based Assessor, based on

the Urns model [38], uses global counts in the data to assign each extraction a probability

of correctness. The probabilities can then be used to rank or filter the extractions.

The Urns model is an unsupervised model for determining the correctness of extractions

based on the redundancy of extracted information. If an extraction is seen multiple times

in different sentences, the model assigns it a higher probability than if it is seen only a small

number of times. The exact probability score depends, however, on the total number of

extractions. In previous experiments, it is shown to assign far more accurate probabilities

than the noisy-or model or PMI-based techniques. [38] The model is summarized below.

Urns models information extraction as a process of drawing labeled balls from an urn,

with replacement. The labels denote the strings being extracted; in TextRunner’s case,

each ball is labeled with a tuple. Because some tuples are more likely to be extracted

than others, Urns allows labels to be repeated on multiple balls. There are two observed

parameters in the Urns model, the number of times k that a label is extracted, and the

total number of draws n from the urn. Given these two counts and several parameters that

describe the frequency of correct and incorrect labels in the urn, the Urns model can assign

an exact probability that a particular label is a correct extraction.

The parameters required to describe an urn completely are:

• C, the set of distinct correct labels (extractions).

• E, the set of distinct incorrect or error labels.

• num(l), the number of balls in the urn with the label l, for every l ∈ C ∪ E.

For a set of labels L, let |L| denote the number of unique labels in L. Let num(L) be the

multi-set giving the number of balls for every label in L. Let |num(L)| be the total number
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of balls for every label in L, or |num(L)| =
∑

l∈L num(l). Finally, let T = |num(C ∪ E)|,

the total number of balls in the urn. The Urns model is given by the following expression:

P (x ∈ C|x appears k times in n draws) =

∑
r∈num(C)

(
r
T

)k (
1− r

T

)n−k∑
r′∈num(C∪E)

(
r′

T

)k (
1− r′

T

)n−k
(2.3)

Following extraction, TextRunner counts the number of sentences from which each

tuple was extracted. After the tuples are sorted, the assessor also calculates the number of

times each relation string is extracted. These two counts are used as the observed variables k

and n to assess the probability score for an extraction. The other parameters are estimated

from unlabeled data, as described by Downey et al.[38]

2.2.6 Search Interface

TextRunner builds an inverted index of the extracted tuples, and spreads it across a

cluster of machines. This architecture supports fast, interactive, and powerful relational

queries. Users enter keywords, and TextRunner quickly returns the set of extractions

matching the query. For example, a query for “Newton” will return tuples like (Newton,

invented, calculus).

The current interface to TextRunner is available over the Web at

http://www.cs.washington.edu/research/textrunner/. Figure 2.14 shows a screenshot of

the search page, and Figure 2.15 shows an example results page, the top extractions for the

predicate invented.

2.2.7 Analysis of Scalability

The theoretical performance of TextRunner is better than KnowItAll’s and other in-

formation extraction systems because it is not a function of R, the number of relations being

extracted. TextRunner’s Single-Pass Extractor runs in time O(D), where D is the num-

ber of documents in the corpus. Sorting, counting, and assessing the extractions collectively

take time O(T log T ), where T is the number of extracted tuples. In contrast, a traditional

information extraction system must process the entire corpus every time it is given a new

set of relations, so it takes time O(R · D). Since R can be quite large on the Web, this

results in a significant advantage for TextRunner and Open Information Extraction.
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Figure 2.14: Screenshot of the TextRunner Search interface, available over the Web
at http://www.cs.washington.edu/research/textrunner/. In this screenshot, a user has
entered the keyword invented into the search field.
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Figure 2.15: The top extractions returned by TextRunner for the keyword invented.
Extractions are grouped by the predicate and first argument; each second argument
belonging to the same group is listed on the same line.
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TextRunner is fast in practice as well. It took less than 68 CPU hours to extract

tuples from 162 million sentences in a test corpus of 9 million Web documents. The process

is easily parallelized, and took only 4 hours to run on a cluster of 20 machines. An additional

5 hours is needed to sort and assess the extracted tuples. TextRunner spends about 0.036

seconds per sentence during the extraction phase, more than 80 times faster than the speed

of dependency parsers measured on this corpus. They took 3 seconds per sentence, on

average.

2.2.8 Comparison with KnowItAll

The experiment below demonstrates that in a head-to-head comparison between Know-

ItAll and TextRunner, TextRunner substantially reduces the error rate while ex-

tracting almost identical numbers of a facts for a pre-selected set of relations. At the same

time, TextRunner uses significantly less time per relation, and extracts orders of magni-

tude more relations, than KnowItAll.

For this experiment, both KnowItAll and TextRunner are restricted to a test corpus

of 9 million Web documents. Since KnowItAll is not an Open IE system, it requires a

set of predicates as input. The experiment compares KnowItAll and TextRunner on

a set of ten predicates that were randomly selected from those predicates that appeared in

at least 1,000 sentences in the test corpus. The ten predicates are listed in Figure 2.16.

The results for each system are summarized in Table 2.1. Both systems find almost the

same number of instances for these ten predicates, but TextRunner’s error rate is 33%

lower than KnowItAll’s. Moreover, KnowItAll took 63 CPU hours to extract instances

for these ten relations, or 6.3 hours per relation. In contrast, TextRunner took 85 CPU

hours to extract instances for all relations it could find in the corpus. Although it is difficult

to say exactly how many distinct, correct relations are contained in the TextRunner

extractions, it is certainly several orders of magnitude more than the ten relations processed

by KnowItAll.
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(<proper noun>, acquired, <proper noun>)

(<proper noun>, graduated from, <proper noun>)

(<proper noun>, is author of, <proper noun>)

(<proper noun>, is based in, <proper noun>)

(<proper noun>, studied, <noun phrase>)

(<proper noun>, studied at, <proper noun>)

(<proper noun>, was developed by, <proper noun>)

(<proper noun>, was formed in, <year>)

(<proper noun>, was founded by, <proper noun>)

(<proper noun>, worked with, <proper noun>)

Figure 2.16: The ten predicates used by KnowItAll and TextRunner in their head-to-
head comparison.

Table 2.1: A head-to-head comparison between KnowItAll and TextRunner on a pre-
defined set of 10 predicates. TextRunner has a 33% lower error rate, while extracting
an almost identical number of extractions.

Average Error Rate Correct Extractions

TextRunner 12% 11,476

KnowItAll 18% 11,631
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2.2.9 Analysis of TextRunner’s Extractions

To convey the quality and type of extractions that TextRunner extracts, the following

analysis classifies TextRunner’s extractions in four dimensions:

1. Correctness — whether the extraction has the same truth value as conveyed by the

sentence it was extracted from.

2. Abstractness — whether the truth of the extraction is grounded in particular entities

(a concrete extraction), or the extraction is general and underspecified (an abstract

extraction).

3. Well-formedness of the relation — relations are judged to be well-formed if there exists

some pair of arguments for which the relation holds. For example, invented is a well-

formed relation, but of securing in the extraction (demands, of securing, border)

is not.

4. Well-formedness of the arguments — arguments to a relation r are said to be well-

formed for r if they are of the correct type. For example, (29, dropped, instruments)

does not have well-formed arguments.

TextRunner extracts 60.5 million tuples from the 9 million page test corpus. To

narrow down the analysis, only a subset of high-quality extractions are examined. This

subset contains all extractions for which the following criteria are met:

1. The Assessor assigns a probability ≥ 0.8.

2. The extraction’s relation appears in at least 10 distinct sentences in the corpus.

3. The relation does not appear in the top 0.1% of all relations, ranked according to the

number of sentences they appear in. These high-frequency relations have a tendency

to be overly vague, such as has or is.



45

The resulting subset contains 11.3 million tuples, with 278,085 distinct relation strings.

A random sample of 400 of these high quality extractions was manually labeled according

to the criteria above, and the results were extrapolated to the whole set. Figure 2.17 shows

the results of the analysis. 9.3 million, or 82%, of the tuples contain well-formed relations.

Of these, 84% (7.8 million tuples) also contain well-formed arguments. Overall, 80.4% of

the well-formed tuples are correct. A large fraction (87%) of the well-formed tuples are

abstract, with the remaining 1 million tuples being concrete. Concrete tuples have a higher

accuracy on average than abstract tuples: 88.1% against 79.2%.

These results indicate that TextRunner is extracting a large quantity of high-quality

extractions, both abstract and concrete. Some applications, such as ontology learning and

pattern mining, might benefit more from the abstract facts. Other applications, such as

Question-Answering and Search will probably benefit more from the concrete facts. And

of course applications will likely limit the set of relations to the domain of interest. Tex-

tRunner extracts everything available to it in the corpus, and allows the application to

decide which subset to examine.

2.2.10 Previous Work in Large Scale and Open Information Extraction

The bulk of previous information extraction work uses hand-labeled data or hand-crafted

patterns to enable relation-specific extraction from small, homogeneous corpora, as ex-

plained above. Large-scale extraction is beginning to gain some interest in recent work.

[88]

One recent system eliminates some of the problems with the domain-dependence of in-

formation extraction systems, but falls short of open information extraction. Sekine [103]

proposes a paradigm for “on-demand” information extraction, which aims to eliminate cus-

tomization involved with adapting IE systems to new topics. Using unsupervised learning

methods, the system automatically creates patterns and performs extraction based on a

topic that has been specified by a user.

Shinyama and Sekine [104] describe an approach to “unrestricted relation discovery”

that does away with many of the requirements for human input. However, it requires
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Figure 2.17: Analysis of 11.3 million high-quality extractions from TextRunner. Over-
all, 80.4% of the 7.8 million well-formed tuples are correct. 82% of all 11.3 million
tuples contain well-formed relations, and 84% of those contain well-formed arguments
as well.
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clustering of the documents used for extraction, and thus scales in quadratic time in the

number of documents, as compared with TextRunner’s running time of O(D + T log T ).

It does not scale to the size of the Web. Furthermore, their use of heavyweight language

processing tools, such as parsers and coreference resolution systems, may cause problems

with scalability. In contrast, TextRunner uses lightweight tagging and chunking.

2.2.11 Conclusions

Taken together, KnowItAll and TextRunner provide a framework for information ex-

traction at an unprecedented scale. But whereas KnowItAll is able to extract information

at a Web scale for manually specified relations, TextRunner is able to extract far more in-

formation from the same amount of text at lower error rates. A large part of TextRunner’s

improvement is because it is an Open Information Extraction system, extracting relations

on the fly as it extracts arguments. This ability enables it to extract information for far

more relations than KnowItAll, even while it is extracting almost the same amount of

information per relation.

These two systems demonstrate novel techniques and ideas for large-scale information

extraction. The next two chapters show what can be done with the extracted knowledge.
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Chapter 3

USING EXTRACTED INFORMATION TO IMPROVE NATURAL
LANGUAGE PARSING

3.1 Introduction

Semantic processing of text in applications such as question answering or information ex-

traction frequently relies on statistical parsers. Unfortunately, the efficacy of state-of-the-art

parsers can be disappointingly low. For example, we found that the Collins parser correctly

parsed just 54% of the list and factoid questions from TREC 2004 (that is, 54% of the

parses had 100% precision and 100% recall on labeled constituents). Similarly, this parser

produced 45% correct parses on a subset of 100 sentences from section 23 of the Penn

Treebank.

Although statistical parsers continue to improve their efficacy over time, progress is slow,

particularly for Web applications where training the parsers on a “representative” corpus

of hand-tagged sentences is not an option. Because of the heterogeneous nature of text on

the Web, such a corpus would be exceedingly difficult to generate.

In response, this paper investigates the possibility of detecting parser errors by using

semantic information obtained from the Web. Our fundamental hypothesis is that incorrect

parses often result in wildly implausible semantic interpretations of sentences, which can

be detected automatically in certain circumstances. Consider, for example, the following

sentence from the Wall Street Journal: “That compares with per-share earnings from con-

tinuing operations of 69 cents.” The Collins parser yields a parse that attaches “of 69 cents”

to “operations,” rather than “earnings.” By computing the mutual information between

“operations” and “cents” on the Web, we can detect that this attachment is unlikely to be

correct.

Our Woodward system detects parser errors as follows. First, it maps the tree produced

by a parser to a relational conjunction (RC), a logic-based representation language that we
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describe in Section 3.3. Second, Woodward employs four distinct methods for analyzing

whether a conjunct in the RC is likely to be “reasonable” as described in Section 3.4.

Our approach makes several assumptions. First, if the sentence is absurd to begin with,

then a correct parse could be deemed incorrect. Second, we require a corpus whose content

overlaps at least in part with the content of the sentences to be parsed. Otherwise, much

of our semantic analysis is impossible.

In applications such as Web-based question answering, these assumptions are quite nat-

ural. The questions are about topics that are covered extensively on the Web, and we can

assume that most questions link verbs to nouns in reasonable combinations. Likewise, when

using parsing for information extraction, we would expect our assumptions to hold as well.

Our contributions are as follows:

1. We introduce Web-based semantic filtering—a novel, domain-independent method for

detecting and discarding incorrect parses.

2. We describe four techniques for analyzing relational conjuncts using semantic infor-

mation obtained from the Web, and assess their efficacy both separately and in com-

bination.

3. We find that Woodward can filter good parses from bad on TREC 2004 questions

for a reduction of 67% in error rate. On a harder set of sentences from the Penn

Treebank, the reduction in error rate is 20%.

The remainder of this chapter is organized as follows. We give an overview of related work

in Section 3.2. Section 3.3 describes the semantic interpreter, including our RC representa-

tion. Section 3.4 illustrates the four Web-based classifiers that constitute the Woodward

system. Section 3.5 presents our experiments and results, and section 3.6 concludes and

gives ideas for future work.

3.2 Related Work

The problem of detecting parse errors is most similar to the idea of parse reranking. Collins

[26] describes statistical techniques for reranking alternative parses for a sentence. Implicitly,



50

a reranking method detects parser errors, in that if the reranking method picks a new parse

over the original one, it is classifying the original one as less likely to be correct. Collins uses

syntactic and lexical features and trains on the Penn Treebank; in contrast, Woodward

uses semantic features derived from the web. See section 3.5 for a comparison of our results

with Collins’.

Several systems produce a semantic interpretation of a sentence on top of a parser. For

example, Bos et al. [12] build semantic representations from the parse derivations of a CCG

parser, and the English Resource Grammar (ERG) [112] provides a semantic representation

using minimal recursion semantics. Toutanova et al. also include semantic features in their

parse selection mechanism, although it is mostly syntax-driven. The ERG is a hand-built

grammar and thus does not have the same coverage as the grammar we use. We also use

the semantic interpretations in a novel way, checking them against semantic information on

the Web to decide if they are plausible.

NLP literature is replete with examples of systems that produce semantic interpretations

and use semantics to improve understanding. Several systems in the 1970s and 1980s used

hand-built augmented transition networks or semantic networks to prune bad semantic

interpretations. More recently, people have tried incorporating large lexical and semantic

resources like WordNet, FrameNet, and PropBank into the disambiguation process. Allen

[5] provides an overview of some of this work and contains many references. Our work

focuses on using statistical techniques over large corpora, reducing the need for hand-built

resources and making the system more robust to changes in domain.

Numerous systems, including Question-Answering systems like MULDER [61], PiQASso

[6], and Moldovan et al.’s QA system [81], use parsing technology as a key component in their

analysis of sentences. In part to overcome incorrect parses, Moldovan et al.’s QA system

requires a complex set of relaxation techniques. These systems would greatly benefit from

knowing when parses are correct or incorrect. Our system is the first to suggest using the

output of a QA system to classify the input parse as good or bad.

Several researchers have used pointwise mutual information (PMI) over the Web to help

make syntactic and semantic judgments in NLP tasks. Volk [119] uses PMI to resolve

preposition attachments in German. Lapata and Keller [63] use web counts to resolve
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preposition attachments, compound noun interpretation, and noun countability detection,

among other things. And Markert et al. [73] use PMI to resolve certain types of anaphora.

We use PMI as just one of several techniques for acquiring information from the Web.

3.3 Semantic Interpreter

The semantic interpreter aims to make explicit the relations that a sentence introduces, and

the arguments to each of those relations. More specifically, the interpreter identifies the main

verb relations, preposition relations, and semantic type relations in a sentence; identifies the

number of arguments to each relation; and ensures that for every argument that two relations

share in the sentence, they share a variable in the logical representation. Given a sentence

and a Penn-Treebank-style parse of that sentence, the interpreter outputs a conjunction

of First-Order Logic predicates. We call this representation a relational conjunction (RC).

Each relation in an RC consists of a relation name and a tuple of variables and string

constants representing the arguments of the relation. As an example, Figure 3.1 contains a

sentence taken from the TREC 2003 corpus, parsed by the Collins parser. The parse for this

sentence is incorrect: the parser treats producing as the main verb, with are as an auxiliary,

whereas are is actually the main verb and producing is part of a phrase describing states.

Figure 3.2 shows the correct RC for this sentence and the RC derived automatically from

the incorrect parse.

3.3.1 Algorithm

The basic algorithm for converting a parse to a semantic representation consists of a recursive

traversal through the parse tree. At each parse node, the algorithm applies a test to see

if the node is a relation. If the parse constituent passes the test, the algorithm looks for

a name of the relation, identifies all parse constituents that constitute arguments to the

relation, builds a predicate from these pieces, and adds the new predicate to its stack. We

now describe each of these operations in more detail.

The relation test: In principle, every clause, prepositional phrase, and base noun

phrase will be a relation, but the Treebank-style annotation makes this test more compli-

cated. For clauses, we say that any SBAR or SBARQ nodes are relations, as are S, SQ, or
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Figure 3.1: An incorrect Collins Parse of a TREC question. The parser treats producing
as the main verb in the clause, rather than are.

1. What(NP1) ∧ are(VP1, NP1, NP2) ∧ states(NP2) ∧

producing(VP2, NP2, NP4) ∧ oil(NP4) ∧ in(PP1, NP2, U.S.)

2. What(NP1) ∧ states(NP2) ∧

producing(VP1, NP2, NP1, NP4) ∧ oil(NP4) ∧ in(PP1, NP2, U.S.)

Figure 3.2: Example relational conjunctions. The first RC is the correct one for the
sentence “What are oil producing states in the U.S.?” The second is the RC derived
from the Collins parse in Figure 3.1. Differences between the two RCs appear in bold.
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SINV nodes that do not have a SBAR or SBARQ as parent. To catch participle phrases, VP

nodes that have parent nodes which are not VP or any of the five S-type nodes are treated

as relations. All prepositional phrases are treated as relations.

For noun phrases, we distinguish between base noun phrases — those that have part of

speech-level head constituents — and general noun phrases. We treat base noun phrases as

relations, but not general noun phrases.

In the example parse given in Figure 3.1, six nodes would be identified as relation nodes:

SBARQ, WHNP, PP, and three of the four NP nodes. The NP node spanning states in the U.S.

would not be considered a relation, as it is not a base noun phrase.

Finding a relation name: For prepositional phrases, we take the head word of the

phrase. For noun phrases, we take the sequence of all words whose parents are immediate

children of the base noun phrase, except for determiners, to be the name of the relation.

For verb relations, the algorithm tries to identify the main verb phrase of the clause. That

is, it searches for the verb phrase below the clause that does not contain any VP children.

If such a node exists, the head of that phrase is taken to be the relation name. If it does

not exist (as in, for example, the clause himself intelligent in the sentence He considers

himself intelligent), the algorithm sets the relation name to be the verb be.

Returning to our example, the relation name for SBARQ would be identified as producing;

for the noun phrases they would be What, oil, states, and U.S., respectively; and for the

PP, it would be in.

Finding arguments to a relation: In most cases, arguments to a prepositional phrase

are easily identified as the parent constituent and the constituent following the preposition.

However, when there are movement phenomena, which are naturally prevalent in the TREC

data set, the preposition object needs to be recovered. As a simple heuristic, our algorithm

takes the parent of the first SBAR or SBARQ above the PP to be the moved object.

Clause relations may take any number of arguments. Our algorithm identifies any child

of a VP or S constituent inside the clause, except for auxiliary verbs and prepositions, as an

argument. In addition, an SBAR clause whose parent is not a VP or another clause will take

the parent as an argument as well, unless the parent is used for a gapped preposition. In

our example, the SBARQ clause has argument constituents WHNP, the NP headed by oil, and
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the NP spanning states in the U.S.

Base noun phrases take only one argument, which is the smallest noun phrase containing

the base noun phrase whose parent is not a noun phrase. In our example, the NP spanning

states in the U.S. corresponds to the argument to states, which conveniently helps the

algorithm identify that this is the same argument to producing and in.

Putting the pieces together: The above three pieces constitute the major part of the

interpreter, although there are a number of special cases to handle things like possessive noun

phrases, proper nouns, adjective phrases, etc. The system can construct a predicate from

the relation name and unique identifiers for the constituents that represent its arguments.

3.4 Semantic Filtering

This section describes semantic filtering as implemented in the Woodward system. Given

the RC representation of a parsed sentence as supplied by the Semantic Interpreter, we

test the parse using four web-based methods. Fundamentally, the methods all share the

underlying principle that some form of co-occurrence of terms in the vast Web corpus can

help decide whether a proposed relationship is semantically plausible.

Traditional statistical parsers also use co-occurrence of lexical heads as features for

making parse decisions. We expand on this idea in two ways: first, we use a corpus several

orders of magnitude larger than the tagged corpora traditionally used to train statistical

parses, so that the fundamental problem of data sparseness is ameliorated. Second, we

search for targeted patterns of words to help judge specific properties, like the number of

complements to a verb. We now describe each of our techniques in more detail.

3.4.1 A PMI-Based Filter

A number of authors have demonstrated important ways in which search engines can be

used to uncover semantic relationships, especially Turney’s notion of pointwise mutual in-

formation (PMI) based on search-engine hits counts [114]. Woodward’s PMI-Based Filter

(PBF) uses PMI scores as features in a learned filter for predicates. Following Turney, we
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use the formula below for the PMI between two terms t1 and t2:

PMI(t1, t2) = log

(
P (t1 ∧ t2)
P (t1)P (t2)

)
(3.1)

We use PMI scores to judge the semantic plausibility of an RC conjunct as follows.

We construct a number of different phrases, which we call discriminator phrases, from the

name of the relation and the head words of each argument. For example, the prepositional

attachment “operations of 65 cents” would yield phrases like “operations of” and “operations

of * cents”. (The ‘*’ character is a wildcard in the Google interface; it can match any single

word.) We then collect hitcounts for each discriminator phrase, as well as for the relation

name and each argument head word, and compute a PMI score for each phrase, using the

phrase’s hitcount as the numerator in Equation 3.1. Given a set of such PMI scores for a

single relation, we apply a learned classifier to decide if the PMI scores justify calling the

relation implausible.

This classifier (as well as all of our other ones) is trained on a set of sentences from

TREC and the Penn Treebank; our training and test sets are described in more detail in

Section 3.5. We parsed each sentence automatically using Daniel Bikel’s implementation of

the Collins parsing model,1 trained on sections 2–21 of the Penn Treebank, and then applied

our semantic interpreter algorithm to come up with a set of relations. We labeled each

relation by hand for correctness. Correct relations are positive examples for our classifier,

incorrect relations are negative examples (and likewise for all of our other classifiers). We

used the LIBSVM software package2 to learn a Gaussian-kernel support vector machine

model from the PMI scores collected for these relations. We can then use the classifier to

predict if a relation is correct or not depending on the various PMI scores we have collected.

Because we require different discriminator phrases for preposition relations and verb

relations, we actually learn two different models. After extensive experimentation, we used

two patterns for verbs, and six for prepositions. Table 3.1 lists the patterns used. We use

the PMI scores from the argument whose PMI values add up to the lowest value as the

1http://www.cis.upenn.edu/∼dbikel/software.html

2http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.
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features for a verb relation, with the intuition being that the relation is correct only if every

argument to it is valid.

Table 3.1: Patterns used by the PMI Filter. Each pattern is instantiated with verb,
noun, or preposition head words, and verbs may be conjugated to fit the corresponding
noun. The last two preposition patterns are targeted toward verb attachments. The
“*” character is a wildcard for the Google search engine; it matches any single word,
or possible a short sequence of words.

Verb Patterns Preposition Patterns

noun verb arg1 prep

(or verb noun for non-subjects) arg1 prep * arg2

noun * verb arg1 prep the arg2

(or verb * noun for non-subjects) arg1 * arg2

arg1 it prep arg2

arg1 them prep arg2

3.4.2 The Verb Arity Sampling Test

In our training set from the Penn Treebank, 13% of the time the Collins parser chooses too

many or too few arguments to a verb. In this case, checking the PMI between the verb and

each argument independently is insufficient, and there is not enough data to find hitcounts

for the verb and all of its arguments at once. We therefore use a different type of filter in

order to detect these errors, which we call the Verb Arity Sampling Test (VAST).

Instead of testing a verb to see if it can take a particular argument, we test if it can

take a certain number of arguments. The verb predicate producing(VP1, NP1, NP2, NP3)

in interpretation 2 of figure 3.2, for example, has too many arguments. To check if this

predicate can actually take three noun phrase arguments, we first construct an extraction

pattern with the following properties:

1. The pattern contains the verb and two noun phrases.
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2. The noun phrases are likely to be arguments to the verb in any sentence matching the

pattern.

3. The pattern is likely to be followed by a noun phrase for verbs that are capable of

taking three arguments.

4. The pattern is unlikely to be followed by a noun phrase for verbs that cannot take

three arguments.

5. The pattern is likely to be relatively common, and match a large number of sentences

on the Web.

One example of a pattern that fits these criteria is “which it verb” (e.g., “which it is

producing”). Note that “which” and “it” are very common words, and in this phrase they

are very likely to form arguments to the verb.

Next we take a sample of sentences containing this phrase from the Web. Since the

words “which” and “it” are so common, for most verbs there will be thousands of matching

sentences on the Web. The last step in VAST is to find out how many times in the sample

sentences the verb “producing” is followed by a noun phrase. For verbs like “producing”,

there will be very few sentences that produce an extraction (mostly temporal noun phrases

like “next week”, or else extraction errors). But for verbs like “give” or “name”, which

can in fact accept three noun phrase arguments, there will be significantly more extracted

noun phrases (e.g., “which it gives them” occurs roughly 46,000 times on the Web, whereas

“which it is producing them” does not occur at all.).

We now provide a more detailed description of the algorithm. For a given verb phrase,

VAST counts the number of noun phrase arguments. The Collins parser also marks clause

arguments as being essential by annotating them differently. VAST counts these as well, and

considers the sum of the noun and clause arguments as the number of essential arguments. If

the verb is passive and the number of essential arguments is one, or if the verb is active and

the number of essential arguments is two, VAST performs no check. We call these strictly

transitive verb relations. If the verb is passive and there are two essential arguments, or
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if the verb is active and there are three, it performs the ditransitive check below. If the

verb is active and there is one essential argument, it does the intransitive check described

below. We call these two cases collectively nontransitive verb relations. In both cases, the

checks produce a single real-valued score, and we use a linear kernel SVM to identify an

appropriate threshold such that predicates above the threshold have the correct arity.

The ditransitive check begins by querying Google for two hundred documents containing

the phrase “which it verb” or “which they verb”. It downloads each document and identifies

the sentences containing the phrase. It then POS-tags and NP-chunks the sentences using

a maximum entropy tagger and chunker. It filters out any sentences for which the word

“which” in the pattern is preceded by a preposition. Finally, if there are enough sentences

remaining (more than ten), it counts the number of sentences in which the verb is directly

followed by a noun phrase chunk. It then calculates the ditransitive score for verb v as the

ratio of the number of extractions E to the number of filtered sentences F :

ditransitiveScore(v) =
E

F
(3.2)

The intransitive check performs a very similar set of operations. It fetches up to two

hundred sentences matching the phrases “but it verb” or “but they verb”, tags and chunks

them, and extracts noun phrases that directly follow the verb. It calculates the intransitive

score for verb v using the number of extractions E and sentences S as:

intransitiveScore(v) = 1− E

S
(3.3)

3.4.3 TextRunner Filter

TextRunner, an information extraction system described in Section 2.2, embodies a trade-

off with the PMI method for checking the validity of a relation. [8] Its structure provides

a much more natural search for the purpose of verifying a semantic relationship, since it

has already arranged Web text into predicates and arguments. It is also much faster than

querying a search engine like Google, both because we have local access to it and because

commercial search engines tightly limit the number of queries an application may issue per

day. On the other hand, the TextRunner index is at present still about two orders of

magnitude smaller than Google’s search index.



59

The TextRunner semantic filter checks the validity of an RC conjunct in a natural

way: it asks TextRunner for the number of tuples that match the argument heads and

relation name of the conjunct being checked. Since TextRunner predicates only have two

arguments, we break the conjunct into trigrams and bigrams of head words, and average

over the hitcounts for each. For predicate P (A1, . . . , An) with n ≥ 2, the score becomes

TextRunnerScore =
1

n− 1

n∑
i=2

hits(A1, P, Ai)

+
1
n

(hits(A1, P, ) +
n∑

i=2

hits(, P, Ai))

As with PBF, we learn a threshold for good predicates using the LIBSVM package.

3.4.4 Question Answering Filter

When parsing questions, an additional method of detecting incorrect parses becomes avail-

able: use a question answering (QA) system to find answers. If a QA system using the

parse can find an answer to the question, then the question was probably parsed correctly.

To test this theory, we implemented a lightweight, simple, and fast QA system that

directly mirrors the semantic interpretation. It relies on TextRunner and KnowItNow

[17] to quickly find possible answers, given the relational conjunction (RC) of the question.

KnowItNow is a state of the art Information Extraction system that uses a set of domain

independent patterns to efficiently find hyponyms of a class.

We formalize the process as follows: define a question as a set of variables Xi correspond-

ing to noun phrases, a set of noun type predicates Ti(Xi), and a set of relational predicates

Pi(Xi1, ..., Xik) which relate one or more variables and constants. The conjunction of type

and relational predicates is precisely the RC.

We define an answer as a set of values for each variable that satisfies all types and

predicates

ans(x1, ..., xn) =
∧
i

Ti(xi) ∧
∧
j

Pj(xj1, ..., xjk)

The algorithm is as follows:
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1. Compute the RC of the question sentence.

2. ∀i find instances of the class Ti for possible values for Xi, using KnowItNow.

3. ∀j find instances of the relation predicate Pj(xj1, ..., xjk). We use TextRunner to

efficiently find objects that are related by the predicate Pj .

4. Return all tuples that satisfy ans(x1, ..., xn)

The QA semantic filter runs the Question Answering algorithm described above. If the

number of returned answers is above a threshold (1 in our case), it indicates the question

has been parsed correctly. Otherwise, it indicates an incorrect parse. This differs from

the TextRunner semantic filter in that it tries to find subclasses and instances, rather

than just argument heads. It makes a similar efficiency trade-off when compared to PMI:

these checks are much faster than repeated queries to Google, but it is more likely to have

problems with sparse data.

As an example, consider the question “What buildings has Frank Gehry designed?” In-

terpreting the question gives type predicates Frank Gehry(X), building(Y ) and relation

predicate designed(X, Y ) . The system first tries to find instances of the types by query-

ing KnowItNow. KnowItNow searches for patters like “buildings such as NP”, and

“NP and other Frank Gehries”, since it does not know if a type predicate corresponds

to a general class, or to a named instance. KnowItNow will find many subclasses and

instances of buildings (e.g. ‘pavilions’, ‘the Wright Guggenheim Museum’, etc.) but, un-

surprisingly, no instances of Frank Gehry. After stemming the heads, ‘pavilion’, ‘museum’,

etc. are possible values for Y , and the only possible value for X is ‘Gehry’. The sys-

tem then finds as many instances of the designed(X, Y ) predicate as possible. This returns,

among other tuples, (MIT’s Artificial Intelligence Lab, designed, Roomba) and (Gehry,

designed, Pritzker Pavilion). After stemming, we look for answers common to all predi-

cates. This results in (X,Y) tuples such as (Gehry, pavilion) and (Gehry, museum). They

clearly are not precise answers or sufficient for a real-world QA system, but they do indicate

that the question might be answerable as parsed, and thus probably parsed correctly.
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Table 3.2: Summary of the five filters.

Filter Method

PBF Checks PMI between relation and argument

VAST Checks nontrans. verb relations for arity

TextRunner Checks for known examples of the relation

extracted from the Web

QA Checks if answers to question exist on Web

Woodward 1. For questions, first runs the QA filter

2. For preposition relations, runs PBF

3. For nontransitive verbs, runs VAST

4. For transitive verbs, runs TextRunner

3.4.5 The Woodward Filter

Each of the above semantic filters has its strengths and weaknesses. On our training data,

TextRunner had the most success of any of the methods on classifying verb relations that

did not have arity errors. Because of sparse data problems, however, it was less successful

than PMI on preposition relations. The QA system had the interesting property that when

it predicted an interpretation was correct, it was always right; however, when it made a

negative prediction, its results were mixed.

Woodward combines the four semantic filters in a way that draws on each of their

strengths. First, it checks if the sentence is a question that does not contain prepositions.

If so, it runs the QA module, and returns true if that module does.

After trying the QA module, Woodward checks each predicate in turn. If the predicate

is a preposition relation, it uses PBF to classify it. For nontransitive verb relations, it uses

VAST. For strictly transitive verb relations, it uses TextRunner. Woodward accepts the

RC if every relation is predicted to be correct; otherwise, it rejects it. Table 3.2 summarizes

all of our semantic filters.
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3.5 Experiments

In our experiments we tested the ability of Woodward to detect bad parses. Our exper-

iments proceeded as follows: we parsed a set of sentences, ran the semantic interpreter on

them, and labeled each parse and each relation in the resulting RCs for correctness. We then

extracted all of the necessary information from the Web and TextRunner. We divided

the sentences into a training and test set, and trained the filters on the labeled RCs from

the training sentences. Finally, we ran each of the filters and Woodward on the test set

to predict which parses were correct. We report the results below, but first we describe our

datasets and tools in more detail.

3.5.1 Datasets and Tools

Because question-answering is a key application, we began with data from the TREC

question-answering track. We split the data into a training set of 61 questions (all of the

TREC 2002 and TREC 2003 questions), and a test set of 55 questions (all list and factoid

questions from TREC 2004). We preprocessed the questions to remove parentheticals (this

affected 3 training questions and 1 test question). We removed 12 test questions because

the Collins parser did not parse them as questions,3 and that error was too easy to detect.

25 training questions had the same error, but we left them in to provide more training data.

We used the Penn Treebank as our second data set. Training sentences were taken from

section 22, and test sentences from section 23. Because PBF is time-consuming, we took a

subset of 100 sentences from each section to expedite our experiments. We extracted from

each section the first 100 sentences that did not contain conjunctions, and for which all of

the errors, if any, were contained in preposition and verb relations.

For our parser, we used Bikel’s implementation of the Collins parsing model, trained on

sections 2-21 of the Penn Treebank. We only use the top-ranked parse for each sentence.

For the TREC data only, we first POS-tagged each question using Ratnaparkhi’s MXPOST

tagger. [95] We judged each of the TREC parses manually for correctness, but scored the

Treebank parses automatically.

3That is, the root node was neither SBARQ nor SQ.
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Table 3.3: Accuracy of the filters on three relation types in the TREC 2004 questions
and WSJ data: nontransitive verb relations, transitive verb relations, and preposition
relations.

Relation Type num. correct num. incorrect PBF acc. VAST acc. TextRunner acc.

Nontrans. Verb 41 35 0.54 0.66 0.52

Other Verb 126 68 0.72 N/A 0.73

Preposition 183 58 0.73 N/A 0.76

3.5.2 Results and Discussion

Our semantic interpreter was able to produce the appropriate RC for every parsed sentence

in our data sets, except for a few minor cases. Two idiomatic expressions in the WSJ caused

the semantic interpreter to find noun phrases outside of a clause to fill gaps that were not

actually there. And in several sentences with infinitive phrases, the semantic interpreter

did not find the extracted subject of the infinitive expression. It turned out that none of

these mistakes caused the filters to reject correct parses, so we were satisfied that our results

mainly reflect the performance of the filters, rather than the interpreter.

In Table 3.3 we report the accuracy of our first three filters on the task of predicting

whether a relation in an RC is correct. We break these results down into three categories for

the three types of relations we built filters for: strictly transitive verb relations, nontransitive

verb relations, and preposition relations. Since the QA filter works at the level of an entire

RC, rather than a single relation, it does not apply here. These results show that the trends

on the training data mostly held true: VAST was quite effective at verb arity errors, and

TextRunner narrowly beat PBF on the remaining verb errors. However, on our training

data PBF narrowly beat TextRunner on preposition errors, and the reverse was true on

our test data.

Our QA filter predicts whether a full parse is correct with an accuracy of 0.76 on the 17

TREC 2004 questions that had no prepositions. The Collins parser achieves the same level

of accuracy on these sentences, so the main benefit of the QA filter for Woodward is that

it never misclassifies an incorrect parse as a correct one, as was observed on the training
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set. This property allows Woodward to correctly predict a parse is correct whenever it

passes the QA filter.

Classification accuracy is important for good performance, and we report it to show

how effective each of Woodward’s components is. However, it fails to capture the whole

story of a filter’s performance. Consider a filter that simply predicts that every sentence is

incorrectly parsed: it would have an overall accuracy of 55% on our WSJ corpus, not too

much worse than Woodward’s classification accuracy of 66% on this data. 4 However,

such a filter would be useless because it filters out every correctly parsed sentence.

Let the filtered set be the set of sentences that a filter predicts to be correctly parsed.

The performance of a filter is better captured by two quantities related to the filtered set:

first, how “pure” the filtered set is, or how many good parses it contains compared to bad

parses; and second, how wasteful the filter is in terms of losing good parses from the original

set. We measure these two quantities using metrics we call filter precision and filter recall.

Filter precision is defined as the ratio of correctly parsed sentences in the filtered set to total

sentences in the filtered set. Filter recall is defined as the ratio of correctly parsed sentences

in the filtered set to correctly parsed sentences in the unfiltered set. Note that these metrics

are quite different from the labeled constituent precision/recall metrics that are typically

used to measure statistical parser performance. Filter precision and recall depend on the

number of correctly parsed sentences in a set of sentences, whereas constituent precision

and recall depend on the number of correct constituents in the parse of a single sentence.

Table 3.4 shows our overall results for filtering parses using Woodward. We compare

against a baseline model that predicts every sentence is parsed correctly. Woodward

outperforms this baseline in precision and F1 measure on both of our data sets.

Collins [26] reports a decrease in error rate of 13% over his original parsing model (the

same model as used in our experiments) by performing a discriminative reranking of parses.

Our WSJ test set is a subset of the set of sentences used in Collins’ experiments, so our

results are not directly comparable, but we do achieve a roughly similar decrease in error

466% is the accuracy of classifying whether a full parse is correct according to the algorithm in section

3.4.5. This is not the accuracy of classifying individual relations, as shown in Table 3.3.
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Table 3.4: Performance of Woodward on different data sets. Parser efficacy reports
the percentage of sentences that the Collins parser parsed correctly. See the text for
a discussion of our baseline and the precision and recall metrics. We weight precision
and recall equally in calculating F1. Reduction in error rate (red. err.) reports the
relative decrease in error (error calculated as 1 − F1) over baseline.

Baseline Woodward

sents. parser eff. filter prec. filter rec. F1 filter prec. filter rec. F1 red. err.

trec 43 54% 0.54 1.0 0.70 0.82 1.0 0.90 67%

wsj 100 45% 0.45 1.0 0.62 0.58 0.88 0.70 20%

rate (20%) when we use our filtered precision/recall metrics. We also measured the labeled

constituent precision and recall of both the original test set and the filtered set, and found

a decrease in error rate of 37% according to this metric (corresponding to a jump in F1

from 90.1 to 93.8). Note that in our case, the error is reduced by throwing out bad parses,

rather than trying to fix them. The 17% difference between the two decreases in error rate

is probably due to the fact that Woodward is more likely to detect the worse parses in the

original set, which contribute a proportionally larger share of error in labeled constituent

precision/recall in the original test set.

Woodward performs significantly better on the TREC questions than on the Penn

Treebank data. One major reason is that there are far more clause adjuncts in the Treebank

data, and adjunct errors are intrinsically harder to detect. Consider the Treebank sentence:

“The S&P pit stayed locked at its 30-point trading limit as the Dow average ground to its

final 190.58 point loss Friday.” The parser incorrectly attaches the clause beginning “as the

Dow . . . ” to “locked”, rather than to “stayed.” Our current methods aim to use key words

in the clause to determine if the attachment is correct. However, with such clauses there is

no single key word that can allow us to make that determination. We anticipate that as the

paradigm matures we and others will design filters that can use more of the information in

the clause to help make these decisions.



66

3.6 Conclusions and Future Work

Given a parse of a sentence, Woodward constructs a representation that identifies the key

semantic relationships implicit in the parse. It then utilizes a set of Web-based sampling

techniques to check whether these relationships are plausible. If any of the relationships

is highly implausible, Woodward concludes that the parse is incorrect. Woodward suc-

cessfully detects common errors in the output of the Collins parser including verb arity

errors as well as preposition and verb attachment errors. While more extensive experiments

are clearly necessary, our results suggest that the paradigm of Web-based semantic filtering

could substantially improve the performance of statistical parsers.

In future work, we hope to further validate this paradigm by constructing additional

semantic filters that detect other types of errors. We also plan to use semantic filters such

as Woodward to build a large-scale corpus of automatically-parsed sentences that has

higher accuracy than can be achieved today. Such a corpus could be used to re-train a

statistical parser to improve its performance. Beyond that, we plan to embed semantic

filtering into the parser itself. If semantic filters become sufficiently accurate, they could

rule out enough erroneous parses that the parser is left with just the correct one.
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Chapter 4

SYNONYM RESOLUTION ON THE WEB

4.1 Introduction

Web Information Extraction (WIE) systems extract assertions that describe a relation and

its arguments from Web text (e.g., (is capital of, D.C., United States)). WIE systems

can extract hundreds of millions of assertions containing millions of different strings from

the Web (e.g., the TextRunner system [8]). WIE systems often extract assertions that

describe the same real-world object or relation using different names. For example, a WIE

system might extract (is capital city of, Washington, U.S.), which describes the same

relationship as above but contains a different name for the relation and each argument.

Synonyms are prevalent in text, and the Web corpus is no exception. Our data set of

two million assertions extracted from a Web crawl contained over a half-dozen different

names each for the United States and Washington, D.C., and three for the is capital of

relation. The top 80 most commonly extracted objects had an average of 2.9 extracted

names per entity, and several had as many as 10 names. The top 100 most commonly

extracted relations had an average of 4.9 synonyms per relation.

We refer to the problem of identifying synonymous object and relation names as Synonym

Resolution (SR).1 [122] Previous techniques for SR have focused on one particular aspect

of the problem, either objects or relations. In addition, the techniques either depend on a

large set of training examples, or are tailored to a specific domain by assuming knowledge

of the domain’s schema. Due to the number and diversity of the relations extracted, these

techniques are not feasible for WIE systems. Schemata are not available for the Web, and

hand-labeling training examples for each relation would require a prohibitive manual effort.

In response, we present Resolver, a novel, domain-independent, unsupervised synonym

1Ironically, SR has a number of synonyms in the literature, including Entity Resolution, Record Linkage,

and Deduplication.
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resolution system that applies to both objects and relations. Resolver clusters coreferential

names together using a probabilistic model informed by string similarity and the similarity

of the assertions containing the names. The key questions answered by Resolver include:

1. Is it possible to effectively cluster strings into sets of synonyms using nothing more

than a set of automatically-extracted facts about them? Experiments below include an

empirical demonstration that Resolver can resolve objects with 78% precision and

68% recall, and relations with 90% precision and 35% recall.

2. Can synonym resolution be scaled to millions of distinct strings? to the size of

the Web? Resolver provides a scalable clustering algorithm that runs in time

O(KN log N) in the number of extractions N and maximum number of synonyms

per word, K, without discarding any potentially matching pair, under exceptionally

weak assumptions about the data.

3. Can unsupervised synonym resolution be formalized in a probabilistic model, and is

there a practical benefit to doing so? Resolver provides an unsupervised, generative

probabilistic model for predicting whether two object or relation names co-refer, and

experiments show that this significantly outperforms previous metrics for distribu-

tional similarity.

4. Certain relations, especially functions and inverse functions, provide especially strong

evidence for and against synonymy. Is it possible to use the special properties of

functions and inverse functions to improve the precision of a synonym resolution al-

gorithm? Several extensions to the Resolver system show that the precision of

object merging can be improved by 3% using functions, and experiments on artificial

data show that with more suitable data, the increase could be as high as 26%.

5. Resolver is capable of determining both object and relation synonyms indepen-

dently. It is natural to wonder if the process for merging objects could benefit from

synonym relationships discovered between relations, and vice versa. Unfortunately, on
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TextRunner data, this kind of mutual recursion between object and relation syn-

onym resolution does not help. We therefore investigate: under what conditions does

Resolver’s synonym resolution improve when object and relation merging depend on

one another? Experiments on artificial data demonstrate what types of data sets are

appropriate for mutual recursion between object and relation merging, and they show

that mutual recursion could improve recall by as much as 16% (with a small benefit

for precision) on suitable data.

The next section describes the problem of synonym resolution formally and introduces

notation and terminology that will be used throughout. Section 4.3 discusses previous

work in SR. Section 4.4 introduces Resolver’s probabilistic model for SR. Section 4.5 de-

scribes Resolver’s clustering algorithm. Section 4.6 presents experiments with the basic

Resolver system that compare its performance with the performance of previous work in

synonym resolution. Section 4.7 describes several extensions to the basic Resolver system,

together with experiments illustrating the gains in precision and recall. Section 4.8 devel-

ops the clustering algorithm further, and demonstrates improvements through experiments.

Finally, section 4.9 discusses conclusions and areas for future work.

4.2 Formal Synonym Resolution Problem

An SR system for WIE takes a set of extractions as input and returns a set of clusters,

with each cluster containing coreferential object strings or relation strings. More precisely,

the input is a data set D containing extracted assertions of the form a = (r, o1, . . . , on),

where r is a relation string and each oi is an object string representing the arguments to

the relation. Throughout this work, all assertions are assumed to be binary, so n = 2.

The output of an SR system is a clustering, or set of clusters, of the strings in D. Let

S be the set of all distinct strings in D. A clustering of S is a set C ⊂ 2S such that all the

clusters in C are distinct, and they cover the whole set:

⋃
c∈C

= S

∀c1, c2 ∈ C. c1 ∧ c2 = ∅
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Each cluster in the output clustering constitutes the system’s conjecture that all strings

inside the cluster are synonyms, and no string outside that cluster is a synonym of any

string in the cluster.

4.2.1 The Single-Sense Assumption

The formal representation of SR makes an important simplifying assumption: it is assumed

that every string belongs to exactly one cluster. In language, however, strings often have

multiple meanings; i.e., they are polysemous. Polysemous strings cannot be adequately

represented using a clustering in which each string belongs to exactly one cluster. Addressing

this shortcoming of the representation language is an important challenge for future work.

As an example of the representational trouble posed by polysemy, consider the name

“President Roosevelt.” In certain contexts, this name is synonymous with “President

Franklin D. Roosevelt,” and in other contexts it is synonymous with “President Theodore

Roosevelt.” However, “President Franklin D. Roosevelt” is never synonymous with “Pres-

ident Theodore Roosevelt.” There is no clustering of the three names, using the notion of

clustering described above, such that all synonymy relationships are accurately represented.

Others have described alternate kinds of clustering that take polysemy into account. For

example, “soft clustering” allows a string to be assigned to as many different clusters as it

has senses. One variation on this idea is to assign a probability distribution to every string,

describing the prior probability that the string belongs in each cluster [67, 91]. Both of these

representations capture only prior information about strings. That is, they represent the

idea that a particular string can belong to a cluster, or the probability that it belongs to a

cluster, but not whether a particular instance of the string actually does belong to a cluster.

A third type of clustering, the most explicit representation, stores each instance of a string

separately. Each string instance is assigned to the cluster that is most appropriate for the

instance’s context. Word sense disambiguation systems that assign senses from WordNet

[79] implicitly use this kind of clustering (e.g., [54, 106]).

Existing SR systems all make the single-sense assumption or very similar assumptions.

A full treatment of the problem needs to address polysemy, and it remains an important
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challenge for the field.

4.2.2 Subproblems in Synonym Resolution

The SR problem can be divided into two subproblems: first, how to measure the similarity,

or probability of synonymy, between pairs of strings in S; and second, how to form clusters

such that all of the elements in each cluster have high similarity to one another, and relatively

low similarity to elements in other clusters.

Resolver uses a generative, probabilistic model for finding the similarity between

strings. For strings si and sj , let Ri,j be the random variable for the event that si and

sj refer to the same entity. Let Rt
i,j denote the event that Ri,j is true, and Rf

i,j denote the

event that it is false. Let Dx denote the set of extractions in D which contain string x.

Given D and S, the first subtask of SR is to find P (Ri,j |Dsi , Dsj ) for all pairs si and sj .

The second subtask takes S and the probability scores for pairs of strings from S as input.

Its output is a clustering of S.

Sections 4.4 and 4.5 cover Resolver’s solutions to each subtask respectively. First,

however, we discuss previous work related to Synonym Resolution.

4.3 Previous Work

The Discovery of Inference Rules from Text (DIRT) algorithm [68] addresses a piece of the

unsupervised SR problem. DIRT is a heuristic method for finding synonymous relations, or

“inference rules.” DIRT uses a dependency parser and mutual information statistics over a

corpus to identify relations that have similar sets of arguments. In contrast, our algorithm

provides a formal probabilistic model that applies equally well to relations and objects.

Sections 4.4.2 contains a fuller description of the differences between the two methods, and

section 4.6 describes experiments which show Resolver’s superior performance in precision

and recall over DIRT.

Resolver’s method of determining the similarity between two strings is an example of

a broad class of metrics called distributional similarity metrics [66], but it has significant

advantages over traditional distributional similarity metrics for the SR task. All of these

metrics are based on the underlying assumption, called the Distributional Hypothesis, that
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“Similar objects appear in similar contexts” [52]. Previous distributional similarity metrics,

however, have been designed for comparing words based on terms appearing in the same

document, rather than extracted properties. This has two important consequences: first,

extracted properties are by nature sparser because they appear only in a narrow window

around words and because they consist of longer strings (at the very least, pairs of words);

second, each property that is shared by two strings is much more meaningful than if they

simply appeared near a word in a document because the extraction mechanism is designed to

find meaningful relationships. Resolver’s metric is designed to take advantage of the rela-

tional model provided by Web Information Extraction. Section 4.4.2 describes the difference

between the Cosine Similarity Metric, an example of a traditional distributional similarity

metric, and Resolver’s metric more fully, and experiments in Section 4.6 demonstrate that

Resolver outperforms the Cosine Similarity Metric [101].

There are many unsupervised approaches for object resolution in databases, but un-

like our algorithm these approaches depend on a known, fixed, and generally very small

schema. Ravikumar and Cohen [97] present an unsupervised approach to object resolution

using Expectation-Maximization on a hierarchical graphical model. Several other recent

approaches leverage domain-specific information and heuristics for object resolution. For

example, many [36, 9, 10] rely on evidence from observing which strings appear as argu-

ments to the same relation simultaneously (e.g., co-authors of the same publication). While

this is useful information when resolving authors in the citation domain, it is extremely rare

to find relations with similar properties in extracted assertions. None of these approaches

applies to the problem of resolving relations. See [120] for a survey of this area.

One promising new approach to clustering in a relational domain is the Multiple Rela-

tional Clusterings (MRC) algorithm. [60] This approach, though not specific to synonym

resolution, can find synonyms in a set of unlabeled, relational extractions without domain-

specific heuristics. The approach is quite recent, and so far no detailed experimental com-

parison has been conducted. One preliminary experiment showed that MRC could attain a

higher precision clustering than Resolver using only string similarity as its evidence, but

MRC had lower recall than Resolver, so the experiment was inconclusive.

Several supervised learning techniques make entity resolution decisions [57, 78, 105],
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but of course these systems depend on the availability of training data, and often on a

significant number of labeled examples per relation of interest. These approaches also

depend on complex probabilistic models and learning algorithms, and they currently do

not scale to the amounts of data extracted from the Web. Previous systems are tested on

at most around ten thousand examples, compared with millions or hundreds of millions of

extractions from WIE systems such as TextRunner.

Coreference resolution systems (e.g., [64, 84]), like SR systems, try to merge references

to the same object (typically pronouns, but potentially other types of noun phrases). This

problem differs from the SR problem in several ways: first, it deals with unstructered text

input, possibly with syntactic annotation, rather than relational input. Second, it deals

only with resolving objects. Finally, it requires local decisions about strings; that is, the

same word may appear twice in a text and refer to two different things, so each occurrence

of a word must be treated separately.

Resolver and most SR systems built for databases tend to use relational features. Pre-

vious systems, including coreference resolution systems as well as named-entity resolution

systems [72, 7], have also investigated bag-of-words models for synonym resolution. While

bag-of-words models give a broader context and might perhaps be better suited for han-

dling polysemy than relational models, each feature tends to provide less evidence for or

against synonymy than in a relational model, where the features have been pre-selected by

an information extraction system.

The PASCAL Recognising Textual Entailment Challenge proposes the task of recogniz-

ing when two sentences entail one another, and many authors have submitted responses

to this challenge [33]. Synonym resolution is a subtask of this problem. Our task differs

significantly from the textual entailment task in that it has no labeled training data, and

its input is in the form of relational extractions rather than raw text.

Resolver’s probabilistic model is partly inspired by the ball-and-urns abstraction of

information extraction presented by Downey et al. [38] Resolver’s task and probability

model are different from theirs, but many of the same modeling assumptions (such as the

independence of extractions) are made in both cases to simplify the derivation of the models.
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4.4 Models for String Comparisons

Our probabilistic model provides a formal, rigorous method for resolving synonyms in the

absence of training data. It has two sources of evidence: the similarity of the strings

themselves (i.e., edit distance) and the similarity of the assertions they appear in. This

second source of evidence is sometimes referred to as distributional similarity. [52]

Section 4.4.1 presents a simple model for predicting whether a pair of strings co-refer

based on string similarity. Section 4.4.2 then presents a model called the Extracted Shared

Property (ESP) Model for predicting whether a pair of strings co-refer based on their dis-

tributional similarity. Finally, a method is presented for combining these models to come

up with an overall prediction for coreference decisions between two clusters of strings.

4.4.1 String Similarity Model

Many objects appear with multiple names that are substrings, acronyms, abbreviations, or

other simple variations of one another. Thus string similarity can be an important source of

evidence for whether two strings co-refer. Resolver’s probabilistic String Similarity Model

(SSM) assumes a similarity function sim(s1, s2): STRING×STRING → [0, 1]. The model

sets the probability of s1 co-referring with s2 to a smoothed version of the similarity:

P (Rt
i,j |sim(s1, s2)) =

α ∗ sim(s1, s2) + 1
α + β

As α increases, the probability estimate transitions from 1/β to the value of the similarity

function. The particular choice of α and β make little difference to Resolver’s results, so

long as they are chosen such that the resulting probability can never be one or zero. In the

experiments below, α = 20 and β = 5. The Monge-Elkan string similarity function [83] is

used for objects, and the Levenshtein string edit-distance function is used for relations [25].

4.4.2 The Extracted Shared Property Model

The Extracted Shared Property Model (ESP) outputs the probability that two strings co-

refer based on the similarity of the extracted assertions in which they appear. For example,

if the extractions (Newton, invented, calculus) and (Leibniz, invented, calculus) both
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appeared in the data, then Newton and Leibniz would be judged to have similar contexts in

the extracted data.

More formally, let a pair of strings (r, s) be called a property of an object string o if

there is an assertion (r, o, s) ∈ D or (r, s, o) ∈ D. A pair of strings (s1, s2) is an instance

of a relation string r if there is an assertion (r, s1, s2) ∈ D. Equivalently, the property

p = (r, s) applies to o, and the instance i = (s1, s2) belongs to r. The ESP model outputs

the probability that two strings co-refer based on how many properties (or instances) they

share.

As an example, consider the strings Mars and Red Planet, which appear in our data 659

and 26 times respectively. Out of these extracted assertions, they share four properties. For

example, (lacks, Mars, ozone layer) and (lacks, Red Planet, ozone layer) both appear

as assertions in our data. The ESP model determines the probability that Mars and Red

Planet refer to the same entity after observing k, the number of properties that apply to

both, n1, the total number of extracted properties for Mars, and n2, the total number of

extracted properties for Red Planet.

ESP models the extraction of assertions as a generative process, much like the URNS

model [38]. For each string si, a certain number, Pi, of properties of the string are written

on balls and placed in an urn. Extracting ni assertions that contain si amounts to selecting

a subset of size ni from these labeled balls.2 Properties in the urn are called potential

properties to distinguish them from extracted properties.

To model coreference decisions, ESP uses a pair of urns, containing Pi and Pj balls

respectively, for the two strings si and sj . Some subset of the Pi balls have the exact

same labels as an equal-sized subset of the Pj balls. Let the size of this subset be Si,j .

The ESP model assumes that coreferential strings share as many potential properties as

possible, though only a few of the potential properties will be extracted for both. For

non-coreferential strings, the number of shared potential properties is a strict subset of the

potential properties of each string. Thus if Ri,j is true then Si,j = min(Pi, Pj), and if Ri,j

2Unlike the URNS model, balls are drawn without replacement. The TextRunner data contains only

one mention of any extraction, so drawing without replacement tends to model the data more accurately.



76

is false then Si,j < min(Pi, Pj).

The ESP model makes several simplifying assumptions in order to make probability

predictions. As is suggested by the ball-and-urn abstraction, it assumes that each ball

for a string is equally likely to be selected from its urn. Because of data sparsity, almost

all properties are very rare, so it would be difficult to get a better estimate for the prior

probability of selecting a particular potential property. Second, balls are drawn from one

urn independent of draws from any other urn. And finally, it assumes that without knowing

the value of k, every value of Si,j is equally likely, since we have no better information.

Given these assumptions, we can derive an expression for P (Rt
i,j). The derivation is

sketched below; see Appendix A for a complete derivation. First, note that there are(
Pi
ni

)(
Pj
nj

)
total ways of extracting ni and nj assertions for si and sj . Given a particular value

of Si,j , the number of ways in which ni and nj assertions can be extracted such that they

share exactly k is given by

Count(k, ni, nj |Pi, Pj , Si,j) =
(Si,j

k

) ∑
r,s≥0

(
Si,j−k

r+s

)(
r+s
r

)( Pi−Si,j

ni−(k+r)

)( Pj−Si,j

nj−(k+s)

)
(4.1)

By our assumptions,

P (k|ni, nj , Pi, Pj , Si,j) =
Count(k, ni, nj |Pi, Pj , Si,j)(

Pi
ni

)(
Pj
nj

) (4.2)

Let Pmin = min(Pi, Pj). The result below follows from Bayes’ Rule and our assumptions

above:

Proposition 1 If two strings si and sj have Pi and Pj potential properties (or instances),

and they appear in extracted assertions Di and Dj such that |Di| = ni and |Dj | = nj, and

they share k extracted properties (or instances), the probability that si and sj co-refer is:

P (Rt
i,j |Di, Dj , Pi, Pj) =

P (k|ni, nj , Pi, Pj , Si,j = Pmin)∑
k≤Si,j≤Pmin

P (k|ni, nj , Pi, Pj , Si,j)
(4.3)

Substituting equation 4.2 into equation 4.3 gives us a complete expression for the probability

we are looking for.
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Note that the probability for Ri,j depends on two hidden parameters, Pi and Pj . Since

in unsupervised SR there is no labeled data to estimate these parameters from, these pa-

rameters are tied to the number of times the respective strings si and sj are extracted:

Pi = N × ni. The experimental methods in Section 4.6 explains how the parameter N is

set.

Appendix B illustrates a technique for calculating the ESP model efficiently.

4.4.3 Comparison of ESP with Other Distributional Similarity Metrics

The Discovery of Inference Rules from Text (DIRT) [68] method is the most similar previous

work to the ESP model in its goals, but the metric itself is very different. DIRT operates over

triples of extracted strings and produces similarity scores for relations, without requiring

manually labeled training data, by comparing the distributions of one relation’s arguments

to another’s. Unlike ESP, DIRT uses a dependency parser to extract its triples, but the

similarity metric may be isolated from the extraction mechanism and compared with ESP

separately.

The most significant difference between the DIRT similarity metric and the ESP model is

that the DIRT metric compares the x arguments from one relation to the x arguments of the

other, and then compares the y arguments from one relation to the y arguments of the other,

and finally combines the scores. In contrast, ESP compares the (x, y) argument pairs of one

relation to the (x, y) pairs of the other. While the DIRT metric has the advantage that it

is more likely to find matches between two relations in sparse data, it has the disadvantage

that the matches it does find are not necessarily strong evidence for synonymy. In effect, it is

capturing the intuition that synonyms have the same argument types for their domains and

ranges, but it is certainly possible for non-synonyms to have the same property. Antonyms

are an obvious example. Synonyms are not defined by their domains and ranges, but rather

by the mapping between them, and ESP better captures the similarity in this mapping, as

demonstrated in experiments below (Section 4.6).

Most traditional distributional similarity metrics operate over context vectors, rather

than extracted triples. The ESP model treats the extracted triples much like context vectors:
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each string has a binary vector of properties, ones representing properties that apply to the

string and zeros representing those that do not.

However, unlike traditional distributional similarity metrics, ESP does not weigh each

dimension in the context vector independently. Cosine Similarity Metric (CSM), for exam-

ple, determines how similar two context vectors are in each dimension, and then adds the

scores up for all dimensions. In contrast, the score assigned to a dimension in ESP depends

on how many other dimensions have matching contexts. As the number of matching con-

texts grows, the weight for each additional matching context also grows. The effect is that

ESP has much lower similarity scores than CSM for small numbers of matching contexts,

and much higher scores for larger numbers of matching contexts. Experiments in Section

4.6 demonstrate the improvement in performance of ESP over CSM.

CSM’s similarity score for a particular dimension depends on how often the string is

extracted with that context, and how often the context appears with other strings. The

basic ESP model does not take those two pieces of evidence into account, although Section

4.7.3 describes an extension to the basic model that does.

4.4.4 Combining the Evidence

For each potential coreference relationship Ri,j , Resolver considers two pieces of proba-

bilistic evidence. Let Ee
i,j be the evidence for ESP, and let Es

i,j be the evidence for SSM. Our

method for combining the two uses the Näıve Bayes assumption that each piece of evidence

is conditionally independent, given the coreference relation:

P (Es
i,j , E

e
i,j |Ri,j) = P (Es

i,j |Ri,j)P (Ee
i,j |Ri,j) (4.4)

Given this simplifying assumption, we can combine the evidence to find the probability

of a coference relationship by applying Bayes’ Rule to both sides (we omit the i, j indices

for brevity):

P (Rt|Es, Ee) =
P (Rt|Es)P (Rt|Ee)(1− P (Rt))∑

i∈{t,f} P (Ri|Es)P (Ri|Ee)(1− P (Ri))
(4.5)
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4.4.5 Comparing Clusters of Strings

Our algorithm merges clusters of strings with one another, using one of the above models.

However, these models give probabilities for coreference decisions between two individual

strings, not two clusters of strings.

We follow the work of Snow et al. [107] in incorporating transitive closure constraints

in probabilistic modeling, and make the same independence assumptions. The benefit of

this approach is that the calculation for merging two clusters depends only on coreference

decisions between individual strings, which can be calculated independently.

Let a clustering be a set of coreference relationships between pairs of strings such that

the coreference relationships obey the transitive closure property. We let the probability of

a set of assertions D given a clustering C be:

P (D|C) =
∏

Rt
i,j∈C

P (Di ∪Dj |Rt
i,j)×

∏
Rf

i,j∈C

P (Di ∪Dj |Rf
i,j) (4.6)

The metric used to determine if two clusters should be merged is the likelihood ratio, or

the probability for the set of assertions given the merged clusters over the probability given

the original clustering. Let C ′ be a clustering that differs from C only in that two clusters

in C have been merged in C ′, and let ∆C be the set of coreference relationships in C ′ that

are true, but the corresponding ones in C are false. This metric is given by:

P (D|C ′)/P (D|C) =

∏
Rt

i,j∈∆C P (Rt
i,j |Di ∪Dj)(1− P (Rt

i,j))∏
Rt

i,j∈∆C(1− P (Rt
i,j |Di ∪Dj))P (Rt

i,j)
(4.7)

The probability P (Rt
i,j |Di ∪ Dj) may be supplied by the SSM, ESP, or combination

model. In our experiments, we let the prior for the SSM model be 0.5. For the ESP and

combined models, we set the prior to P (Rt
i,j) = 1

min(P1,P2) .

4.5 Resolver’s Clustering Algorithm

Synonym Resolution for the Web requires a clustering algorithm that can scale to huge

numbers of strings in a sparse, high-dimensional space. Those requirements are difficult for

any clustering algorithm. On the other hand, very few words have more than a handful of



80

synonyms, so clusters tend to be quite small. Greedy agglomerative approaches are well-

suited to this type of clustering problem, since they start with the smallest possible clusters

and merge them as needed.

The Resolver clustering algorithm is a version of greedy agglomerative clustering. The

main difference between it and standard Agglomerative Clustering is that it can handle the

sparse, high-dimensional space and huge numbers of elements required by SR. The algorithm

iteratively merges clusters of co-referential names, making each iteration in time O(N log N)

in the number of extracted assertions. The algorithm requires only basic assumptions about

which strings to compare. Previous work on speeding up clustering algorithms for SR has

either required far stronger assumptions, or else it has focused on heuristic methods that

remain, in the worst case, O(N2) in the number of distinct objects.

Our algorithm, a greedy agglomerative clustering method, is outlined in Figure 4.1. It

begins by calculating similarity scores between pairs of strings, in steps 1-3. After the scores

for all comparisons are made, each string is assigned its own cluster. Then the scores are

sorted and the best cluster pairs are merged until no pair of clusters has a score above

threshold. The novel part of the algorithm, step 3, compares pairs of strings that share the

same property or instance, so long as no more than Max strings share that same property

or instance. The property index limits the number of comparisons made between strings,

and it is the reason for the algorithm’s improved efficiency, as explained below.

This algorithm compares every pair of clusters that have the potential to be merged,

assuming two properties of the data. First, it assumes that pairs of clusters with no shared

properties are not worth comparing. Since the number of shared properties is a key source

of evidence for our approach, these clusters almost certainly will not be merged, even if they

are compared, so the assumption is quite reasonable. Second, the approach assumes that

clusters sharing only properties that apply to very many strings (more than Max) need

not be compared. Since properties shared by many strings provide little evidence that the

strings are coreferential, this assumption is reasonable for SR. We use Max = 50 in our

experiments. Less than 0.1% of the properties are thrown out using this cutoff.
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S := set of all strings

For each property or instance p,

Sp := {s ∈ S|s has property p}

1. Scores := {}

2. Build index mapping properties (and instances)

to strings with those properties (instances)

3. For each property or instance p:

If |Sp| < Max:

For each pair {s1, s2} ⊂ Sp:

Add mergeScore(s1, s2) to Scores

4. Repeat until no merges can be performed:

Sort Scores

UsedClusters := {}

While score of top clusters c1, c2 is above Threshold:

Skip if either is in UsedClusters

Merge c1 and c2

Add c1, c2 to UsedClusters

Recalculate merge scores involving merged clusters as in Steps 1-3

Figure 4.1: Resolver’s Clustering Algorithm
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4.5.1 Algorithm Analysis

Let D be the set of extracted assertions. The following analysis shows that one iteration of

merges takes time O(|D| log |D|). Let NC be the number of comparisons between strings

in step 3. To simplify the analysis, we consider only those properties that contain a relation

string and an argument 1 string. Let A be the set of all such properties. NC is linear in

N :3

NC =
∑
p∈A

|Sp| × (|Sp| − 1)
2

≤ (Max− 1)
2

×
∑
p∈A

|Sp|

=
(Max− 1)

2
× |D|

Note that this bound is quite loose because most properties apply to only a few strings.

Step 4 requires time O(|D| log |D|) to sort the comparison scores and perform one iteration

of merges. If the largest cluster has size K, in the worst case the algorithm will take K

iterations. In our experiments, the algorithm never took more than 9 iterations.

4.5.2 Relation to other speed-up techniques

The merge/purge algorithm [51] assumes the existence of a particular attribute such that

when the data set is sorted on this attribute, matching pairs will all appear within a narrow

window of one another. This algorithm is O(M log M) where M is the number of distinct

strings. However, there is no attribute or set of attributes that comes close to satisfying

this assumption in the context of domain-independent information extraction.

There are several techniques that often provide speed-ups in practice, but in the worst

case they make O(M2) comparisons at each merge iteration, where M is the number of

distinct strings. This can cause problems on very large data sets. Notably, McCallum et

al. [77] use a cheap comparison metric to place objects into overlapping “canopies,” and

3If the Max parameter is allowed to vary with log|D|, rather than remaining constant, the same analysis

leads to a slightly looser bound that is still better than O(|D|2).
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then use a more expensive metric to cluster objects appearing in the same canopy. The

Resolver clustering algorithm is in fact an adaptation of the canopy method; it adds the

restriction that strings are not compared when they share only high-frequency properties.

The canopy method works well on high-dimensional data with many clusters, which is the

case with our problem, but its time complexity is worse than ours.

For information extraction data, a complexity of O(M2) in the number of distinct strings

turns out to be considerably worse than our algorithm’s complexity of O(N log N) in the

number of extracted assertions. This is because the data obeys a Zipf law relationship

between the frequency of a string and its rank, so the number of distinct strings grows

linearly or almost linearly with the number of assertions. The exact relationship depends

on the shape parameter z of the Zipf curve. If z < 1, as it is for our data set, the number

of total extractions grows linearly with the number of distinct strings extracted. For more

details and a proof that the new bound is in fact an improvement, see Appendix C.

4.5.3 Status of the Resolver Implementation

Resolver currently exists as a Java package containing 23,338 lines of code. It has separate

modules for calculating the Extracted Shared Property Model and the String Similarity

Model, as well as for clustering extractions. The basic version of the system accepts a

file containing TextRunner extractions as input, one extraction per line. Optionally, it

accepts manually labeled clusters as input as well, and will use those to output precision and

recall scores. The output of the system is two files containing all object clusters and relation

clusters of size two or more, respectively. Optionally, the system also outputs precision and

recall scores. Several other options allow the user to run extensions to the basic Resolver

system, which are discussed below in Sections 4.7 and 4.8.

Resolver is currently a part of the TextRunner demonstration system.4 This demon-

stration system contains extractions from 117 million Web documents. The extractions were

fed into Resolver and the resulting clusters were added to the TextRunner index so

4The demonstration system is available for keyword searches over the Web at

http://www.cs.washington.edu/research/textrunner/.
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Figure 4.2: The TextRunner search page, with the query invented entered into the
search field.

that keyword searches return results for any member of the cluster containing the key-

word being searched for, and the displayed results are condensed such that members of the

same cluster are not repeated. Figure 4.3 shows the results of searching TextRunner for

the predicate invented. Note that in the results, a pop-up box displays all the synonyms

for Thomas Edison that share the property invented, light bulb. Such pop-up boxes will

display whenever a user clicks on a string that has a nontrivial cluster found by Resolver.

4.6 Experiments

Several experiments below test Resolver and ESP, and demonstrate their improvement

over related techniques, Discovery of Inference Rules from Text (DIRT) [68] and the Cosine

Similarity Metric (CSM) [101]. The first experiment compares the performance of the
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Figure 4.3: Results from searching for the predicate invented using TextRunner’s search
functionality. The synonyms that Resolver found for Thomas Edison are displayed in a
pop-up box.
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various similarity metrics on measuring the similarity between pairs of strings, and it shows

that ESP outperforms both DIRT and CSM, and that Resolver outperforms ESP and SSM

on measuring similarity between strings. The second experiment measures the performance

of the clustering method, and shows that Resolver’s output clusters are significantly better

than ESP’s or SSM’s, and ESP’s clusters are in turn significantly better than DIRT’s or

CSM’s.

4.6.1 Data

The models are tested on a data set of 2.1 million assertions extracted from a Web crawl.

All models run over all assertions, but compare only those objects or relations that appear

at least 25 times in the data, to give the distributional similarity models sufficient data for

estimating similarity. In addition, only proper nouns5 are compared, and only those relation

strings that contain no punctuation or capital letters are compared. This helps to restrict

the experiment to strings that are less prone to extraction errors. However, the models

do use the other strings as features. In all, the data contains 9,797 distinct proper object

strings and 10,151 distinct proper relation strings that appear at least 25 times. A gold

standard data set was created by manually clustering a subset of 5,000 object and 2,000

relation strings.

4.6.2 Comparing Similarity Metrics

The first experiment compares similarity metrics using precision and recall. It compares

the metrics discussed throughout this paper: the Cosine Similarity Metric (CSM) and the

Discovery of Inference Rules From Text (DIRT) method, as two comparison points; the

Extracted Shared Property (ESP) model; the String Similarity Metric (SSM); and the

combination of ESP and SSM, or Resolver.

5Since the data set did not necessarily contain sufficient context around object strings in order to run

standard named-entity recognizers, the following heuristic was used to detect proper nouns: if the string

consisted of only alphabetic characters, whitespace, and periods, and if the first character of every word is

capitalized, it is considered a proper noun. Otherwise, it is not.
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Each model assigns a similarity score to every pair of strings that shares at least one

property that appears fewer than Max times (see section 4.5). Each pair is labeled as

correct if both strings belong to the same gold cluster, incorrect if they belong to different

gold clusters, and irrelevant if one or both of the strings is not contained in the gold standard.

Let the set of string pairs with similarity score above threshold t be St. Let the set of correct

string pairs with score above t be Ct, and let the total number of correct string pairs in

the gold standard be G. Then the precision for a model at threshold t is given by |Ct|
|St| ,

and the recall for a model at threshold t is given by |Ct|
|G| . Figures 4.4 and 4.5 show the

precision-recall curves for ESP, DIRT, and CSM on objects and relations, respectively, as

the threshold t is varied. Figures 4.6 and 4.7 show the performance of SSM and Resolver

as well.
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Figure 4.4: The performance of the Extracted Shared Property (ESP) model, Discovery
of Inference Rules from Text (DIRT), and Cosine Similarity Metric (CSM) on object
pairs. ESP’s area under the curve is 193% higher than DIRT’s and 273% higher than CSM’s.
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Figure 4.5: The performance of the Extracted Shared Property (ESP) model, Discovery
of Inference Rules from Text (DIRT), and Cosine Similarity Metric (CSM) on relation
pairs. ESP’s area under the curve is 121% higher than DIRT’s and 174% higher than CSM’s.
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Figure 4.6: Improvement in precision and recall of Resolver over the String Similarity
Metric (SSM) for objects. Resolver’s area under the curve is 23% higher than SSM’s.
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Figure 4.7: Improvement in precision and recall of Resolver over the String Similarity
Metric (SSM) for relations. Resolver’s area under the curve is 31% higher than SSM’s.
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4.6.3 Sensitivity Analysis

The ESP model requires a parameter for the number of potential properties of a string, but

the performance of ESP is not strongly sensitive to the exact value of this parameter. As

described in section 4.4.2, we assume that the number of potential properties is a multiple

N of the number of extractions for a string. In the above experiments, we chose values of

N = 30 for objects and N = 500 for relations, since they worked well on held-out data.

However, as figures 4.8 and 4.9 show, the actual values of these parameters may vary in a

large range, while still enabling ESP to outperform DIRT and CSM. Appendix D contains

tables listing the areas under each of these precision-recall curves.
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Figure 4.8: A sensitivity analysis for the Extracted Shared Property (ESP) metric on
objects. ESP’s area under the curve ranges between 121% (for ESP-90) and 193% (for ESP-30)
higher than DIRT’s.
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Figure 4.9: A sensitivity analysis for the Extracted Shared Property (ESP) metric on
relations. ESP’s area under the curve ranges between 98% (for ESP-250) and 133% (for ESP-900)
higher than DIRT’s, except for ESP-50, which is 9.5% higher than DIRT’s.
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4.6.4 Clustering Analysis

While the similarity metric is critical to the performance of Resolver, in and of itself it does

not guarantee the accuracy of the clustering. The next experiment compares the precision

and recall of clusterings output by the different similarity metrics, using the clustering

algorithm described above.

The precision and recall of a clustering is measured as follows: hypothesis clusters are

matched with gold clusters such that each hypothesis cluster matches no more than one

gold cluster, and vice versa. This mapping is computed so that the number of elements in

hypothesis clusters that intersect with elements in the matching gold clusters is maximized.

All such intersecting elements are marked correct. Any elements in a hypothesis cluster

that do not intersect with the corresponding gold cluster are marked incorrect, or irrelevant

if they do not appear in the gold clustering at all. Likewise, gold cluster elements are

marked as found if the matching hypothesis cluster contains the same element, or not found

otherwise. The precision is defined as the number of correct hypothesis elements in clusters

containing at least two relevant (correct or incorrect) elements, divided by the total number

of relevant hypothesis elements in clusters containing at least two relevant items. The recall

is defined as the number of found gold elements in gold clusters of size at least two, divided

by the total number of gold elements in clusters of size at least two. We consider only

clusters of size two or more in order to focus on the interesting cases.

Each model requires a threshold parameter to determine which scores are suitable for

merging. For these experiments we arbitrarily chose a threshold of 3 for the ESP model

(that is, the data needs to be 3 times more likely given the merged cluster than the unmerged

clusters in order to perform the merge) and chose thresholds for the other models by hand

so that the difference between them and ESP would be roughly even between precision

and recall, although for relations it was harder to improve the recall. Table 4.1 shows the

precision and recall of our models.
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Table 4.1: Comparison of the cosine similarity metric (CSM), Discovery of Inference
Rules From Text (DIRT), Resolver components (SSM and ESP), and the Resolver

system. Bold indicates the score is significantly different from the score in the row above at
p < 0.05 using the chi-squared test with one degree of freedom. Using the same test, Resolver is
also significantly different from ESP, DIRT, and CSM in recall on objects, and from DIRT, CSM and
SSM in recall on relations. Resolver’s F1 on objects is a 19% increase over SSM’s F1. Resolver’s
F1 on relations is a 28% increase over SSM’s F1.

Objects Relations

Model Prec. Rec. F1 Prec. Rec. F1

CSM 0.51 0.36 0.42 0.62 0.29 0.40

DIRT 0.52 0.38 0.44 0.61 0.28 0.38

ESP 0.56 0.41 0.47 0.79 0.33 0.47

SSM 0.62 0.53 0.57 0.85 0.25 0.39

Resolver 0.71 0.66 0.68 0.90 0.35 0.50

4.6.5 Discussion

In all experiments, ESP outperforms both CSM and DIRT. The sensitivity analysis shows

that this remains true for a wide range of hidden parameters for ESP, for both objects and

relations. Moreover, ESP’s improvement over the comparison metrics holds true when the

metrics are used in clustering the data. DIRT’s performance is largely the same as CSM in

every experiment. Somewhat surprisingly, DIRT performs worse on relation clustering than

on object clustering, even though it is designed for relation similarity.

ESP, DIRT, and CSM make predictions based on a very noisy signal. Canada, for ex-

ample, shares more properties with United States in our data than U.S. does, even though

Canada appears less often than U.S. The results show that the three distributional similarity

models perform below the SSM model on its own for both objects and relations, both in

the string similarity experiments and the clustering experiments. The one exception is in

the clustering experiment for relations, where SSM had a poor recall, and thus had lower

F1 score than ESP and CSM.

There is a significant improvement in both precision and recall when using a combined
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model over using SSM alone. Resolver’s F1 is 19% higher than SSM’s on objects, and

28% higher on relations.

There is clearly room for improvement on the SR task. Error analysis shows that most

of Resolver’s mistakes are because of three kinds of errors:

1. Extraction errors. For example, US News gets extracted separately from World Report,

and then Resolver clusters them together because they share almost all of the same

properties.

2. Similarity vs. Identity. For example, Larry Page and Sergei Brin get merged, as do

Angelina Jolie and Brad Pitt, and Asia and Africa.

3. Multiple word senses. For example, there are two President Bushes; also, there are

many terms like President and Army that can refer to many different entities.

4.7 Distinguishing Between Similar and Identical Pairs

As the error analysis above suggests, similar objects that are not exact synonyms make up a

large fraction of Resolver’s errors. This section describes two techniques for dealing with

such errors.

For example, Resolver is likely to make a mistake with the pair Virginia and West

Virginia. They share many properties because they have the same type (U.S. states), and

they have high string similarity. Perhaps the easiest approach for determining that these

two are not synonymous is simply to collect more data about them. While they are highly

similar, they will certainly not share all of their properties; they have different governors, for

example. However, for highly similar pairs such as these two, the amount of data required

to decide that they are not identical may be huge, and simply unavailable.

Fortunately, there are more sophisticated techniques for making decisions with the avail-

able data. One approach is to consider the distribution of words that occur between can-

didate synonyms. Similar words are likely to be separated by conjunctions (e.g., “Virginia

and West Virginia”) and domain-specific relations that hold between two objects of the

same type (e.g., “Virginia is larger than West Virginia”). On the other hand, synonyms
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are more likely to be separated by highly specialized phrases such as “a.k.a.” Section 4.7.1

describes a method for using this information to distinguish between similar and identical

pairs.

A second approach is to consider how candidate synonyms behave in the context of

relations with special distributions, like functions or inverse functions. For example, the

“x is capital of y” relation is an inverse function: every y argument has at most one x

argument6. If capitals are extracted for both West Virginia and Virginia, then they may

be ruled out as a synonymous pair when the capitals are seen to be different. On the other

hand, if Virginia and VA share the same capital, that is much stronger evidence that the two

are the same than if they shared some other random property, such as that a town called

Springfield is located there. Section 4.7.2 describes a method for eliminating similar pairs

because they have different values for the same function or inverse function, and section

4.7.3 illustrates a technique for assigning different weights to different evidence based on

how close to functional it is. Section 4.7.4 gives results for each of these techniques, and

section 4.7.5 investigates the function weighting technique further on artificial data.

4.7.1 Web Hitcounts for Synonym Discovery

While names for two similar objects may often appear together in the same sentence, it is

relatively rare for two different names of the same object to appear in the same sentence.

Moreover, synonymous pairs tend to appear in idiosyncratic contexts that are quite different

from the contexts seen between similar pairs. Resolver exploits this fact by querying the

Web to determine how often a pair of strings appears together in certain contexts in a large

corpus. When the hitcount is high, Resolver can prevent the merge.

Specifically, given a candidate synonym pair s1 and s2, the Coordination-Phrase Filter

uses a KnowItAll-style discriminator phrase of the form “s1 and s2”. It then computes a

variant of pointwise mutual information, given by

coordination score(s1, s2) =
hits(s1 and s2)2

hits(s1)× hits(s2)

6It is also a function.
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The filter removes from consideration any candidate pair for which the coordination score

is above a threshold, which is determined on a small development set. The results of

coordination-phrase filtering are presented below.

The Coordination-Phrase Filter uses just one possible context between candidate syn-

onym pairs. A simple extension is to use multiple discriminator phrases that include common

context phrases like “or” and “unlike.” A more complex approach could measure the dis-

tribution of words found between a candidate pair, and compare that distribution with the

distributions found between known similar or known identical pairs. These are important

avenues for further investigation.

One drawback of this approach is that it requires text containing a pair of objects in

close proximity. For a pair of rare strings, such data will be extremely unlikely to occur —

this type of test exacerbates the data sparsity problem. The following two sections describe

two techniques that do not suffer from this particular problem.

4.7.2 Function Filtering

Functions and inverse functions can help to distinguish between similar and identical pairs.

For example, Virginia and West Virginia have different capitals: Richmond and Charleston,

respectively. If both of these facts are extracted, and if Resolver knows that the capital of

relation is an inverse function, it should prevent Virginia and West Virginia from merging.

Given a candidate synonym pair x1 and x2, the Function Filter prevents merges between

strings that have different values for the same function. More precisely, it decides that two

strings y1 and y2 match if their string similarity is above a high threshold. It prevents a

merge between x1 and x2 if there exists a function f and extractions f(x1, y1) and f(x2, y2),

and there are no such extractions such that y1 and y2 match (and vice versa for inverse

functions). Experiments described in section 4.7.4 show that the Function Filter can improve

the precision of Resolver without significantly affecting its recall.

The Function Filter requires knowledge about which relations are actually functions or

inverse functions. Others have investigated techniques for determining such properties of

relations automatically [92]; in the experiments, a pre-defined list of functions is used. Table
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Table 4.2: The set of functions used by the Function Filter.

is capital of is capital city of

named after was named after

headquartered in is headquartered in

was born in was born on

4.2 lists the set of functions used in the experiments for the Function Filter.

4.7.3 Function Weighting

While the Function Filter uses functions and inverse functions as negative evidence, it

is also possible to use them as positive evidence. For example, the relation married is

not strictly one-to-one, but for most people the set of spouses is very small. If a pair of

strings are extracted with the same spouse—e.g., FDR and President Roosevelt share the

property (married, Eleanor Roosevelt)—this is far stronger evidence that the two strings

are identical than if they shared some random property, such as (spoke to, reporters).

There are several possibilities for incorporating this insight into Resolver, and those

possibilities vary in two dimensions. First, any such technique will need some method

for estimating the “function-ness” of a property, or how much weight to attach to the

property if it is shared by a candidate synonym pair. Let this weight be called the degree

of functionhood, or simply degree, of the property. Let a high-degree property be a property

with a large degree of functionhood, and similarly for a low-degree property.

The degree may be estimated from the relation involved in the property and the set of

extractions for that relation; or it may be based on the entire property and how many objects

it applies to; or it may be some combination of both. For example, if there are 100 unique

extractions for the married relation, and there are 80 unique x argument strings in those 100

extractions, then on average each x string participates in 100/80 = 1.25 married relations.

One method might assign every property containing the married relation this statistic as the

degree. On the other hand, suppose there are two extractions for the property (married,
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John Smith). A second method is to assign a degree of 2 to this property.

The second dimension for incorporating function weighting into Resolver is how to

use the degree of each property. The ESP model may be altered so that it directly models

the degrees of the properties during the process of selecting balls from urns, but this vastly

complicates the model and may make it much more computationally expensive. A second

option is to reweight the number of shared properties between strings based on a TF-

IDF style weighting of the properties, and calculate the ESP model using this parameter

instead. This requires modifying the ESP model so that it can handle non-integer values

for the number of shared properties.

In experiments so far, one set of these options is explored, while others remain for future

investigation. The Weighted Extracted Shared Property Model (W-ESP) sets the degree of

a property to be the number of extractions for that property. Second, if strings si and sj

share all properties p ∈ P , it sets the value for the number of shared properties between si

and sj to be ∑
p∈P

1
degree(p)

The ESP model is changed to handle continuous values for the number of shared properties

by changing all factorials to gamma functions, and using Stirling’s approximation whenever

possible.

Unlike the Function Filter, the W-ESP model does not require additional knowledge

about which relations are functional. And unlike the Coordination-Phrase Filter, it does

not require Web hitcounts or a training phase. It works on extracted data, as is.

4.7.4 Experiments

The extensions to Resolver attempt to address the confusion between similar and identical

pairs. Experiments with the extensions, using the same datasets and metrics as in section 4.6

demonstrate that the Function Filter (FF) and the Coordination-Phrase Filter (CPF) boost

Resolver’s precision. Unfortunately, the W-ESP model yielded essentially no improvement

of Resolver.

Table 4.3 contains the results of our experiments. With coordination-phrase filtering,
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Table 4.3: Comparison of object merging results for the Resolver system, Resolver plus
Function Filtering, Resolver plus Coordination-Phrase Filtering, Resolver using the
Weighted Extracted Shared Property Model, and Resolver plus both types of filtering.
Bold indicates the score is significantly different from Resolver’s score at p < 0.05 using
the chi-squared test with one degree of freedom. Resolver+ Coordination Phrase
Filtering’s F1 on objects is a 28% increase over SSM’s F1, and a 7% increase over
Resolver’s F1.

Model Prec. Rec. F1

Resolver 0.71 0.66 0.68

Resolver + Function Filtering 0.74 0.66 0.70

Resolver + Coordination Phrase Filtering 0.78 0.68 0.73

Resolver + Weighted ESP 0.71 0.65 0.68

Resolver + Function Filtering + Coordination Phrase Filtering 0.78 0.68 0.73

Resolver’s F1 is 28% higher than SSM’s on objects, and 6% higher than Resolver’s F1

without filtering. While function filtering is a promising idea, FF provides a smaller benefit

than CPF on this dataset, and the merges that it prevents are, with a few exceptions,

a subset of the merges prevented by CPF. This is in part due to the limited number of

functions available in the data.

Both the Function Filter and the Coordination-Phrase Filter consistently blocked merges

between highly similar countries, continents, planets, and people in our data, as well as some

other smaller classes. The biggest difference is that CPF more consistently has hitcounts

for the similar pairs that tend to be confused with identical pairs. Perhaps as the amount

of extracted data grows, more functions and extractions with functions will be extracted,

allowing the Function Filter to improve.

Part of the appeal of the W-ESP model is that it requires none of the additional inputs

that the other two models require, and it applies to each property, rather than to a subset of

the relations like the Function Filter. The next section investigates why it yields no benefit

in our test.
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4.7.5 Experiments with Function Weighting on Artificial Data

Function weighting proves not to have a great effect in experiments on the extracted Tex-

tRunner data. Since this is a surprising result, and because the TextRunner data

contains messy errors from the extraction process, further experiments are carried out on

artificial data to investigate why the function weighting has so little effect.

There are a number of possible causes to investigate. Recall that a high-degree property

is one which is extracted with many different strings, while a low-degree property applies to

only a few strings. Function weighting is affected by the following factors, among others:

1. Whether similar pairs tend to share high-degree or low-degree properties.

2. Whether identical pairs tend to share high-degree or low-degree properties.

3. The relative number of high-degree and low-degree properties.

4. The number of tuples per object and tuples per relation, which in turn affect the

distribution of high-degree and low-degree properties.

5. The W-ESP model, which may be a poor model for function-weighting.

The TextRunner data in particular has a large number of distinct objects for the number

of extractions: there are around 1.2 million distinct objects in 2 million extractions, or less

than 2 extractions per object. In the experiment below, this factor (factor 4) is tested as a

possible cause for the poor performance of function weighting; the others remain as future

work.

The experiment proceeds by generating a number of different data sets, each with the

same number of tuples and distinct relations, but varying the number of distinct objects.

Then the ESP and W-ESP models are run on each data set to produce clusterings, which

are measured for precision and recall in the same way as in Section 4.6.

The tuples and gold standard clusters are generated in a three step process. The process

begins with a Zipf distribution over a fixed set of object clusters, and a separate Zipf

distribution over a fixed set of relation clusters. In the first step, it creates a set of potential
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tuples for each relation cluster by randomly selecting arguments to the relation from the

Zipf distribution for objects, and throwing out duplicate tuples. Enough tuples are created

for the relation so that there are N times the expected number of extractions for the relation

(as governed by the number of output extractions and the Zipf distribution for relations),

where N is a parameter called the property multiple that controls how many more potential

instances of the relation there are over the number of actual extractions for the relation.

After creating tuples of potential extractions, the data generation process converts the

tuples from tuples of clusters to tuples of strings as follows. To simplify the experiment,

no relation synonyms are created, so relation strings are identified with their clusters. To

more accurately reflect natural data, only one of every five object clusters is allowed to have

synonyms. For every tuple that contains an object cluster which has synonyms, the tuple is

repeated for every different synonym of the object cluster, from the most common synonym

to the jth most common, where j is randomly generated between one and ten.

The first two steps create a set of potential extractions with synonyms. Finally, the data

generator selects (without replacement) 1
N of the potential tuples as actual extractions.

Each generated data set contains one million tuples, and is generated with twenty thou-

sand relations clusters and a property multiple of ten. The number of object clusters ranges

from two thousand to two million across the different data sets. For both object and relation

cluster Zipf distributions, the Zipf parameter is one. ESP and W-ESP both use a hidden

parameter of thirty during these experiments; ESP uses a threshold of 2 while W-ESP uses

a threshold of 1. Figure 4.10 shows the improvement by W-ESP over ESP in precision and

recall for each data set.

The W-ESP model significantly outperforms the ESP model in all cases. As expected,

there is a significant drop-off in the precision improvement as the number of tuples per object

decreases. This confirms that the performance of function weighting is closely tied to the

number of extractions per distinct object, and it suggests that if TextRunner extracted

more data for the current set of objects, function weighting might have a significant positive

effect.

The difference in performance on the artificial data is still significant even in the case

most closely matching the natural data set, where there are two million potential objects
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Figure 4.10: The improvement in precision and recall by Weighted ESP (W-ESP) over
ESP in clustering objects. The measurements are taken for five automatically generated
data sets, where each data set differs in the average number of tuples per distinct object
string (displayed on the x axis).
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and on average 0.5 tuples per object. This perhaps reflects the fact that the data was

generated with a property multiple of ten, whereas a setting of thirty was most appropriate

for the natural data, so the natural data still has less information about each object. Further

experiments are necessary to test the performance of ESP and W-ESP at different settings

of the property multiple.

An unexpected result from this experiment is that the recall improvement actually grows

with the number of objects. This is misleading, however, because the difference in absolute

numbers of discovered synonym pairs is similar across the board; there are simply fewer

objects with a count of 25 or more as the number of objects grows, and so there are fewer

synonym pairs to find.

4.8 Mutual Recursion

The Resolver clustering algorithm from Figure 4.1 clusters objects and relations indepen-

dently. That is, if two object strings are determined to be synonymous, that has no effect

on how relations are clustered, and vice versa.

Figure 4.11 shows a modified version of the clustering algorithm, which remedies this

shortcoming using Mutual Recursion (MR). In MR, as the algorithm clusters relation strings

together into sets of synonyms, it also collapses properties together for object strings. Thus

it potentially finds more shared properties between coreferential object strings. Likewise, as

it clusters objects together into sets of coreferential names, it collapses instances of relations

together and potentially finds more shared instances between coreferential relations. Thus

the clustering decisions for relations and objects mutually depend on one another.

For example, the strings Kennedy and President Kennedy appear in 430 and 97 as-

sertions in the TextRunner data, respectively, but none of their extracted properties

match exactly. Some properties, however, almost match. The assertions (challenged,

Kennedy, Premier Krushchev) and (stood up to, President Kennedy, Kruschev) both ap-

pear in our data. Because challenged and stood up to are similar, and Krushchev and

Premier Krushchev are similar, our algorithm is able to merge these pairs into two clusters,

thereby creating a new shared property between Kennedy and President Kennedy. Eventu-

ally it can merge these two strings as well.
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S := set of all strings

For each property or instance p,

Sp := {s ∈ S|s has property p}

1. Scores := {}

2. Build index mapping properties (and instances)

to strings with those properties (instances)

3. For each property or instance p:

If |Sp| < Max:

For each pair {s1, s2} ⊂ Sp:

Add mergeScore(s1, s2) to Scores

4. Repeat until no merges can be performed:

Sort Scores

UsedClusters := {}

While score of top clusters c1, c2 is above Threshold:

Skip if either is in UsedClusters

Merge c1 and c2

Add c1, c2 to UsedClusters

Merge properties containing c1, c2

Recalculate merge scores as in Steps 1-3

Figure 4.11: Clustering Algorithm with Mutual Recursion. Differences from the original
clustering algorithm are highlighted in bold.
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It turns out that MR has very little effect on clustering performance for the TextRun-

ner data set: in a clustering experiment on objects, Resolver has precision 0.70 and

recall 0.67 using MR, as compared with 0.71 and 0.66 without it; on relations, Resolver

has precision 0.89 and recall 0.35 using MR, compared with 0.9 and 0.35 without it. MR

helps to increase recall at the expense of precision, but the differences are not statistically

significant.

As with the function weighting above, we turn to artificial data to investigate why MR

has so little effect. Again, there are many possible factors to explore, including:

1. If synonyms share only a few properties in the data, the mutual recursion process

will be more likely to create shared properties between non-synonymous strings than

between synonymous ones.

2. MR requires pairs of tuples in which the same fact is repeated twice, but with two

or three of the strings replaced with synonyms. If such pairs are rare, MR will have

little effect.

3. If such pairs of tuples exist, but they mostly occur only where the same fact is also

repeated with only one string replaced by a synonym, MR will not create new shared

properties.

4. MR may propagate errors in clustering decisions so that those errors affect other

clustering decisions.

In the experiment below, the first two factors are explored.

In this experiment, a number of artificial data sets are created such that all parameters

are held constant except for two: the probability that a fact is repeated, but with some

strings replaced by synonyms; and the probability that when a fact is repeated, exactly

two strings are replaced by synonyms rather than one. For each data set, clusterings are

computed using ESP and ESP with MR, and the precision and recall of each clustering is

calculated using the same method as in Section 4.6.
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Each data set is generated in three steps. Using a Zipf distribution for object clusters

and a separate Zipf distribution for relation clusters, a set of unique tuples are created by

independently generating two arguments and a relation for each tuple, and throwing out

any duplicate tuple. Each tuple is then transformed from a tuple of clusters to a tuple of

strings by generating a synonym string for each argument and relation. With probability

psyn, the cluster is replaced with a string representing the most common synonym for the

cluster. If the first synonym is not chosen, then with probability psyn it is replaced with

the next most common synonym. Otherwise, with probability psyn, it is replaced with the

third most common synonym, and so on, until a synonym is finally chosen. The maximum

number of synonyms allowed is ten.

In the last step, some repeated facts are added to the set of extractions. These repeated

facts are controlled by two parameters: the repetition probability (prep), the probability

that a fact is repeated; and the double synonym probability (pdouble), the probability that

a repeated tuple differs from the original in two positions rather than just one. For each

tuple, the data generation process first determines if the tuple is to be repeated, as governed

by prep. If not, it moves on to the next tuple. If so, it next determines if one or two of the

three arguments are to be replaced by synonyms, as governed by pdouble. It then picks one

or two arguments with equal probability, and replaces each with another string belonging

to the same cluster, using the above method and retrying if the same string is selected as

in the original.

In this experiment, every data set starts with one million tuples of clusters, but the exact

number of tuples depends on prep. The distribution for object clusters is a Zipf distribution

over 100,000 distinct clusters, with a Zipf parameter of one. Likewise, the distribution for

relation clusters is a Zipf distribution over 20,000 distinct clusters, with a Zipf parameter

of one. In all data sets, psyn = 0.6. The parameter prep is set to 0.05, 0.1, and 0.25, and

the parameter pdouble is set to 0.1, 0.25, and 0.5. The ESP model is run with a hidden

parameter of thirty for both objects and relations; a threshold of 2.5 is used for objects and

2 for relations. Figures 4.12 and 4.13 show the difference in precision and recall between

ESP and ESP using MR at these different parameter settings, on objects and relations

respectively. Appendix D contains tables that separately list the precision and recall results
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for both ESP and ESP using MR.

In contrast to the settings used for the artificial data sets, there are just 2,270 duplicate

facts in the TextRunner data, out of 2,080,060 total extractions, so only about one in

every 1,000 facts is repeated. And of the 2,270 duplicate facts, only 156 (6.9%) are double

synonyms, in which more than one argument is replaced with a synonym.

The experiments on artificial data show that MR can have a significant effect (both neg-

ative and positive), depending on the data set. But, at least on artificial data, much higher

rates of repetition probability and double synonym probability are necessary to achieve sig-

nificant performance advantages using MR. For both objects and relations, significant gains

do not occur until prep reaches 0.1 and pdouble reaches 0.25, as opposed to 0.001 and 0.07 for

the natural data set. When both parameters reach their maximum, MR boosts recall by a

dramatic 16% for objects, and 13% for relations, with minor changes to the precision.

On the artificial data, at prep = 0.05 MR tends either to significantly hurt precision

(when pdouble is low), or to have no effect on performance (when pdouble = 0.5). At these

low levels of prep, a high value for pdouble means that there are very few repeated facts

with a single synonym change, and ESP therefore has very little evidence to get started.

A low value for pdouble means that merging properties is unlikely to result in a new shared

property between synonyms; far more often, it will result in a new shared property between

non-synonyms. This causes the drop in precision.

At higher levels of prep, a low value for pdouble still causes problems, since a merged

property is still more likely to connect non-synonyms than synonyms. The higher values

for prep allow ESP to recover to some extent, however, since synonyms are already very

well-connected.

Somewhat surprisingly, MR sometimes hurts recall in these situations without hurting

precision. This is surprising because MR is intended to increase or leave the same the number

of shared properties between any two strings, and therefore to increase the likelihood score.

Since the threshold for merging is the same for ESP with and without MR, one would expect

a greater number of merges using MR. Thus if the precision is the same, one would expect

a higher recall using MR.

The trouble with this logic is that MR can, in fact, reduce the number of shared prop-
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Mutual Recursion Performance on Objects
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Figure 4.12: Difference in precision and recall between ESP clusterings and ESP using
MR (ESP-MR) clusterings, on artificial data.
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Mutual Recursion Performance on Relations
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Figure 4.13: Difference in precision and recall between ESP clusterings and ESP using
MR (ESP-MR) clusterings, on artificial data.



110

erties between two synonyms. Consider the following four extractions: (is capital of,

D.C., U.S.); (is capital of, Washington, U.S.); (is capital city of, D.C., U.S.); (is

capital city of, Washington, U.S.). Without MR, D.C. and Washington would share two

properties. But with MR, if is capital of and is capital city of are merged, then those

two properties would be collapsed into one.

In several cases, MR actually improves the precision of the ESP model. When MR

creates enough new shared properties between synonyms (that is, at high levels of both

parameters), the benefit of the increase in shared properties outweighs any propagation of

errors due to MR and the increase in the number of shared properties between random non-

synonyms. Also, when a gold standard cluster is split into two clusters by the ESP model,

that hurts ESP’s precision. If MR allows the two smaller clusters to be merged together, it

can consequently boost the precision. Both of these effects tend to be small relative to the

increased recall, however.

4.9 Conclusion and Future Work

We have shown that the unsupervised and scalable Resolver system is able to find clusters

of co-referential object names in extracted relations with a precision of 78% and a recall

of 68% with the aid of coordination-phrase filtering, and can find clusters of co-referential

relation names with precision of 90% and recall of 35%. We have demonstrated signifi-

cant improvements over using simple similarity metrics for this task by employing a novel

probabilistic model of coreference.

Several extensions to Resolver have dealt with ruling out highly similar non-synonyms,

with varying degrees of success. Yet these methods only scratch the surface of the possible

methods. Just as Resolver uses distributional similarity to merge synonyms, it should

prove interesting to use distributional similarity to detect non-synonyms, as suggested above.

This remains an important item for future work.

Synonymy is critical to information extraction, but it is likewise extremely important

to discover automatically when a word has multiple meanings. Polysemy, in fact, causes a

substantial fraction of Resolver’s errors in finding synonyms. Extending the ESP model

and Resolver’s clustering algorithm to be able to detect and handle polysemy could sub-
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stantially improve its results.
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Chapter 5

CONCLUSION

This thesis has demonstrated novel techniques and applications for Web Information

Extraction. The Resolver system addresses Synonym Resolution, one major hurdle for

unsupervised information extraction, and it improves the state of the art in identifying and

efficiently clustering synonyms. Techniques like Resolver promise to make extracted infor-

mation broadly useful to many different applications. Woodward shows how to make the

extracted knowledge useful for one particular language processing application, the statistical

parser.

More specifically, the thesis has described the following contributions to Web Information

Extraction. Within the area of synonym resolution, it has demonstrated a provably scalable

algorithm for clustering synonyms in Zipf-distributed data and a novel, unsupervised model

for determining the probability that two strings are synonyms, called the Extracted Shared

Property Model (ESP). Experiments have shown that ESP outperforms state-of-the-art

distributional similarity techniques on information extracted from the Web, and that when

combined with an edit-distance notion of similarity, ESP can find object synonyms with

72% precision and 68% recall, and relation synonyms with 90% precision and 35% recall.

Three extensions to Resolver have exhibited new techniques for improving the ability

to determine the difference between similar and identical pairs: a Function Filter based

on the use of functions and inverse functions; a Coordination-Phrase Filter based on Web

hitcounts; and a Property Weighted ESP model based on weighting properties according to

how informative they are for resolving synonyms. Experiments show that the Function Filter

and Coordination-Phrase Filter improve Resolver’s precision by 3% and 6% respectively

on TextRunner data. The Property Weighted ESP model yields no benefit on natural

data, but experiments on artificial data show that the model tends to have a greater benefit

when there are more extracted properties per object; this suggests that the model may be
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important on other, more suitable data sets.

A fourth extension to Resolver established a technique for making object and relation

synonym resolution dependent on one another, via mutual recursion. While mutual recur-

sion had little effect on natural data, experiments showed that on artificial data, there were

suitable conditions such that mutual recursion would have a large impact on recall, with

increases of as much as 16%.

Within the area of parsing, the thesis has described a new set of techniques for identifying

incorrectly-parsed sentences using information extracted from the Web. The techniques are

based on Web search engine hitcounts, collections of extracted information in TextRunner,

patterns for discovering from the Web the number of arguments appropriate for a verb, and

a question-answering tool. Experiments show that the four semantic filters that use these

techniques are able to reduce the parser errors on TREC 2004 data by 67%, and on harder

sets of Wall Street Journal sentences the Woodward system still reduces error by 20%.

In short, the thesis has demonstrated the value of extracted information for a particular

natural language processing application — statistical parsers — and it has advanced the

state of the art in one task in information extraction — synonym resolution.
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Appendix A

DERIVATION OF THE EXTRACTED SHARED PROPERTY MODEL

The Extracted Shared Property (ESP) Model is introduced in Chapter 4. It is a method

for calculating the probability that two strings are synonymous, given that they share a

certain number of extractions in a data set. This appendix gives a derivation of the model.

Let si and sj be two strings, each with a set of extracted properties Ei and Ej . Let Ui

and Uj be the set of potential properties for each string, contained in their respective urns.

Let Si,j be the number of properties shared between the two urns, or |Ui ∩ Uj |. Let Ri,j

be the random variable for the synonymy relationship between si and sj , with Ri,j = Rt
i,j

denoting the event that they are, and Rf
i,j that they are not. The ESP model states the

following:

Proposition 2 If two strings si and sj have |Ui| = Pi and |Uj | = Pj potential properties

(or instances), with min(Pi, Pj) = Pmin; and they appear in extracted assertions Ei and Ej

such that |Ei| = ni and |Ej | = nj; and they share k extracted properties (or instances), the

probability that si and sj co-refer is:

P (Rt
i,j |Ei, Ej , Pi, Pj) =

(
Pmin

k

) ∑
r,s≥0

(
Si,j−k

r+s

)(
r+s
r

)(
Pi−Pmin
ni−(k+r)

)(Pj−Pmin

nj−(k+s)

)
∑

k≤Si,j≤Pmin

(Si,j

k

) ∑
r,s≥0

(
Si,j−k

r+s

)(
r+s
r

)( Pi−Si,j

ni−(k+r)

)( Pj−Si,j

nj−(k+s)

) (A.1)

The ESP model makes several simplifying assumptions:

1. Balls are drawn from the urns without replacement.

2. Draws from one urn are independent of draws from any other urn.

3. Each ball for a string is equally likely to be selected from its urn: if U = {u1, . . . , um}

and X denotes a random draw from U , P (X = ui) = 1
|U | for every ui.
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4. The prior probability for Si,j , given the number of properties in Ui and Uj , is uniform:

∀0≤s≤min(Pi,Pj)P (Si,j = s|Pi, Pj) = 1
min(Pi,Pj)+1

5. Given extracted properties for two strings and the number of potential properties for

each, the probability of synonymy depends only on the number of extracted properties

for each, and the number of shared properties in the extractions: P (Rt
i,j |Ei, Ej , Pi, Pj) =

P (Rt
i,j |k, ni, nj , Pi, Pj).

6. Two strings are synonymous if and only if they share as many potential properties as

possible: Rt
i,j ≡ (|Ui ∩ Uj | = min(Pi, Pj)).

.

Before proving Proposition 2, we prove a simple property of urns under the assumptions

above.

Lemma 1 Given n draws without replacement from an urn containing a set of properties

U , the probability of selecting a particular set S ⊂ U is 1

(|U|
|S|)

if |S| = n, and zero otherwise.

Proof of Lemma 1: Let U = {u1, . . . , um} denote the elements of U , and let X1, . . . , Xn

denote the independent draws from the urn. If n = 1, then P (S = {ui}) = P (X1 = ui) = 1
|U |

by assumption 3 above. Now suppose that n = n0, and that the lemma holds for every

n′ < n0.

P (S = {x1, . . . , xn0 |xi ∈ U}) =
∑

i

P (Sn0−1 = {x1, . . . , xi−1, xi+1, . . . , xn0})P (Xn = xi)

=
∑

i

1( |U |
n0−1

) 1
|U | − n0 + 1

=
∑

i

(n0 − 1)!(|U | − n0 + 1)!
|U |!

1
|U | − n0 + 1

=
n0(n0 − 1)!(|U | − n0 + 1)(|U | − n0)!

|U |!(|U | − n0 + 1)

=
n0!(|U | − n0)!

|U |!

=
1(|U |
n0

)
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2

Proof of Proposition 2: We begin by transforming the desired expression, P (Rt
i,j |Ei, Ej , Pi, Pj),

into something that can be derived from the urn model. By assumptions 5 and 6, we get

P (Rt
i,j |Ei, Ej , Pi, Pj) = P (Si,j = Pmin|k, ni, nj , Pi, Pj) (A.2)

Then, by applying Bayes Rule, we get

P (Si,j = Pmin|k, ni, nj , Pi, Pj) =
P (k|Si,j = Pmin, ni, nj , Pi, Pj)P (Si,j = Pmin|ni, nj , Pi, Pj)∑

k≤Si,j≤Pmin
P (k|ni, nj , Pi, Pj)P (Si,j |ni, nj , Pi, Pj)

(A.3)

Since we have assumed a uniform prior for Si,j (assumption 4), the prior terms vanish,

leaving

P (Rt
i,j |Ei, Ej , Pi, Pj) =

P (k|Si,j = Pmin, ni, nj , Pi, Pj)∑
k≤Si,j≤Pmin

P (k|ni, nj , Pi, Pj)
(A.4)

The second step of the derivation is to find a suitable expression for P (k|Si,j , ni, nj , Pi, Pj).

The probability can be written out fully as:

P (k|Si,j , ni, nj , Pi, Pj) =

∑
Ei⊂Ui:|Ei|=ni

Ej⊂Uj :|Ej |=nj

|Ei∩Ej |=k

P (Ei, Ej |Si,j , ni, nj , Pi, Pj)

∑
Ei⊂Ui:|Ei|=ni

Ej⊂Uj :|Ej |=nj

P (Ei, Ej |Si,j , ni, nj , Pi, Pj)
(A.5)

By assumption 2, P (Ei, Ej) = P (Ei)P (Ej). By Lemma 1, all P (Ei) terms are equal, since

they are all sets of size ni, and likewise for P (Ej) terms. Thus, to get the desired probability

expression, we simply need to count the number of ways of taking subsets from the two urns

such that they share k properties.

P (k|Si,j , ni, nj , Pi, Pj) =

∑
Ei⊂Ui:|Ei|=ni

Ej⊂Uj :|Ej |=nj

|Ei∩Ej |=k

1

∑
Ei⊂Ui:|Ei|=ni

Ej⊂Uj :|Ej |=nj

1
(A.6)

=
Count(k, ni, nj |Si,j , Pi, Pj)
Count(ni, nj |Si,j , Pi, Pj)

(A.7)
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There are
(
Pi
ni

)
ways of picking each set Ei, so

Count(ni, nj |Si,j , Pi, Pj) =
(

Pi

ni

)(
Pj

nj

)
(A.8)

To complete the derivation, we need an expression for Count(k, ni, nj |Si,j , Pi, Pj). This

involves splitting the relevant sets into several parts. First Ui and Uj each contain some

shared and unshared properties. Let Ti,j = Ui∩Uj , Vi = Ui−Ti,j , and Vj = Uj−Ti,j . Second,

the selected sets from each urn, Ei and Ej , each have properties that come from the set of

shared properties and the set of unshared properties. Let K = Ei∩Ej , Fi = (Ei∩Ti,j)−K,

and Fj = (Ej ∩ Ti,j)−K.

With these sets defined, each set Ei and Ej is composed of three distinct subsets: the

shared subset (K); a subset also selected from the shared potential properties, Ti,j , but

which is not shared (Fi and Fj); and the remaining elements, which are chosen from the

complements of the shared properties (Vi and Vj). Since the subsets are distinct, we can

count them separately and multiply the results to arrive at the final count.

The number of ways of selecting the shared subset is clearly
(Si,j

k

)
. The sizes of Fi and

Fj are unknown, however, so we must sum over all possibilities. Let r = |Fi|, and s = |Fj |.

There are Si,j − k remaining shared potential properties in Ti,j from which to choose the

r + s elements of Fi and Fj , and then
(
r+s

s

)
ways to split the two into distinct subsets.

There are ni− (k + r) elements left to choose in Ei, and nj − (k + s) elements left to choose

in Ej . These must be selected from the unshared potential properties in Vi and Vj , which

have sizes Pi − Si,j and Pj − Si,j respectively. Putting these pieces together, we have

Count(k, ni, nj |Si,j , Pi, Pj) =
(

Si,j

k

) ∑
r,s

(
Si,j − k

r + s

)(
r + s

s

)(
Pi − Si,j

ni − (k + r)

)(
Pj − Si,j

nj − (k + s)

)
(A.9)

The ranges for r and s are somewhat involved. They must obey the following constraints:

1. r, s ≥ 0

2. r ≥ ni − k − Pi + Si,j

3. s ≥ nj − k − Pj + Si,j
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4. r ≤ ni − k

5. s ≤ nj − k

6. r + s ≤ Si,j − k

Plugging Equation A.9 into Equation A.7, and that in turn into Equation A.4 yields the

desired result.2
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Appendix B

FAST CALCULATION OF THE EXTRACTED SHARED PROPERTY
MODEL

The ESP model can be expensive to calculate if done the wrong way. We use two

techniques to speed up the calculation immensely. For reference, the full formulation of the

model is:

P (Rt
i,j |k, ni, nj , Pi, Pj) =

(
Pmin

k

) ∑
r,s≥0

(
Si,j−k

r+s

)(
r+s
r

)(
Pi−Pmin
ni−(k+r)

)(Pj−Pmin

nj−(k+s)

)
∑

k≤Si,j≤Pmin

(Si,j

k

) ∑
r,s≥0

(
Si,j−k

r+s

)(
r+s
r

)( Pi−Si,j

ni−(k+r)

)( Pj−Si,j

nj−(k+s)

)
(B.1)

Note that the equation involves three sums, ranging over O(Pmin), O(ni), and O(nj) values

respectively. In effect, this is O(n3) in the number of extractions for a string. Furthermore,

each step requires the expensive operation of calculating binomial coefficients. Fortunately,

there are several easy ways to drastically speed up this calculation.

First, Stirling’s approximation can be used to calculate factorials (and therefore the

binomial function). Stirling’s approximation is given by:

n! ≈

√
π

(
2n +

1
3

) (
nn

en

)
To avoid underflow and overflow errors, log probabilities are used everywhere possible. This

calculation can then be done using a few simple multiplications and logarithm calculations.

Stirling’s formula converges to n! like O( 1
n); in practice it proved to be accurate enough of

an approximation of n! for n > 100. In ESP’s implementation, all other values of n! are

calculated once, and stored for future use.

Second, the calculation of P (k|n1, n2, P1, P2) can be sped up by simplifying the expres-

sion to get rid of two of the sums. The result is the following equivalent expression, assuming

without loss of generality that P2 ≤ P1:

P (k|n1, n2, P1, P2) =

(
P2+1
n2+1

) ∑n2
r=k

(
r
k

)(
P1−r
n1−k

)(
P2

n2

)(
P1

n1

) (B.2)
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This simplification removes two of the sums, and therefore changes the complexity of cal-

culating ESP from O(P2n2n1) to O(n2). This was sufficient for our data set, but on larger

data sets it might be necessary to introduce sampling techniques to improve the efficiency

even further.
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Appendix C

A BETTER BOUND ON THE NUMBER OF COMPARISONS MADE
BY THE Resolver CLUSTERING ALGORITHM

This appendix provides a proof that the Resolver clustering algorithm has better

worst-case performance on textual data than previous methods. Chapter 4 showed that the

Resolver clustering algorithm initially makes O(N log N) comparisons between strings in

the data, where N is the number of extractions. Heuristic methods like the Canopies method

[77] require O(M2) comparisons, where M is the number of distinct strings in the data. The

claim is that O(N log N) is asymptotically better than O(M2) for Zipf-distributed data.

Zipf-distributed data is controlled by a shape parameter, which we call z. The claim

above holds true for any shape parameter z < 2, as shown below. Fortunately, in natural

data the shape parameter is usually very close to z = 1, and in Resolver data it was

observed to be z < 1.

Let S be the set of distinct strings in a set of extractions D. For each s ∈ S, let freq(s)

denote the number of times that s appears in the extractions. Thus |D| =
∑

s∈S freq(s).

Let M = |S| and N = |D|.

Proposition 3 If S has an observed Zipf distribution with shape parameter z, then

1. if z < 1, N = Θ(M)

2. if z = 1, N = Θ(M log M)

3. if z > 1, N = Θ(M z)

Proof: Let s1, . . . , sM be the elements of S in rank order from highest frequency string

(s1) to lowest frequency string (sM ). Since S has an observed Zipf distribution with shape

parameter z, freq(si) = Mz

iz . Given the assumptions, z and M determine the number of
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extractions made:

NM,z =
∑
s∈S

freq(s) (C.1)

=
∑

1≤i≤M

M z

iz
(C.2)

We can build a recurrence relation for the value of N as M changes (holding z constant)

by noting that

N2M,z =
∑

1≤i≤2M

(2M)z

iz
(C.3)

= (2M)z
∑

1≤i≤M

1
iz

+ (2M)z
∑

M+1≤i≤2M

1
iz

(C.4)

= 2zNM,z + fz(M) (C.5)

where fz(M) =
∑

M+1≤i≤2M
(2M)z

iz .

There are three important properties of fz(M).

1. Note that every term in the sum for fz(M) is less than (2M)z

Mz = 2z. Thus fz(M) is

bounded above by 2z ·M , so if z is held constant, fz(M) = O(M).

2. Every term in the sum is at least 1, so fz(M) ≥ M and fz(M) = Ω(M); combining

these two facts yields fz(M) = Θ(M).

3. Let c = 2z−1.

2zfz(M/2) ≤ 2zM/2

= 2z−1M

= cM

≤ cfz(M)

Furthermore, c < 1 whenever z < 1.

These three properties of fz(M) will be used below.
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We can now use the recurrence relation and the Master Recurrence Theorem [30] to

prove the three claims of the proposition. For reference, the Master Recurrence Theorem

states the following:

Theorem 1 Let a ≥ 1 and b ≥ 1 be constants, let f(n) be a function, and let T (n) be

defined on the non-negative integers by the recurrence

T (n) = aT (n/b) + f(n)

Then T(n) can be bounded asymptotically as follows.

1. If f(n) = O(nlogba−ε) for some constant ε > 0, then T (n) = Θ(nlogba)

2. If f(n) = Θ(nlogba), then T (n) = Θ(nlogbalog n)

3. If f(n) = Ω(nlogba+ε), for some constant ε > 0, and if af(n/b) ≤ cf(n) for some

constant c < 1 and all sufficiently large n, then T (n) = Θ(f(n)).

First consider the case where z > 1. The recurrence for NM,z can clearly be made to fit

the form for Theorem 1 by setting a = 2z, b = 2, and f = fz(M). Since fz(M) is bounded

above by 2z · M = O(M), it is also clearly bounded above by O(M logba−ε) = O(M z−ε),

where we can take ε to be anything in (0, z − 1). Thus the case one of Theorem 1 applies,

and NM,z = Θ(M logba) = Θ(M z).

Next consider the case where z = 1. Since fz=1(M) = Θ(M) and Θ(M logba) = Θ(M),

case two of Theorem 1 applies. Thus NM,z=1 = Θ(M logbalog M) = Θ(M log M).

Finally, consider the case where z < 1. fz(M) is bounded below by Ω(M logba+ε) =

Ω(M z+ε) for any ε in (0, 1 − z). This fact, together with property 3 of fz(M) allow us to

apply the third case of the Theorem 1. Thus NM,z = Θ(fz(M)) = Θ(M), and Proposition

3 is proved. 2

The data used in Resolver experiments in Chapter 4 had a shape parameter z < 1,

so the bound on the number of comparisons made was O(N log N) = O(M log M). For

z = 1, the bound would have been O(N log N) = O(M log(M) log(M log M)). Not until

z = 2 would the asymptotic performance of O(M2 log M) have been worse than O(M2).
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Appendix D

ADDITIONAL RESULTS FOR THE Resolver SYSTEM

Table D.1: Area under the precision-recall curve for several similarity metrics on pairs
of object strings. The maximum possible area is less than one because many correct string pairs
share no properties, and are therefore not compared by the clustering algorithm. The third column
shows the score as a fraction of the maximum possible area under the curve, which for relations is
0.57. The improvement over baseline shows how much the ESP curves improve over DIRT, and how
much Resolver improves over SSM.

Metric AUC Fraction of Max. AUC Improvement over Baseline

Cosine Similarity Metric 0.0061 0.011 -21%

DIRT 0.0083 0.014 0%

ESP-10 0.019 0.033 136%

ESP-30 0.024 0.041 193%

ESP-50 0.022 0.037 164%

ESP-90 0.018 0.031 121%

String Similarity Metric 0.18 0.31 0%

Resolver 0.22 0.38 23%
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Table D.2: Area under the precision-recall curve for several similarity metrics on pairs
of relation strings. The maximum possible area is less than one because many correct string pairs
share no properties, and are therefore not compared by the clustering algorithm. The third column
shows the score as a fraction of the maximum possible area under the curve, which for relations is
0.094. The improvement over baseline shows how much the ESP curves improve over DIRT, and
how much Resolver improves over SSM.

Metric AUC Fraction of Max. AUC Improvement over Baseline

Cosine Similarity Metric 0.0035 0.034 -19%

DIRT 0.0044 0.042 0%

ESP-50 0.0048 0.046 9.5%

ESP-250 0.0087 0.083 98%

ESP-500 0.0096 0.093 121%

ESP-900 0.010 0.098 133%

String Similarity Metric 0.022 0.24 0%

Resolver 0.029 0.31 31%
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Table D.3: The precision and recall of ESP and ESP using Mutual Recursion for clus-
tering objects on artificial data sets.

Double Repetition Probability

Repetition Probability 0.1 0.25 0.5

ESP Precision 0.05 0.83 0.76 0.62

ESP-MR Precision 0.05 0.79 0.73 0.62

ESP Recall 0.05 0.45 0.42 0.39

ESP-MR Recall 0.05 0.45 0.43 0.40

ESP Precision 0.1 0.99 0.98 0.86

ESP-MR Precision 0.1 0.98 0.97 0.92

ESP Recall 0.1 0.64 0.57 0.46

ESP-MR Recall 0.1 0.60 0.58 0.59

ESP Precision 0.25 1.0 1.0 1.0

ESP-MR Precision 0.25 1.0 1.0 0.99

ESP Recall 0.25 0.88 0.82 0.68

ESP-MR Recall 0.25 0.84 0.85 0.85
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Table D.4: The precision and recall of ESP and ESP using Mutual Recursion for clus-
tering relations on artificial data sets.

Double Repetition Probability

Repetition Probability 0.1 0.25 0.5

ESP Precision 0.05 0.78 0.69 0.58

ESP-MR Precision 0.05 0.75 0.68 0.58

ESP Recall 0.05 0.52 0.47 0.41

ESP-MR Recall 0.05 0.52 0.47 0.41

ESP Precision 0.1 0.94 0.91 0.76

ESP-MR Precision 0.1 0.92 0.89 0.79

ESP Recall 0.1 0.72 0.66 0.52

ESP-MR Recall 0.1 0.72 0.69 0.62

ESP Precision 0.25 0.97 0.98 0.96

ESP-MR Precision 0.25 0.98 0.98 0.97

ESP Recall 0.25 0.94 0.90 0.77

ESP-MR Recall 0.25 0.95 0.92 0.91
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