
Information Extraction from Unstructured Web Text

Ana-Maria Popescu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Washington

2007

Program Authorized to Offer Degree: Department of Computer Science and Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Ana-Maria Popescu

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of the Supervisory Committee:

Oren Etzioni

Reading Committee:

Oren Etzioni

Alon Halevy

Dan Weld

Date:

In presenting this dissertation in partial fulfillment of the requirements for the doctoral
degree at the University of Washington, I agree that the Library shall make its copies
freely available for inspection. I further agree that extensive copying of this dissertation is
allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S.
Copyright Law. Requests for copying or reproduction of this dissertation may be referred
to Proquest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346,
1-800-521-0600, to whom the author has granted “the right to reproduce and sell (a) copies
of the manuscript in microform and/or (b) printed copies of the manuscript made from
microform.”

Signature

Date

University of Washington

Abstract

Information Extraction from Unstructured Web Text

Ana-Maria Popescu

Chair of the Supervisory Committee:
Professor Oren Etzioni

Department of Computer Science and Engineering

In the past few years the Word Wide Web has emerged as an important source of

data, much of it in the form of unstructured text. This thesis describes an extensible

model for information extraction that takes advantage of the unique characteristics of Web

text and leverages existent search engine technology in order to ensure the quality of the

extracted information. The key features of our approach are the use of lexico-syntactic

patterns, Web-scale statistics and unsupervised or semi-supervised learning methods. Our

information extraction model has been instantiated and extended in order to solve a set of

diverse information extraction tasks: subclass and related class extraction, relation property

learning, the acquisition of salient product features and corresponding user opinions from

customer reviews and finally, the mining of commonsense information from the Web for the

benefit of integrated AI systems.

TABLE OF CONTENTS

Page

List of Figures . iii

List of Tables . v

Chapter 1: Introduction . 1

1.1 Characteristics of Unstructured Web Text . 1

1.2 Thesis Overview . 3

1.3 WIE: A Web-based Information Extraction Architecture 3

1.4 Related Work . 8

Chapter 2: An Overview of the KnowItAll Information Extraction System 13

2.1 Introduction . 13

2.2 KnowItAll : An Architecture for Information Extraction from the Web . 13

2.3 Related Work . 23

Chapter 3: Class Extraction from the Web . 25

3.1 Introduction . 25

3.2 Subclass Extraction . 26

3.3 Improving Subclass Extraction Recall . 30

3.4 Related Class Extraction . 33

3.5 Related Work . 37

3.6 Augmenting WordNet Using Web Data . 38

Chapter 4: Learning Relation Properties . 53

4.1 Introduction . 53

4.2 Overview . 55

4.3 Instance-based Assessment of Relation Properties 58

4.4 Assessing Relation Properties With Instance and Lexical Pattern Data 60

4.5 Results . 65

4.6 Related Work . 72

i

4.7 Ongoing Work . 73

Chapter 5: Extracting Product Features and Opinions from Review Data 75

5.1 Introduction . 75

5.2 Terminology . 78

5.3 Review Mining with WIE . 78

5.4 opine Overview . 79

5.5 Finding Explicit Features . 81

5.6 Finding Implicit Features . 86

5.7 Finding Opinion Phrases and Their Polarity 88

5.8 Ranking Opinion Phrases . 101

5.9 Identifying and Analyzing Opinion Sentences 103

5.10 Related Work . 106

5.11 Conclusions and Future Work . 107

Chapter 6: Acquiring Commonsense Information from Web Text 108

6.1 Introduction . 108

6.2 A Domain Model for Household Activities . 110

6.3 Assessing Instances of Commonsense Relations 113

6.4 Mining Commonsense Facts from the Web . 119

6.5 Results . 121

6.6 Related Work . 126

6.7 Work in Progress . 128

Bibliography . 129

Appendix A: Class Extraction from the Web . 140

A.1 Examples of Extracted Class Information . 140

Appendix B: Annotating Relations With Meta-Property and Dependency Labels . 142

B.1 Templates of Useful Lexico-syntactic Patterns 142

Appendix C: Mining Product Features and Corresponding Opinions from Reviews . 144

C.1 Review Sets, Features and Opinion Cluster Information 144

Appendix D: Assessing and Mining Commonsense Knowledge from the Web 151

D.1 Examples of Mined and Assessed Commonsense Information 151

ii

LIST OF FIGURES

Figure Number Page

1.1 The WIE Architecture for Web-based Information Extraction. The Boot-

strapping module creates extraction rules for predicates of interest; the Extractor

uses them to generate extractions that are validated by the Assessor using search en-

gine hit counts. The resulting probabilities can be refined using dependencies among

extractions; the dependencies are obtained from Web text or from background knowl-

edge. The final set of assessed extractions is then added to a knowledge base. 4

1.2 Extraction Rule Template Example. A generic extraction pattern can be in-

stantiated automatically with the pluralized class label to create a domain-specific

extraction rule. For example, if Class1 is set to “City” then the rule looks for the

words “cities such as” and extracts the heads of the proper nouns following that

phrase as potential cities. 5

1.3 Discriminator Examples. Examples of discriminators used to assess candidate

instances of the Scanner class. 5

2.1 A Basic Architecture for Web-based Information Extraction: KnowItAll

The Bootstrapping module creates extraction rules for predicates of interest; the

Extractor uses them to generate extractions that are validated by the Assessor using

search engine hit counts. The assessed extractions are then added to a knowledge

base. 14

2.2 Extraction Rule Template Example. A generic extraction pattern can be in-

stantiated automatically with the pluralized class label to create a domain-specific

extraction rule. For example, if Class1 is set to “City” then the rule looks for the

words “cities such as” and extracts the heads of the proper nouns following that

phrase as potential cities. 15

2.3 Extraction Rule Example. An extraction rule generated by substituting the class

name City and the plural of the class label “city” into a generic rule template. The

rule looks for Web pages containing the phrase “cities such as” and extracts the

proper nouns following that phrase as instances of the unary predicate City. 15

2.4 Discriminator Examples. Examples of discriminators used to assess candidate

Scanner instances. 18

iii

2.5 Discriminator Examples. When the discriminator for City is used to validate

the extraction “Paris”, the Assessor finds hit counts for the search query phrase

“city Paris”. Similarly, the discriminator for CeoOf validates Jeff Bezos as CEO of

Amazon with the search query, “Jeff Bezos CEO of Amazon”. 18

2.6 Example Predicates for a Geography Domain and for a Movies Domain.

The class labels and relation labels are used in creating extraction rules for the class

from generic rule templates. 19

2.7 Generic Unary and Binary Extraction Patterns. The terms <class1> and

<class2> stand for an NP in the rule pattern with a constraint binding the head

of the phrase to a label of predicate argument 1 or 2. Similarly, <relation> stands

for a phrase in the rule pattern with a constraint binding it to a relation label of a

binary predicate. 20

3.1 Augmenting WordNet’s IS-A Hierarchy Using Web Data. Given a target

concept, its most common name is used to extract and assess subclass terms. The

extracted subclass terms are then used to propose concept-level IS-A links that

are subsequently assessed. The WordNet IS-A hierarchy is augmented with links

between known and novel concepts as well as missing links among known concepts. . 40

3.2 Example of Partial Neighborhood for Instance isA(whipworm0, endoparasite0).

Solid lines denote neighbors containing similar concepts (e.g., whipworm0 and tapeworm0)

while the dotted line denotes a neighbor related to the vertex of interest by means

of a background IS-A relationship (isAWN (endoparasite0, parasite0)). 45

4.1 Overview of Property Learner. Notation: R = binary relation, P = property of

interest, f = formula corresponding to the property of interest, PatternTemplates

= set of informative lexico-syntactic pattern templates, SE = search engine 55

4.2 Example of Implicit Factual Information. 69

5.1 Opinion Summary for the Mandarin Oriental New York Hotel 76

5.2 OPINE Overview. OPINE takes as input a product class C, a corresponding set

of reviews R, a parser P and a small set of patterns or rule templates for each of the

review mining subtasks addressed. The system assumes access to a search engine S

and to the WordNet lexical ontology (the latter is optional). 80

6.1 Overview of the Focused Fact Mining Process. Notation: Q = set of queries

of interest, O = set of objects of interest, BR = set of background relations, TR =

set of target relations, E = set of events, e, e’ = events in E, F = set of facts (final

instances of event level relations), numIterations = number of iterations. 120

iv

LIST OF TABLES

Table Number Page

3.1 Extraction Rule Patterns for Subclass Extraction. Notation: Class1 = target

class, NP = noun phrase, Subclass1,Subclass2 = subclasses of Class1. Note that

the last two rules can only be used once subclasses of the target class have already

been found. 27

3.2 Subclass Extraction results for the Scientist and Film classes. Notation:

Total is the number of correct subclasses, NotWordNet is the proportion of the

correctly identified subclasses missing from WordNet. 28

3.3 Subclass Extraction results for People, Product and Organization classes

in the context of the Pharmaceutical domain. Notation: P = precision, R

= recall, Total = the number of correct subclasses, NW = the proportion of the

correctly identified subclasses missing from WordNet. 28

3.4 Sample Named Subclasses of the Scientist Target Class. The italics indicate

subclass terms missing from WordNet. 32

3.5 Related Class Extraction results in the Geography and Computer do-

mains. We report on the precision and recall metrics for each method, together

with the number of relevant terms extracted. 34

3.6 Sample Classes Discovered by the Baseline RCE Method (RCEbase) in the

Computer Domain. 35

3.7 Examples of IS-A Links Automatically Obtained from Web Data (addi-

tional examples can be see in Appendix A.1). 39

3.8 Examples of Neighborhood Features For Vertex vi, where i = isA(c1, c2).

Notation: vi,vj = graph vertices, Ni = vi’s neighborhood, c1, c2,cm = concepts,

p0(j) = the initial value of the probability that j is a correct IS−A instance, T =

True, t, t′, t′′ = thresholds. 46

3.9 Results: Augmenting the IS-A Hierarchy With Links Between Existent

and Novel Concepts. The Collective Assessment step increases both recall and

precision. 48

3.10 Augmenting the IS-A Hierarchy With Missing Links Among Existent

Concepts. The Collective Assessment step increases both precision and recall. 49

3.11 Average Number of Search Engine Queries Per System Component and

Target Concept. 50

v

4.1 Examples of Binary Relationship Properties together with Corresponding

Formulas. Notation: R ⊆ X ×X , R′ ⊆ X × Y = binary relations, Equal(x, y) =

equality relation. Note: For brevity, we use the notation ∀x ∈ X ; a well-formed for-

mula would include an additional elementOfX()predicate: ∀x, elementOfX(x)⇒

R(x, x). 57

4.2 Examples of Relations, Corresponding Meta-properties and Dependencies. 58

4.3 Examples of Patterns Correlated With the Presence or Absence of the

Functional Property. Notation : R ⊆ X × Y = binary relation, y, y1, y2 =

elements of Y , noPrep()=function that eliminates a preposition at the end of a rela-

tion name, sg(),pl() = singular/plural forms, enum(y, y′) = enumerations containing

elements of Y . 60

4.4 Examples of Patterns Correlated With the Presence or Absence of the

Functional Property. Notation : R ⊆ X × Y = binary relation, y, y1, y2 =

elements of Y , noPrep()=function that eliminates a preposition at the end of a rela-

tion name, sg(),pl() = singular/plural forms, enum(y, y′) = enumerations containing

elements of Y . 61

4.5 Examples of Dependencies together with Corresponding Formulas. Nota-

tion: R ⊆ X × Y , R1 ⊆ X × Y , R′ ⊆ X ′ × Y ′ = binary relations, Equal(x, y) =

equality relation. 64

4.6 Results: Automatically Tagging Relations with Corresponding Meta-

properties. Notation: Baseline = instance-based property learning, Mixt = learn-

ing properties with a mixture of instance- and lexico-syntactic data. The use of

lexico-syntactic data leads to a 7% average increase in recall while the average pre-

cision remains almost the same. 66

4.7 Results: Automatically Acquiring Dependencies Among Relations.
Notation: Baseline = instance-based property learning, Mixt = learning prop-
erties with a mixture of instance- and lexico-syntactic data. The use of lexico-
syntactic data leads to a 12% average increase in recall and a 4% average
increase in precision . 68

4.8 Preliminary Results: Extracting Implicit Facts in the Nutrition Domain.

Relation interdependencies prove useful in assessing potential implicit facts
with high accuracy. 71

5.1 Explicit Feature Information . 81

5.2 Meronymy Lexical Patterns Notation: [C] = product class (or instance), [M]

= candidate meronym (∗) = wildcard character 83

5.3 Precision Comparison on the Explicit Feature Extraction Task. OPINE’s

precision is 22% better than Hu’s precision; Web PMI statistics are responsible for

2/3 of the precision increase. All results are reported with respect to Hu’s. 84

vi

5.4 Recall Comparison on the Explicit Feature Extraction Task. OPINE’s recall

is 3% lower than the recall of Hu’s original system (precision level = 0.8). All results

are reported with respect to Hu’s. 85

5.5 WordNet-based and Web-based Adjective Similarity Rules. Notation: s1,

s2 = WordNet synsets., pertain(), attribute() = relations between adjective and

noun synsets. 87

5.6 Examples of Labeled Opinion Clusters . 88

5.7 Domain-independent Rules for Potential Opinion Phrase Extraction. No-

tation: po=potential opinion, M=modifier, NP=noun phrase, S=subject, P=predicate,

O=object. Extracted phrases are enclosed in parentheses. Features are indicated by

the typewriter font. The equality conditions on the left-hand side use po’s head. . . 88

5.8 Dependency Rule Templates For Finding Words w, w′ with Related Se-

mantic Orientation Labels Notation: v,w,w’=words; f, f’=feature names; dep=dependent;

mod=modifier; conj = conjunction . 89

5.9 Examples of Conditional Probabilities for Neighboring Words or Tuples

Linked by Conjunctions or Disjunctions. Notation: p(l(e) = L|link, l(e′) = L′)

= probability that entity e (word or tuple) has label L given the current label L′ of

e′ and the type of link between e and e′; (conj, +) = link type is conj and label of e′

is +, (conj, |) = link type is conj and label of e′ is | and so on. + = positive label,

− = negative label, | = neutral label. 96

5.10 Finding Word Semantic Orientation Labels in the Context of Given Fea-

tures and Sentences. opine’s precision is higher than that of PMI++ and

Hu++. All results are reported with respect to PMI++. 98

5.11 Context-sensitive Words . 100

5.12 Extracting Opinion Phrases and Opinion Phrase Polarity In the Context

of Known Features and Sentences. opine’s precision is higher than that of

PMI++ and Hu++. All results are reported with respect to PMI++. 100

5.13 Lexical Patterns Used to Derive Opinions’ Relative Strength. 102

5.14 Examples of Opinion Sentences and their Polarity. Notation: “+” = positive,

“-” = negative, “?” = undecided (using polarity of previous sentence). The italic

font indicates opinion phrases and the typewriter font indicates product features. . 104

5.15 Opinion Sentence Extraction Comparison (F-measure values). OPINE out-

performs Hu’s original system by 16% (22% on precision, 11% on recall). The im-

provement is due to OPINE’s better features, better sentence definition, use of a

simple pronoun resolution module and augmented set of opinion types. All improve-

ments are reported with respect to Hu’s system. Notation: OP(F) = method similar

to Hu, but using OPINE’s features, OP(F,Def) = method similar to OP(F), but

using OPINE’s definition of an opinion sentence, OP(F,Def,Pron) = method sim-

ilar to OP(F,Def), but using a simple pronoun resolution module. 105

vii

5.16 Sentence Polarity Extraction Comparison. OPINE’s accuracy is 8% higher

than that of Hu’s. The differences between OPINE’s results and Hu’s are in bold. . 106

6.1 Basic Binary Event Relations and Corresponding Examples. Notation: e1,

e2 = state or action events. 112

6.2 Relation-specific Patterns. Notation: e1, e2, e3 = state or action events,
[X], [Y] = argument slots. 114

6.3 OMICS Relations. Notation: e1, e2, e3 = state or action events. 122

6.4 The set of activities for which experimental trace data was collected. . . . 122

6.5 The Impact of Assessed Commonsense Knowledge on the Performance of

SRCS : Assessed Information Significantly Improves the Performance of

the State Estimation System. Notation: Precision, Recall and Accuracy are the

performance measures of interest; SRCS/original data = SRCS using the original

set of OMICS facts ; SRCS/assessed data = SRCS using the assessed version of the

OMICS facts; Random = randomly labeling the variables in the test set as True or

False. 123

6.6 Identifying Highly Relevant Commonsense Information. Notation: Rel =

relation name; Num. Facts = number of OMICS facts for the relation of interest; %

Facts (p > 0.7) = percentage of original facts whose assigned probability is greater

than or equal to 0.7; Prec. Orig. Facts = precision of original facts; Prec. Facts

(p ≥ 0.7) = precision of facts with prob. greater or equal to 0.7. 124

6.7 Examples of Incorrect or Less than Relevant Information Eliminated by

Using Web-based Statistics. 125

6.8 Mining Commonsense Facts. Notation: Precision = precision of extracted

facts,Yield = number of extracted facts, Proportion of Novel Facts =% of mined

facts that are not in OMICS. The results are reported for facts with p > 0.75 found

after 2 iterations of the fact mining routine. 126

6.9 The Impact of Mined Commonsense Data on the SRCS system: Using

the mined event data in addition to the assessed original data improves

the system’s performance. Notation: Orig = SRCS using the assessed original

data, Mined = SRCS using the mined event data, Orig/Mined = SRCS using both

the assessed original data and the mined event data, Learning = boolean variable

reflecting the system’s use of its learning component. We report on the Precision,

Recall and Accuracy measures. 126

B.1 Templates for Patterns Correlated with the Presence or Absence of Re-

lation Symmetry For Target Relation R ⊆ X × X. Notation: enum() =

enumeration pattern (including conjunctions), x,x′ = elements of X , sg(), pl() =

plural form, noPrep() = function that removes the preposition at the end of the

relation’s name. 142

viii

B.2 Templates For Patterns Correlated with Relation Transitivity For Target

Relation R ⊆ X × X. Notation: x,x1,x2 = values in X , entails(R, R′) = R′ is

entailed by R. 142

B.3 Templates for Patterns Correlated With the Presence or Absence of the

1-to-1 Property for Target Relation R ⊆ X × Y . Notation: sg(), pl() = singu-

lar/plural forms; x, y = elements of X, Y ; uniqueMod, multipleMod = n-grams that

indicate countability (e.g., “the” is an example of a modifier indicating uniqueness,

“another” is an example of a modifier indicating multiplicity), enum() = enumera-

tion. Note: The patterns in this table are used in addition to the patterns below,

common to the 1-to-1 and functional properties. 143

B.4 Templates for Patterns Correlated With the Presence or Absence of the

Functional Property for Target Relation R ⊆ X × Y 143

B.5 Templates for Patterns Correlated With Entailment and the Transitive-

Through Dependency. Notation: R, R′ = relations of interest 143

ix

ACKNOWLEDGMENTS

This thesis could not have been completed without the patient guidance of my advisor, prof.

Oren Etzioni, the help and comments of the KnowItAll research group and the support of

my family. I would also like to thank the Computer Science Department and especially

prof. Alon Halevy and prof. Dan Weld whose feedback has been most appreciated.

x

1

Chapter 1

INTRODUCTION

In recent years the World Wide Web has emerged as an important and dynamic source

of information which has attracted the attention of researchers from many areas of artificial

intelligence (AI) and natural language processing (NLP): information extraction [57, 35],

question answering [58, 69], intelligent agents [55, 8], ontology building for the Semantic

Web [63] and many others.

The Web contains a wealth of information, much of it available in the form of unstruc-

tured text. Information Extraction (IE) is an active area of research which is concerned

with extracting information about types of events, entities or relationships from textual

data. While information extraction (as well as related fields such as information retrieval

and information synthesis [10]) has successfully used news corpora, domain-specific text

corpora (e.g., medical literature), manuals or dictionaries, recent IE efforts have started ex-

ploring the Web as a source of textual information. Initial Web-based information extraction

focused on exploiting structured and semi-structured text (e.g., [57, 5, 105]). Recently, re-

searchers have also turned their attention towards unstructured Web text such as product

and hotel reviews, newsgroup postings, how-to sites and many other types of textual data.

1.1 Characteristics of Unstructured Web Text

As detailed in [58, 35, 90], unstructured Web text offers a number of advantages over previ-

ously used text collections:

• Redundancy Facts seldom mentioned in a news corpus may be mentioned often on

the Web.

2

• Multiple paraphrases Facts that are often mentioned on the Web are more likely

to appear in a variety of formulations (or paraphrases).

• Easy-to-understand language Since facts are likely to be repeatedly paraphrased,

some paraphrases will be easier to understand than others. Previously used text

corpora tended to consist of newspaper articles whose language is more formal and

contains complicated linguistic and syntactic constructions; retrieving information

from such articles requires relatively sophisticated methods, whereas Web text is more

likely to contain simpler constructions that can be handled using a less complicated

linguistic processing machinery.

• Broad coverage The Web contains many types of useful information: product,

restaurant and hotel reviews, how-to sites with large quantities of commonsense infor-

mation, newspaper articles and so on. The variety of the information available on the

Web supports many new types of applications (e.g., recommender and trend detection

systems, integrated AI applications such as activity recognition and state estimation

systems, and more).

• Search Engines Search engines offer an easy way to navigate Web text, retrieve

information and collect counts for strings of interest.

We mentioned the advantages of using unstructured Web text as a source of information,

but this type of Web text also presents a number of challenges (see [58, 35]):

• Unreliable information A well-known shortcoming of the Web is the presence of

unreliable information: unlike manuals or corpora of newspaper articles, the Web

contains information from potentially unreliable or biased sources. While a frequently

mentioned piece of information is typically more likely to be correct than an item

mentioned once or twice, frequency is not a guarantee of truth.

• Ungrammatical language Unlike newspaper text, Web text can be colloquial,

unedited and therefore ungrammatical. Deep parsing of such text may be problematic

3

while more lightweight linguistic processing methods are likely to work better.

1.2 Thesis Overview

In this thesis, we investigate the following hypothesis: unstructured Web text can be used to

extract useful, diverse, high quality information.

1.2.1 Thesis Contribution

In order to investigate this hypothesis, we use a simple and extensible model for informa-

tion extraction that takes advantage of the unique characteristics of Web text and leverages

existent search engine technology in order to ensure high precision. The key features of

our approach are the use of simple extraction patterns, Web co-occurence statistics and

unsupervised or semi-supervised learning methods. Furthermore, we show that the ba-

sic information extraction model can be instantiated and extended to solve a number of

interesting and important tasks.

This document describes the aforementioned information extraction model together with

a set of case studies. The rest of this document is organized as follows:

• The remainder of Chapter 1 describes the core information extraction model and

contains a summary of the corresponding case studies in which the model was used;

the chapter ends with an overview of related work.

• Chapter 2 contains a description of the KnowItAll information extraction system,

on which our information extraction architecture is based.

• Chapters 3 through 6 describe in detail the case studies we addressed and show that

the ideas behind our information extraction architecture are applicable to a variety of

information extraction scenarios.

1.3 WIE: A Web-based Information Extraction Architecture

The information extraction architecture described in this section is an augmented version

of the architecture of a state-of-art information extraction system, KnowItAll [35, 34].

4

Figure 1.1: The WIE Architecture for Web-based Information Extraction. The Bootstrap-

ping module creates extraction rules for predicates of interest; the Extractor uses them to generate

extractions that are validated by the Assessor using search engine hit counts. The resulting prob-

abilities can be refined using dependencies among extractions; the dependencies are obtained from

Web text or from background knowledge. The final set of assessed extractions is then added to a

knowledge base.

KnowItAll, which is described in detail in Chapter 2, is a Web-based information ex-

traction system that can extract large numbers of high-quality instances of classes (e.g.,

instances of the class City) or relations (e.g., instances of capitalOf(City, Country)).

Figure 1.1 gives an overview of WIE, an extended version of KnowItAll’s architecture;

the Dependency-based Updates and Background Knowledge components are additions to the

basic KnowItAll architecture. In the following, we give an overview of WIE and then

describe the added components in more detail.

WIE takes as input a set of predicates which specify its focus: e.g., {Scanner,Printer,

Phone, Computer} is a set of concepts of interest to a buyer of consumer electronics.

For each user query (e.g., “find instances of predicate P”), the Bootstrapping step uses

a set of manually supplied domain-independent extraction patterns (e.g., Figure 1.2) to

create a set of extraction rules and “discriminator” phrases (described below) corresponding

to the predicate of interest. The Bootstrapping is fully automatic, in contrast to other

bootstrapping methods that require a set of manually created training seeds.

5

Predicate: Class1

Pattern: NP1 “such as” NPList2

Constraints: head(NP1)= plural(label(Class1)) &

properNoun(head(each(NPList2)))

Bindings: Class1(head(each(NPList2)))

Figure 1.2: Extraction Rule Template Example. A generic extraction pattern can be instan-

tiated automatically with the pluralized class label to create a domain-specific extraction rule. For

example, if Class1 is set to “City” then the rule looks for the words “cities such as” and extracts

the heads of the proper nouns following that phrase as potential cities.

“the X scanner ” “ X is a scanner “ “ scanners such as X”

Figure 1.3: Discriminator Examples. Examples of discriminators used to assess candidate

instances of the Scanner class.

The Bootstrapping module instantiates the provided rule templates with the name of

each predicate of interest and thus generates a set of predicate-specific extraction rules. It

then uses these rules to bootstrap a small set of answers to the query of interest.

The bootstrapped answers are used to find a set of high precision rules we call discrim-

inators (see Figure 1.3 for some examples). The discriminators are used by the Assessor to

assign a probability to each extraction and are trained using the bootstrapped set of seed

extractions. WIE assesses the plausibility of each candidate fact by computing pointwise

mutual information (PMI) statistics using the Google search engine.

In addition to the basic assessment step inherited from the KnowItAll architecture,

WIE has the option of using a second assessment step that refines the probabilities as-

signed to candidate facts based on various types of dependencies among such facts. These

dependencies are found or verified by using either Web statistics or information from avail-

able knowledge sources (e.g., WordNet). Introducing a second assessment step results in

improvements in the system’s perfomance; it can also decrease the number of search engine

queries necessary for fact assessment.

6

1.3.1 Dependency-based Updates of Initial Extraction Probabilities

The set of extractions with associated initial probabilities is taken as input by the dependency-

based update module that uses various dependencies among extractions to compute the final

version of their associated probabilities. Sometimes (e.g., in the case of the review mining

system described in Chapter 5), using the Assessor in order to compute a set of initial

probabilities for each extraction can be expensive - in such cases, the Assessor can be used

for a subset of potential extractions and the dependency-based update module can compute

the probabilities associated with the remainder of the potential extractions.

The information extraction tasks described in the following chapters make use of var-

ious types of dependencies that can be obtained from Web documents or from additional

background knowledge resources (e.g., WordNet [73]). Examples of dependencies among

extractions include similarity relationships based on synonymy, antonymy, morphological

and context-dependent co-occurrence information.

As we will see in the next chapters, the specifics of the probability refinement mecha-

nisms differ based on the details of the information extraction task at hand, but they are all

unsupervised or semi-supervised methods. For example, our review mining chapter investi-

gates the use of the well-known relaxation labeling framework (common in machine vision

applications) for the purpose of finding the context-dependent semantic orientation of opin-

ion words. The thesis chapters report on results concerning the use of dependency-based

updates for this labeling task, as well as for the tasks of subclass and related class extraction;

additionally, we are in the process of investigating the impact of dependency-based updates

on improving the performance of our results on the tasks of relation property learning as

well as on the tasks of assessing and acquiring commonsense knowledge.

In the following, we give a brief summary of the information extraction scenarios we

investigated and describe the current results for each research effort.

1.3.2 High Precision Information Extraction from Web Text: Case Studies

We instantiated and extended the information extraction architecture described above in

order to address a varied set of information extraction tasks briefly described below:

7

• Class Extraction Chapter 3 describes the use of our IE model in the acquisition of

high precision subclasses of a given class, as well as in the acquisition of other related

classes [92]. Our results show that subclass extraction can boost the yield of class

instance extraction from the Web by a factor of up to 10 [35]. We also describe our

promising preliminary experiments in employing a version of the above extraction

model in order to expand the WordNet IS-A hierarchy using Web data [89].

This chapter shows that our IE model can be readily instantiated and used for dis-

covering high precision subclass and related class information from the Web, which

demonstrates the model’s usefulness and generality.

• Learning Relation Properties Chapter 4 describes our preliminary work on learn-

ing relation properties (e.g., transitivity) and ontologically relevant dependencies (e.g.,

entailment) among relations (under preparation). Such information is likely to be

useful for a variety of tasks, such as fact extraction and deduplication. The main

ideas on which our IE model relies (Web-scale statistics for assessment and the use of

lexico-syntactic patterns) are employed with good results in the building of a property

learner, further demonstrating their value. On-going work on this problem includes

the use of the dependency-based update module as part of a collective assessment

scheme in order to improve the system’s performance; we are in the process of defin-

ing and testing different types of dependencies among relations as well as among

meta-properties of interest.

• Mining Product Features and Corresponding Opinions The Web contains

a wealth of opinions about products, politicians and more, which are expressed in

newsgroup posts, review sites, and elsewhere. Chapter 5 describes our work on high

precision extraction of product features and corresponding user opinions from product

reviews. We automatically determine the positive or negative context-dependent se-

mantic orientation of each opinion as well the relative strength of opinions that refer

to the same property (e.g., “spotless” is a stronger endorsement than “clean” when

discussing Cleanliness). This detailed opinion information is used to generate opinion

8

summaries of customer reviews [90, 91].

Our review mining system consists of a number of components which rely on our IE

model. Web-scale statistics for assessment lead to improved feature extraction, lexico-

syntactic patterns are used for feature acquisition, finding the semantic orientation of

opinion words and phrases as well as determining the relative strength of opinions;

finally, dependency-based probability updates allow us to find the semantic orientation

of opinion words and phrases with high precision.

• Mining Commonsense Relationships The Web also contains a wealth of com-

monsense knowledge, which can finally be exploited by activity recognition and state

estimation systems due to improvements in sensor technology and advances in prob-

abilistic inference. Chapter 6 shows that the Web can be used to validate existent

commonsense information provided by volunteers and that the Web-validated data

leads to improvements in the performance of a state-of-the-art state estimation sys-

tem [86]. We also show how our extract-and-assess model can be adapted to the task

of acquiring relations among commonsense state and action events for the purpose

of partially replacing an existent commonsense knowledge base (in preparation). On-

going work in this area includes adapting and testing our dependency-based update

module in order to improve the system’s performance on the tasks of assessing and

acquiring commonsense knowledge.

In conclusion, we describe an extensible, Web-based information extraction model and

show how it can be adapted and used with good results in a variety of information extraction

scenarios.

1.4 Related Work

This section contains an overview of the key areas of related work - each subsequent chap-

ter contains a discussion of additional research papers directly related to the information

extraction task at hand.

9

1.4.1 The Use of co-occurrence Statistics and the Use of the Web as a Corpus

co-occurrence statistics computed from scratch over document collections have been exten-

sively used for natural language processing tasks such as synonym recognition, lexicon con-

struction and other lexical analysis and text mining tasks [19, 20, 98]. While co-occurrence

statistics have been traditionally used in the context of unstructured text corpora, recent re-

search has started importing such techniques into the world of structured data by computing

statistics over a corpus of structures [45].

Turney [114] was the first to realize that commercial search engines offer a cheap way

to compute Web-scale co-occurrence statistics; his PMI-IR algorithm uses search engine

hit counts to compute the pointwise mutual information (PMI) between two words. This

correlation measure is used to find a phrase’s semantic orientation by comparing it with

strongly positive or strongly negative words (e.g., “great”, “awful”). Other researchers

(e.g., [118, 64, 18]) have made use of Web statistics in order to validate answers to questions,

instances of a given class or semantic information such as verb entailment.

The KnowItAll project was the first large-scale information extraction system to lever-

age Turney’s original insight and conclusively show that Web statistics can ensure the high

quality of extracted information. Inspired by our results, other researchers have recently

used Web co-occurrence statistics for IE: [68] has looked at populating the Cyc knowledge

base with instances of binary relations extracted from the Web while [75, 77, 76] have

looked at using Web data to find names for noun-noun relations and aid with compound

noun bracketing - the authors also show that search engine hit counts are helpful even

though they vary across search engines; finally, [125] added to the list of uses for Web-scale

statistics by showing that they can be employed to detect parser errors.

As we will see in the following chapters, this thesis shows that co-occurrence statis-

tics at Web scale can be used to validate various types of extracted information: subclass

extractions, related concepts, relation meta-properties, product features, instances of com-

monsense relationships and more. In certain cases (e.g., extraction of subclass terms, related

concepts, product features), this thesis is the first to report experimental results concerning

the use of Web-scale co-occurrence statistics for the task at hand. In other cases (e.g., learn-

10

ing the semantic orientation of opinion words and phrases), this thesis uses co-occurrence

statistics as part of new ways of solving the given task.

1.4.2 Information Extraction from Unstructured Text

The work described in this thesis leverages and extends some ideas explored by previous

systems for information extraction from unstructured text [88, 95, 96, 52, 79, 2, 13, 24]: the

use of simple lexico-syntactic patterns [48] in the generation of extraction rules and the use

of a bootstrap learning approach (alternating between learning rules or rule accuracy from

sets of instances and finding instances using sets of rules).

In this thesis, we confirm the wide applicability of such previously introduced techniques

by using an architecture that combines, updates and applies them to a number of interesting

and varied applications. The past year (2006) has seen a renewed interest in such simple,

lightweight systems that use generic patterns and a bootstrap approach in order to learn

semantic relations from text (e.g., [84, 85]). Also in recent months, [7] and [100] have

recommended moving towards open information extraction systems, which are not limited

by a set of initial predicates but instead extract a large number of facts and afterwards

identify the underlying semantic relations.

1.4.3 Dependency-based Probability Updates

A key component of our architecture is the second assessment step that uses dependencies

among the extractions in order to refine the probabilities assigned by the first assessment

step or “propagate” label information to additional potential extractions. While our work

was independently completed, parallel (and subsequent) research efforts used techniques

with a similar flavor to address other interesting text mining tasks: [14] introduced a collec-

tive information extraction system developed in a Relational Markov Network framework

that focused on named entity classification and de-duplication tasks in the context of bio-

medical literature, [80] used graph mincuts to label review data as positive or negative

while [110] used a spin model to automatically label a large number of words with context-

independent semantic orientation labels; [17] employed the recently introduced label prop-

11

agation mechanism to label binary relation instances with the appropriate relation name;

[104] developed a probabilistic model for combining information from multiple sources in

order to learn semantic IS-A hierarchies from text data.

As previously mentioned, the above papers focus on text mining tasks differing from ours

or use different techniques than the ones used in this thesis. Our work adds to the body of

literature that shows that dependency-based probability updates can be useful for a variety

of tasks and can be accomplished using a variety of techniques (in our case, unsupervised

and semi-supervised techniques).

A related class of systems that make use of various types of dependencies are systems

for multifield information extraction (e.g., [65, 38, 121, 72]), which find instances of n-ary

predicates from text corpora. In the last chapter of this thesis we outline our work in this

vein for extracting instances of commonsense relations from Web text.

Using complex dependencies among entities or relations has been explored in depth

outside of the text mining literature as well; [109, 102, 103, 71] address tasks such as de-

duplication, also known as “record linkage”, which occurs in a large number of applications,

especially database applications.

1.4.4 Constructing Ontologies from Text

While much of the early information extraction research was conducted in the context of

the MUC challenges, similar research problems were confronted in parallel by researchers

interested in building or refining ontologies using textual information. Many papers (e.g.,

[37, 41, 62, 60]) have addressed the acquisition of classes, relations and relation types from

text in order to build a domain ontology from scratch or in order to augment or refine an

already existent ontology.

Building, refining and matching [29] ontologies has become even more important in

the context of the Semantic Web, which depends on their proliferation and management

[63]. Ontologies can be used for manual or automatic creation of semantically interlinked

metadata (as exemplified by the semantic annotation efforts described in [32, 28], among

others).

12

In the remaining chapters of this thesis we show that Web text can be used to enrich

ontologies in a number of ways: by extracting subclasses, features and related concepts for

given target concepts, by automatically verifying relation meta-properties and by populating

common sense knowledge bases with instances of commonsense relations.

13

Chapter 2

AN OVERVIEW OF THE KNOWITALL INFORMATION

EXTRACTION SYSTEM

2.1 Introduction

KnowItAll [35, 34] is a Web-based information extraction system with a novel extract-

and-assess architecture that uses generic lexico-syntactic patterns and Web-scale statistics

to extract class and relation instances from unstructured text on the Web.

In its first major run KnowItAll extracted over 50,000 class instances corresponding to

three predicates of interest: City, Country and Film. In subsequent work [35, 34] our group

has explored three ways of improving the basic system’s recall while maintaining its high

precision: Pattern Learning learns domain-specific extraction rules, which enable additional

extractions; Subclass Extraction automatically identifies subclasses in order to boost recall

(e.g., “chemist” and “biologist” are identified as subclasses of “scientist”); List Extraction

locates lists of class instances, learns a “wrapper” for each list, and extracts elements of

each list.

In concert, our methods gave KnowItAll a 4-fold to 8-fold increase in recall at precision

of 0.90, and discovered over 10,000 cities missing from the Tipster Gazetteer.

The remainder of this background chapter is organized as follows: we start by describing

the architecture of the basic KnowItAll system, which is the basis of the WIE architecture

at the core of this thesis; we then give an overview of the relevant related work.

2.2 KnowItAll : An Architecture for Information Extraction from the Web

KnowItAll is a Web-based information extraction system [35, 34] that can extract large

numbers of high-quality instances of classes (e.g., instances of the class City) or relations

(e.g., instances of capitalOf(City, Country)).

In the following, we give an overview of the KnowItAll architecture and then describe

14

its components in more detail - the following description is a modified version of the basic

system description in our 2005 journal paper [34].

Figure 2.1: A Basic Architecture for Web-based Information Extraction: KnowItAll

The Bootstrapping module creates extraction rules for predicates of interest; the Extractor uses

them to generate extractions that are validated by the Assessor using search engine hit counts. The

assessed extractions are then added to a knowledge base.

KnowItAll takes as input a set of predicates which specify its focus; KnowItAll’s

Bootstrapping step uses a set of domain-independent extraction patterns (e.g., Figure 2.2) to

create a set of extraction rules and “discriminator” phrases (described below) for each pred-

icate in its focus. The Bootstrapping is fully automatic, in contrast to other bootstrapping

methods that require a set of manually created training seeds.

The Bootstrapping module instantiates the provided rule templates with the name of

each predicate of interest and thus generates a set of predicate-specific extraction rules. It

then uses these rules to bootstrap a small set of answers to the query of interest.

The bootstrapped answers are used to find a set of high precision rules we call discrim-

inators (see Section 2.2.2 for some examples).

The discriminators are used by the Assessor to assign a probability to each extraction

and are trained using the bootstrapped set of seed extractions. KnowItAll assesses the

plausibility of each candidate fact by using pointwise mutual information (PMI) statistics

computed using the Google search engine.

15

In the following, we describe each of the architecture components in more detail.

2.2.1 Extractor Description

Predicate: Class1

Pattern: NP1 “such as” NPList2

Constraints: head(NP1)= plural(label(Class1)) &

properNoun(head(each(NPList2)))

Bindings: Class1(head(each(NPList2)))

Figure 2.2: Extraction Rule Template Example. A generic extraction pattern can be instan-

tiated automatically with the pluralized class label to create a domain-specific extraction rule. For

example, if Class1 is set to “City” then the rule looks for the words “cities such as” and extracts

the heads of the proper nouns following that phrase as potential cities.

Predicate: City

Pattern: NP1 “such as” NPList2

Constraints: head(NP1)= “cities”

properNoun(head(each(NPList2)))

Bindings: City(head(each(NPList2)))

Keywords: “cities such as”

Figure 2.3: Extraction Rule Example. An extraction rule generated by substituting the class

name City and the plural of the class label “city” into a generic rule template. The rule looks for

Web pages containing the phrase “cities such as” and extracts the proper nouns following that phrase

as instances of the unary predicate City.

The Extractor uses the set of extraction rules provided by the Bootstrap module to find

a set of candidate answers to each predicate-specific query.

Extraction Rules

The extraction rules are used to formulate search engine queries - the Extractor down-

loads matching Web pages and applies the extraction rules to each page in order to find the

candidate extractions.

KnowItAll automatically creates a set of extraction rules for each predicate, as de-

16

scribed in Section 2.2.2. Each rule consists of a predicate, an extraction pattern, constraints,

bindings, and keywords. The predicate gives the relation name and class name of each predi-

cate argument. In the rule shown in Figure 2.3, the unary predicate is “City”. The extraction

pattern is applied to a sentence and has a sequence of alternating context strings and slots,

where each slot represents a string from the sentence. The rule may set constraints on a

slot, and may bind it to one of the predicate arguments as a phrase to be extracted. In

the example rule, the extraction pattern consists of three elements: a slot named NP1, a

context string “such as”, and a slot named NPList2. There is an implicit constraint on

slots with name NP<digit>. They must match simple noun phrases and those with name

NPList<digit> match a list of simple noun phrases. Slot names of P<digit> can match

arbitrary phrases.

The Extractor uses regular expressions based on part-of-speech tags from the Brill tagger

[12] to identify simple noun phrases and NPLists. The head of a noun phrase is generally

the last word of the phrase. If the last word is capitalized, the Extractor searches left for the

start of the proper noun, based on orthographic clues. Take for example, the sentence “The

tour includes major cities such as New York, central Los Angeles, and Dallas”. The head

of the NP “major cities” is just “cities”, whereas the head of “New York” is “New York”

and the head of “central Los Angeles” is “Los Angeles”. This simple syntactic analysis was

chosen for processing efficiency, and because our domain-independent architecture avoids

more knowledge intensive analysis.

The constraints of a rule can specify the entire phrase that matches the slot, the head

of the phrase, or the head of each simple NP in an NPList slot. One type of constraint is

an exact string constraint, such as the constraint head(NP1) = “cities” in the rule shown

in Figure 2.3. Other constraints can specify that a phrase or its head must follow the

orthographic pattern of a proper noun, or of a common noun. The rule bindings specify

which slots or slot heads are extracted for each argument of the predicate. If the bindings

have an NPList slot, a separate extraction is created for each simple NP in the list that

satisfies all constraints. In the example rule, an extraction is created with the City argument

bound to each simple NP in NPList2 that passes the proper noun constraint.

A final part of the rule is a list of keywords that is created from the context strings and

17

any slots that have an exact word constraint. In our example rule, there is a single keyword

phrase “cities such as” that is derived from slot NP1 and the immediately following context.

A rule may have multiple keyword phrases if context or slots with exact string constraints

are not immediately adjacent.

KnowItAll uses the keywords as search engine queries, then applies the rule to the Web

page that is retrieved, after locating sentences on that page that contain the keywords. The

rule language covers n-ary predicates with arbitrary relation name and multiple predicate

arguments.

Discriminators The Extractor module uses extraction rules that apply to single Web

pages and carry out shallow syntactic analysis. In contrast, the Assessor module uses

discriminators that apply to search engine indices. These discriminators are analogous to

simple extraction rules that ignore syntax, punctuation, capitalization, and even sentence

breaks, limitations that are imposed by use of commercial search engine queries. On the

other hand, discriminators are equivalent to applying an extraction pattern simultaneously

to the entire set of Web pages indexed by the search engine.

A discriminator consists of an extraction pattern with alternating context strings and

slots. There are no explicit or implicit constraints on the slots, and the pattern matches Web

pages where the context strings and slots are immediately adjacent, ignoring punctuation,

whitespace, or HTML tags. The discriminator for a unary predicate has a single slot, which

we represent as an X here, for clarity of exposition. Discriminators for binary predicates

have two slots, here represented as X and Y, for arguments 1 and 2 of the predicate, and

so forth.

When a discriminator is used to validate a particular extraction, the extracted phrases

are substituted into the slots of the discriminator to form a search query. This is described

in more detail in Section 2.2.3. Figure 2.5 shows one of several possible discriminators that

can be used for the predicate City and for the binary predicate CeoOf(Person,Company).

We now describe how KnowItAll automatically creates a set of extraction rules and

discriminator phrases for a predicate.

18

“the X scanner ” “ X is a scanner “ “ scanners such as X”

Figure 2.4: Discriminator Examples. Examples of discriminators used to assess candidate

Scanner instances.

Discriminator for: City

“city X”

Discriminator for: CeoOf(Person,Company)

“X CEO of Y”

Figure 2.5: Discriminator Examples. When the discriminator for City is used to validate the

extraction “Paris”, the Assessor finds hit counts for the search query phrase “city Paris”. Similarly,

the discriminator for CeoOf validates Jeff Bezos as CEO of Amazon with the search query, “Jeff

Bezos CEO of Amazon”.

2.2.2 Bootstrapping

KnowItAll’s input is a set of predicates that represent classes or relationships of interest.

The predicates supply symbolic names for each class (e.g. “MovieActor”), and also give one

or more labels for each class (e.g. “actor” and “movie star”). These labels are the surface

form in which a class may appear in an actual sentence. Bootstrapping uses the labels to

instantiate extraction rules for the predicate from generic rule templates.

Figure 2.6 shows some examples of predicates for a geography domain and for a movies

domain. Some of these are “unary” predicates, used to find instances of a class such as City

and Country; some are “n-ary” predicates, such as the capitalOf relationship between City

and Country and the starsIn relationship between MovieActor and Film. In this paper,

we concentrate primarily on unary predicates and how KnowItAll uses them to extract

instances of classes from the Web.

The first step of Bootstrapping uses a set of domain-independent generic extraction

patterns (e.g. Figure 2.2). The pattern in Figure 2.2 can be summarized informally as

<class1> ‘‘such as’’ NPList That is, given a sentence that contains the class label

followed by “such as”, followed by a list of simple noun phrases, KnowItAll extracts the

19

Predicate: City Predicate: Film

labels: “city”, “town” labels: “film”, “movie”

Predicate: Country Predicate: MovieActor

labels: “country”, “nation” labels: “actor”, “movie star”

Predicate: capitalOf(City,Country) Predicate: starsIn(MovieActor,Film)

relation labels: “capital of” relation labels: “stars in”, “star of”

class-1 labels: “city”, “town” class-1 labels: “actor”, “movie star”

class-2 labels: “country”, “nation” class-2 labels: “film”, “movie”

Figure 2.6: Example Predicates for a Geography Domain and for a Movies Domain. The

class labels and relation labels are used in creating extraction rules for the class from generic rule

templates.

head of each noun phrase as a candidate member of the class, after testing that it is a proper

noun.

Combining this template with the predicate City produces two instantiated rules, one

for the class label “city” (shown in Figure 2.3) and a similar rule for the label “town”. The

class-specific extraction patterns are:

“cities such as ” NPList

“towns such as ” NPList

Each instantiated extraction rule has a list of keywords that are sent as phrasal query terms

to a search engine.

A sample of the syntactic patterns that underlie KnowItAll’s rule templates is shown

in Figure 2.7.

Some of our rule templates are adapted from Marti Hearst’s hyponym patterns [48]

and others were developed independently. The first eight patterns shown are for unary

predicates whose pluralized English name (or “label”) matches <class1>. To instantiate

the rules, the pluralized class label is automatically substituted for <class1>, producing

patterns like “cities such as” NPList.

Bootstrapping also initializes the Assessor for each predicate in a fully automated man-

ner. It first generates a set of discriminator phrases for the predicate based on class labels

20

NP “and other” <class1>

NP “or other” <class1>

<class1> “especially” NPList

<class1> “including” NPList

<class1> “such as” NPList

“such” <class1> “as” NPList

NP “is a” <class1>

NP “is the” <class1>

<class1> “is the” <relation> <class2>

<class1> “,” <relation> <class2>

Figure 2.7: Generic Unary and Binary Extraction Patterns. The terms <class1> and

<class2> stand for an NP in the rule pattern with a constraint binding the head of the phrase to

a label of predicate argument 1 or 2. Similarly, <relation> stands for a phrase in the rule pattern

with a constraint binding it to a relation label of a binary predicate.

and on keywords in the extraction rules for that predicate. Bootstrapping then uses the

extraction rules to find a set of seed instances to train the discriminators for each predicate.

The Extractor matches the rule in Figure 2.3 to sentences in Web pages returned for

the query. NP1 matches a simple noun phrase; it must be immediately followed by the

string “such as”; following that must be a list of simple NPs. If the match is successful, the

Extractor applies constraints from the rule. The head of NP1 must match the string “cities”.

The Extractor checks that the head of each NP in the list NPList2 has the capitalization

pattern of a proper noun. Any NPs that do not pass this test are ignored. If all constraints

are met, the Extractor creates one or more extractions: an instance of the class City for

each proper noun in NPList2.

The rule in Figure 2.3 would extract three instances of City from the sentence “We

service corporate and business clients in all major European cities such as London, Paris,

and Berlin.” If all the tests for proper nouns fail, nothing is extracted, as in the sentence

“Detailed maps and information for several cities such as airport maps, city and downtown

maps”.

KnowItAll automatically formulates queries based on its extraction rules. Each rule

has an associated search query composed of the rule’s keywords. For example, if the pattern

21

in Figure 2.3 was instantiated for the class City, it would lead KnowItAll to 1) issue the

search-engine query “cities such as”, 2) download in parallel all pages named in the engine’s

results, and 3) apply the Extractor to sentences on each downloaded page.

2.2.3 Assessor Description

KnowItAll uses statistics computed by querying search engines to assess the likelihood

that the Extractor’s conjectures are correct. For example, the Assessor uses a form of

pointwise mutual information (PMI) between words and phrases that is estimated from

Web search engine hit counts in a manner similar to Turney’s PMI-IR algorithm [114]. The

Assessor computes the PMI-IR score for each extracted instance and multiple, automatically

generated discriminator phrases associated with the class (such as “X is a city” for the class

City).1 For example, in order to estimate the likelihood that “Liege” is the name of a city,

the Assessor might check to see if there is a high PMI-IR score between “Liege” and phrases

such as “Liege is a city”. More formally, let I be an instance and D be a discriminator

phrase. We compute the PMI-IR score as follows:

PMI−IR(I,D) =
|Hits(D + I)|

|Hits(I)|
(2.1)

The PMI-IR score is the number of hits for a query that combines the discriminator and

instance, divided by the hits for the instance alone.

The raw PMI score for an instance and a given discriminator phrase is typically a tiny

fraction, perhaps as low as 1 in 100,000 even for positive instances of the class. This does

not give the probability that the instance is a member of the class, only the probability of

seeing the discriminator on Web pages containing the instance.

These mutual information statistics are treated as features that are input to a Naive

Bayes Classifier (NBC) using the formula given in Equation 2.2. This is the probability

that fact φ is correct, given features f1, f2, . . . fn, with an assumption of independence

between the features.

1We use class names and the keywords of extraction rules to automatically generate these discriminator
phrases.

22

P (φ|f1, f2, . . . fn) =
P (φ)

∏
i P (fi|φ)

P (φ)
∏

i P (fi|φ) + P (¬φ)
∏

i P (fi|¬φ)
(2.2)

Our method to turn a PMI score into the conditional probabilities needed for Equation

2.2 is straightforward. The Assessor takes a set of k positive and k negative seeds for

each class and finds a threshold on PMI scores that splits the positive and negative seeds.

It then uses a tuning set of another k positive and k negative seeds to estimate P (PMI >

thresh|class), P (PMI > thresh|¬class), P (PMI ≤ thresh|class), and P (PMI ≤ thresh|¬class),

by counting the positive and negative seeds (plus a smoothing term) that are above or below

the threshold. We used k = 10 and a smoothing term of 1 in the experiments reported here.

In a standard NBC, if a candidate fact is more likely to be true than false, it is classified

as true. However, since we wish to be able to trade precision against recall, we record

the crude probability estimates computed by the NBC for each extracted fact. By raising

the probability threshold required for a fact to be deemed true, we increase precision and

decrease recall; lowering the threshold has the opposite effect. We found that, despite its

limitations, NBC gave better probability estimates than the logistic regression and Gaus-

sian models we tried. Several open questions remain about the use of PMI for information

extraction. Even with the entire Web as a text corpus, the problem of sparse data re-

mains. The most precise discriminators tend to have low PMI scores for numerous positive

instances, often as low as 10−5 or 10−6. This is not a problem for prominent instances that

have several million hits on the Web. If an instance is found on only a few thousand Web

pages, the expected number of hits for a positive instance will be less than 1 for such a

discriminator. This leads to false negatives for the more obscure positive instances.

A different problem with using PMI is homonyms — words that have the same spelling,

but different meanings. For example, Georgia refers to both a state and country, Normal

refers to a city in Illinois and a socially acceptable condition, and Amazon is both a rain

forest and an on-line shopping destination.

Another issue is in the choice of a Naive Bayes Classifier. Since the Naive Bayes Classifier

is notorious for producing polarized probability estimates that are close to zero or to one,

23

the estimated probabilities are often inaccurate. However, as [30] points out, the classifier

is surprisingly effective because it only needs to make an ordinal judgment (which class is

more likely) to classify instances correctly. Similarly, our formula produces a reasonable

ordering on the likelihood of extracted facts for a given class. This ordering is sufficient for

KnowItAll to implement the desired precision/recall tradeoff.

2.3 Related Work

One of KnowItAll’s main contributions is adapting Turney’s PMI-IR algorithm [114, 115,

117] to serve as validation for information extraction. PMI-IR uses search engine hit counts

to compute pointwise mutual information that measures the degree of correlation between

a pair of words. Turney used PMI from hit counts to select among candidate synonyms

of a word, and to detect the semantic orientation of a phrase by comparing its PMI with

positive words (e.g. “excellent”) and with negative words (e.g. “poor”). Other researchers

have also made use of PMI from hit counts: [64] validates proposed question-answer pairs

for a QA system by learning “validation patterns” that look for the contexts in which

the proposed question and answer occur in proximity; Uryupina [119] classifies proposed

instances of geographical classes by embedding the instance in discriminator phrases much

like KnowItAll’s, which are then given as features to the Ripper classifier.

KnowItAll is distinguished from many Information Extraction (IE) systems by its

novel approach to bootstrap learning, which obviates hand-labeled training examples. Un-

like IE systems that use supervised learning techniques such as hidden Markov models

(HMMs) [39], rule learning [105, 16, 21], maximum entropy [78], or Conditional Random

Fields [70], KnowItAll does not require any manually-tagged training data.

Bootstrap learning is an iterative approach that alternates between learning rules from

a set of instances, and finding instances from a set of rules. This is closely related to co-

training [11], which alternately learns using two orthogonal view of the data. IE systems

that use bootstrapping include [96, 2, 13, 26, 24, 22]. These systems begin with a set of

hand-tagged seed instances, then alternately learn rules from seeds, and further seeds from

rules. KnowItAll is unique in not requiring hand-tagged seeds, but instead begins with

a domain-independent set of generic extraction patterns from which it induces a set of seed

24

instances. KnowItAll’s use of PMI validation helps overcomes the problem of maintaining

high precision, which has plagued previous bootstrap IE systems.

KnowItAll is able to use weaker input than previous IE systems because it relies on

the scale and redundancy of the Web for an ample supply of simple sentences. This notion

of redundancy-based extraction was introduced in Mulder [58] and further articulated in

AskMSR [69]. Of course, many previous IE systems have extracted more complex relational

information than KnowItAll. KnowItAll is effective in extracting n-ary relations from

the Web, but we have yet to demonstrate this experimentally.

Several previous projects have automated the collection of information from the Web

with some success. Information extraction systems such as Google’s Froogle, Whizbang’s

Flipdog, and Elion, collected large bodies of facts but only in carefully circumscribed do-

mains (e.g., job postings), and only after extensive domain-specific hand tuning. Know-

ItAll is both highly automated and domain independent. In fairness, though, Know-

ItAll’s redundancy-based extraction task is easier than Froogle and Flipdog’s task of

extracting “rare” facts each of which only appears on a single Web page. Semantic tagging

systems, notably SemTag [28], perform a task that is complementary to that of Know-

ItAll. SemTag starts with the TAP knowledge base and computes semantic tags for a

large number of Web pages. KnowItAll’s task is to automatically extract the knowledge

that SemTag takes as input.

KnowItAll was inspired, in part, by the WebKB project [25]. However, the two

projects rely on very different architectures and learning techniques. For example, WebKB

relies on supervised learning methods that take as input hand-labeled hypertext regions

to classify Web pages, whereas KnowItAll employs unsupervised learning methods that

extract facts by using search engines to home in on easy-to-understand sentences scattered

throughout the Web. Finally, KnowItAll also shares the motivation of Schubert’s project

[99], which seeks to derive general world knowledge from texts. However, Schubert and his

colleagues have focused on highly-structured texts such as WordNet and the Brown corpus

whereas KnowItAll has focused on the Web.

25

Chapter 3

CLASS EXTRACTION FROM THE WEB

3.1 Introduction

Many researchers have used open-domain or domain-specific text corpora in order to au-

tomatically build or augment term lexicons and concept hierarchies used by a variety of

applications (e.g., question answering, information extraction, information retrieval, etc.).

Recently, the large amount of textual Web data has become an attractive alternative to

newspaper corpora and previously used domain specific texts.

This chapter describes our work on high precision, Web-based extraction of subclasses

of given general classes and new relevant concepts for a specified domain. High precision

subclass extraction can be used to automatically augment WordNet’s IS-A hierarchy from

the Web; the chapter includes a discussion of promising preliminary results for this task.

26

3.2 Subclass Extraction

This section describes how the basic extraction model introduced in Chapter 1 can be

instantiated to accommodate high precision subclass extraction (SE) and introduces two

methods for increasing the coverage of the subclass extraction module. Finally, it reports

on the significant impact of subclass extraction on the yield of the basic KnowItAll system

[35].

Subclass extraction is achieved by recursively applying the main loop of the previously

introduced Web-based extraction model. In the following we discuss the various flavors of

subclasses and subclass extraction, present the basic subclass extraction method (SEbase),

introduce two variations aimed at increasing SE’s recall (SEself and SEiter) and finally

describe encouraging results for a number of different classes.

3.2.1 Subclass Types

We distinguish between finding subclasses in a context-independent manner versus finding

subclasses in a context-dependent manner. The term context refers to a set of keywords

provided by the user that suggest a knowledge domain of interest (e.g., the pharmaceutical

domain, the political domain, etc.). In the absence of a domain description, our system finds

subclasses in a context-independent manner and they can differ from context-dependent

subclasses. For instance, if we are looking for any subclasses of Person (or People), Priest

would be a good candidate. However, if we are looking for subclasses of Person (or People)

in a Pharmaceutical context, Priest is probably not a good candidate, whereas Pharmacist

is. We also distinguish between named subclasses and derived subclasses. Named subclasses

are represented by novel terms, whereas derived subclasses are phrases whose head noun is

the same with the name of the superclass. For instance, Capital is a named subclass of City,

whereas European City is a derived subclass of City.

3.2.2 Extracting Candidate Subclasses

The main components of the subclass extraction system are the Extractor and the Assessor.

The SEbase Extractor is an instantiation of the Extractor module introduced in Chapter 1.

27

Table 3.1: Extraction Rule Patterns for Subclass Extraction. Notation: Class1 = target

class, NP = noun phrase, Subclass1,Subclass2 = subclasses of Class1. Note that the last two rules

can only be used once subclasses of the target class have already been found.

Pattern Constraints

Class1 {“,” } “such as” NP commonNoun(head(NP))

“such” Class1 “as” NP commonNoun(head(NP))

NP {“,” } “and other” Class1 commonNoun(head(NP))

NP {“,” } “or other” Class1 commonNoun(head(NP))

Class1 {“,” } “including” NP commonNoun(head(NP))

Class1 {“,” } “especially” NP commonNoun(head(NP))

Subclass1 “and” NP commonNoun(head(NP))

Subclass1 {“,”} Subclass2 {“,” } “and” NP commonNoun(head(NP))

Its input consists of domain-independent extraction rules for generating candidate terms,

for which matches are found on the Web. The generic rules that extract instances of a

class will also extract subclasses, with some modifications. To begin with, the rules need to

distinguish between instances and subclasses of a class. Rules for instances already contain

a proper noun test (using a part-of-speech tagger and a capitalization test). Rules for

extracting subclasses instead check that the head noun of the extracted noun phrases is a

common noun (i.e., not capitalized). While these tests are heuristic, they work reasonably

well in practice and the Assessor weeds out most erroneous extractions.

The patterns for our subclass extraction rules appear in Table 3.1. Most of our patterns

were simple variations of well-known ones in the information-extraction literature [48]. Note

that the last two rules can only be used once two subclasses of the class have already

been found. Also, when we perform subclass extraction in a given context, the search

engine queries contain a relevant keyword together with the instantiated extraction rule

(for instance, “pharmaceutical” in the case of the Pharmaceutical domain).

3.2.3 Assessing Candidate Subclasses

The SEbase Assessor decides which of the candidate subclasses from the SEbase Extrac-

tor are correct. First, the Assessor checks the morphology of the candidate term, since

some subclass names are formed by attaching a prefix to the name of the class (e.g., “mi-

crobiologist” is a subclass of “biologist”). Then, if the subclass extraction is done in a

28

Table 3.2: Subclass Extraction results for the Scientist and Film classes. Notation: Total is

the number of correct subclasses, NotWordNet is the proportion of the correctly identified subclasses

missing from WordNet.

Method Scientist Film
Precision Recall NotWordNet Total Precision Recall NotWordNet Total

SEbase 0.91 0.28 0.08 11 1.0 0.36 0.5 8

SEself 0.87 0.69 0.15 27 0.94 0.77 0.82 17

SEiter 0.84 0.74 0.17 29 0.93 0.68 0.8 16

Table 3.3: Subclass Extraction results for People, Product and Organization classes in

the context of the Pharmaceutical domain. Notation: P = precision, R = recall, Total = the

number of correct subclasses, NW = the proportion of the correctly identified subclasses missing

from WordNet.

Method People Organization Product
P R NW Total P R NW Total P R NW Total

SEbase 1.0 0.28 0.0 14 0.92 0.20 0.09 11 0.88 0.44 1.0 31

SEself 1.0 0.86 0.0 42 0.87 0.84 0.36 47 0.86 0.74 1.0 51

SEiter 0.95 0.94 0.0 46 0.89 0.95 0.22 52 0.84 0.88 1.0 62

context-independent manner, the Assessor checks whether a subclass is a hyponym of the

class in WordNet and if so, it assigns it a very high probability.

The rest of the extractions are evaluated in a manner similar to the assessment strategy

described in Chapter 1. The Assessor computes co-occurrence statistics of candidate terms

with a set of class discriminators. Such statistics represent features combined using a naive

Bayesian probability update [33]. The SEbase Assessor uses a training set in order to

estimate the conditional probabilities of observing a feature if an example is or is not a

correct subclass. The Assessor ranks the set of proposed subclasses based on the number of

matching extraction rules and then re-ranks the top n (n = 40) according to their average

PMI score with respect to the set of discriminators for the class. The top k = 10 subclass

candidates that also co-occur with every discriminator in the set represent the set of positive

examples for the class. The negative examples for each class are collected from among the

positive examples for the other classes in the ontology.

29

3.2.4 Experimental Results: Basic Subclass Extraction

Before we discuss our experimental results we briefly refer back to the distinction between

named and derived subclasses. Although both types of subclass terms can be extracted in

our framework, we focused on the named subclasses, as our initial goal was to find new

terms in order to improve the yield of the KnowItAll system (KnowItAll extraction

rules that use derived subclasses tend to extract many of the same instances as the rules

using the name of the target class). Later in the chapter we will turn our attention to

extracting derived subclasses.

We have evaluated our basic subclass extraction method in two different settings.

a) Context-independent SE First, we chose three classes, Scientist, City and Film

and looked for context-independent subclasses using the SEbase approach described above.

SEbase found only one named subclass for City, “capital”, which is also the only one listed

in the WordNet hyponym hierarchy for this class. SEbase found 8 correct subclasses for

Film and 11 for Scientist - this confirmed our intuition that subclass extraction would be

most successful on general classes, such as Scientist and least successful on specific classes

such as City. As shown in Table 3.2, we have evaluated the output of SEbase along four

metrics: precision, recall, total number of correct subclassses and proportion of (correct)

found subclasses that do not appear in WordNet. As we can see, SEbase has high-precision

but relatively low recall, reflecting the low recall of our domain-independent patterns.

b) Context-dependent SE A second evaluation of SEbase (detailed in Table 3.3) was

done for a context-dependent subclass extraction task, using as input three categories that

were shown to be productive in previous semantic lexicon acquisition work [88]: People,

Products and Organizations in the Pharmaceutical domain. SEbase exhibits the same high-

precision/low-recall behavior we noticed in the context-independent case. We also notice

that most of the subclasses of People and Organizations are in fact in WordNet, whereas none

of the found subclasses for Products in the Pharmaceutical domain appears in WordNet.

Next, we investigate two methods for increasing the recall of the subclass extraction

module.

30

3.3 Improving Subclass Extraction Recall

Generic extraction rules have low recall and do not generate all of the subclasses we would

expect. In order to improve our subclass recall, we add another extraction-and-verification

step. After a set of subclasses for the given class is obtained in the manner of SEbase, the

high-recall enumeration rules in Table 3.1 are seeded with known subclasses and extract

additional subclass candidates. For instance, given the sentence “Biologists, physicists and

chemists have convened at this inter-disciplinary conference.”, such rules identify “chemists”

as a possible sibling of “biologists” and “physicists”. The candidate subclass sets extracted

in this fashion contain reliable seed subclasses (whose probability was already determined by

the Naive Bayes Assessor), terms previously classified as negative examples and novel terms.

We experiment with two methods, SEself and SEiter in order to assess the extractions

obtained at this step.

a) SEself is a simple assessment method based on the empirical observation that an

extraction matching a large number of different enumeration rules is likely to be a good

subclass candidate. We have tried to use the enumeration rules directly as features for a

Naive Bayes classifier, but the very nature of the enumeration rule instantiations ensures

that positive examples don’t have to occur in any specific instantiation, as long they occur

frequently enough. We simply convert the number of different enumeration rules matched

by each example and the average number of times an example matches its corresponding

rules into boolean features (using a learned threshold). Since we have a large quantity of

unlabeled data at our disposal, we estimate the thresholds and train a simple Naive-Bayes

classifier using the self-training paradigm [79], chosen as it has been shown to outperform

EM in a variety of situations. At each iteration, we label the unlabeled data and retain

the example labeled with highest confidence as part of the training set. The procedure is

repeated until all the unlabeled data is exhausted. The extractions whose probabilities are

greater than 0.8 represent the final set of subclasses (since subclasses are generally used

by KnowItAll for instance extraction, bad subclasses translate into time wasted by the

system and as such, we retain only candidate subclasses whose probability is relatively high).

b) SEiter is a heuristic assessment method that seeks to adjust the probabilities assigned

31

to the extractions based on confidence scores assigned to the enumeration rules in a recursive

fashion. The confidence score of a rule is given by the average probability of extractions

matched by that rule. After rule confidence scores have been determined, the extraction

matching the most rules is assigned a probability p = c(R1)+c(R2)
2 , where R1 and R2 are

the two matching rules with highest confidence scores. The rule confidence scores are then

re-evaluated and the process ends when all extractions have been assigned a probability.

This scheme has the effect of clustering the extractions based on the rules they match and

it works to the advantage of good subclasses that match a small set of good extraction rules.

However, as we will later see, this method it is sensitive to noise. As in the case of SEself ,

we only retain the extractions whose probability is greater than 0.8.

3.3.1 Experimental Results: Improved Subclass Extraction

We evaluated the methods introduced above on two of the three context-independent classes

(Scientist and Film) in Table 3.3.1 We also evaluated the methods on all three Pharma-

ceutical domain classes (People, Product, Organization) in Table 3.2. We found that both

SEself and SEiter significantly improved upon the recall of the baseline method: for both,

this increase in recall is traded for a loss in precision. SEiter has the highest recall, at the

price of an average 2.3% precision loss with respect to SEbase. In the future, we will perform

additional experiments to assess which one of the two methods is less sensitive to noise, but

based upon inspection of the test set and the behavior of both methods, SEself appears

more robust to noise than SEiter.

Table 3.4 contains some examples of extracted Scientist subclasses.

Another potential benefit of subclass extraction is an increase in the number of class

instances that KnowItAll is able to extract from the Web. In the case of the Scientist

class, for example, the number of scientists extracted by KnowItAll at precision 0.9

increased by a factor of 10. SEiter was used to extract subclasses and add them to the

ontology. We do not see this benefit for classes such as City for which we are only able to

extract a couple of named subclasses (e.g., “capital”).

1We didn’t have enough subclasses to instantiate enumeration patterns for City as SEbase only identified
one named City subclass.

32

Table 3.4: Sample Named Subclasses of the Scientist Target Class. The italics indicate

subclass terms missing from WordNet.

biologist zoologist astronomer meteorologist
mathematician economist geologist sociologist
chemist oceanographer anthropologist pharmacist
psychologist climatologist paleontologist neuropsychologist
engineer microbiologist

3.3.2 Discussion

It is somewhat surprising that simple features such as the number of rules matching a given

extraction are such good predictors of a candidate representing a subclass. We attribute

this to the redundancy of Web data (we were able to find matches for a large number of

our instantiated candidate rules) and to the semantics of the enumeration patterns. The

subclass sets from SEself and SEiter contain many of the same candidates, although SEiter

typically picks up a few more.

Another interesting observation is that the different sets of extracted subclasses have

widely varying degrees of overlap with the hyponym information available in WordNet. For

example, all subclasses identified for People are in WordNet whereas none of those Products

appear there (e.g., “antibiotic”, “antihistamine”, etc.).

33

3.4 Related Class Extraction

In the related class extraction task, our system starts with a set of predicates (and optionally,

a set of instances and/or keywords) relevant to a specific topic and then automatically

identifies and explores new related concepts, that is, concepts pertaining to the same topic.

We refer to the initial set of predicates/instances/keywords as the system’s information

focus and the task is identifying other predicates relevant to the current focus.

For instance, in the Computer domain, the information focus might contain four classes:

Computer, Chip, Monitor and Disk, together with a few instances of each. We would like

our system to automatically identify Modem, Drive and other such conceptually related

classes. The challenge is to remain in focus; for instance, in the case of the Geography

domain it is easy enough to drift into a related area, such as Economy or Politics.

The RCE (related class extraction) module proceeds in an iterative fashion: at each

iteration, it uses a sample of the known domain-specific classes to instantiate a set of ex-

traction patterns and then assesses the relevance of the extractions obtained in this manner

with respect to the information focus. The iterative procedure ends after a set number of

iterations or when its signal-to-noise ratio drops below a set threshold.

Related class extraction can be achieved by instantiating the basic extraction model

introduced in Chapter 1 in a manner similar to that used to solve the subclass extraction

problem. In the following, we describe this process in more detail.

3.4.1 Extracting Candidate Classes

The RCE Extractor has the same design as the basic Extractor module in Chapter 1.

Unlike the rules for subclass extraction, the rules for related class extraction also make use

of instance information. For example, given the class City and a few seed instances (Paris,

London, etc.), we can find terms potentially related to City using rules instantiated with

either the name of the class (“city and other C ”, where C is a candidate term) or the name

of a seed instance (“Paris and other C”, where C is a candidate term).

34

Table 3.5: Related Class Extraction results in the Geography and Computer domains.

We report on the precision and recall metrics for each method, together with the number of relevant

terms extracted.

Method Geography Computer
Precision Recall Total Precision Recall Total

RCEbase 0.74 0.48 25 0.93 0.65 53

RCEself 0.76 0.82 43 0.91 0.81 66

RCEiter 0.71 0.86 45 0.88 0.84 69

3.4.2 Assessing Candidate Classes

The RCE Assessor takes as input the set of candidate concepts found in the previous step

and computes the relevance of each class name with respect to the given information focus.

The relevance of a new class name is measured on the basis of web-scale PMI statistics

of the candidate name with information focus terms. The relevance measure attempts to

cheaply eliminate candidate terms that are not domain-specific (more advanced relevance

measures, based on identifying probable relationships between a candidate term and known

domain-specific terms, are also more expensive).

Given a domain specific term T and a candidate class C, we compute C’s semantic

similarity to T using the PMI score below:

PMI−IR(C, T) =
|Hits(C, T)|

|Hits(C)| ∗ |Hits(T)|
.

Given a set of terms Ts describing a domain-specific class T (class name, names of class

instances) and a new candidate class C, we first compute the similarity between C and each

term describing T ; we then average the resulting scores to get a measure of the similarity

between C and Ts:

PMIavg(C, Ts) =

∑

e∈Ts

PMI−IR(C, e)

|Ts|

where e is some element in Ts.

PMIavg(C, Ts) measures the average relevance of C to the core class T using all the

available information about T . These final scores are used to determine whether a given

35

Table 3.6: Sample Classes Discovered by the Baseline RCE Method (RCEbase) in the

Computer Domain.

keyboard drive modem mouse circuit
hardware battery laptop memory microprocessor
peripheral semiconductor bus server

class C is relevant or not to the given information focus. We use a set of learned thresholds in

order to convert the relevance scores into boolean features. The features are then combined

using a Naive Bayes classifier in order to predict whether the candidate name is relevant

with respect to the given information focus. The Assessor considers all candidates whose

relevance probability is greater than 0.8 to be relevant - we refer to this basic RCE extraction

and assessment procedure as RCEbase.

3.4.3 Increasing Related Class Extraction Recall

In order to increase the recall of the basic RCE module, we experimented with two modified

RCE methods, RCEself and RCEiter, with the same structure as the ones used to increase

the recall of the subclass extraction component. These are versions of RCEbase in which

the set of good extractions computed at the end of each iteration in the manner described

above is augmented using enumeration rules. Once new extractions are obtained in this

manner, they are evaluated with respect to the enumeration rules that extracted them (as

described in the subclass extraction section). They are not evaluated with respect to the

information focus since this is expensive in terms of search engine queries and a lot of good

class names do not co-occur enough times with information focus terms.

3.4.4 Experimental Results

We tested our methods for extracting classes relevant to a given domain description on two

domains: Geography and Computers. All RCE methods started with basic initial knowledge

of each domain in the form of four seed classes: Cities, States, Countries, and Rivers

for the Geography domain, and Computers, Chips, Monitors, and Disks for the Computer

domain. Due to time constraints, we first performed two iterations of the RCEbase method

36

in order to obtain a non-trivial set of good extractions (18 for the Geography domain and

32 for the Computer domain). We then performed a third iteration, this time comparing

the simple RCEbase method with its modified versions, RCEself and RCEiter. Table 3.5

reflects the results after the third iteration and Table 3.6 shows some examples of newly

identified classes for the Computer domain. We report on the precision and recall metrics

for our three methods— their performance was evaluated by hand-labeling the extracted

terms. We also include the total number of relevant classes extracted by each method.

As we had hoped, RCEself and RCEiter led to an increase in RCE recall. We noticed

that the RCEiter led to the highest increase in recall, but in the context of a precision

drop of 3.5% on average, while RCEself managed to increase the recall, while maintaining

(and in the case of the Geography domain, increasing) precision. In the computer domain,

where we had started with a large seed set, a lot of the extractions had already been found

by our initial set of domain-independent patterns and as such, the recall increase was not

as dramatic as in the Geography domain, where the number of relevant new terms almost

doubled for RCEiter. Overall, the only statistically significant differences are the jumps in

recall from RCEbase to the more sophisticated RCEself and RCEiter.

In future work, we plan to analyze the behavior of these methods as we execute longer

runs for all of them. It will also be interesting to see how the description of the information

focus should adjust over time due to the exhaustion of immediately relevant terms. We want

to broadly explore a given domain but not drift into a different domain without realizing it.

37

3.5 Related Work

There has been previous NLP work focused on acquiring domain-specific lexicons from

corpora. The bulk of this work consists of weakly supervised learning algorithms for ac-

quiring members of one or several semantic categories using a bootstrapping approach in

conjunction with lexical co-occurrence statistics, specific syntactic structures [98], generic

lexico-syntactic patterns [48] and detailed extraction patterns, designed to capture role re-

lationships [88]. More recently, researchers exploring biomedical literature [93] have looked

at identifying concepts related to a set of target concepts using a mixture of data mining

techniques and natural language processing techniques.

Our approach is Web-based instead of corpus-based and so we use search engines to

compute co-occurrence statistics and take advantage of the large number of instantiated

enumeration patterns available on the Web.

The ontology development field has used exhaustive conceptual clustering techniques to

acquire taxonomic relationships (more specifically, the IS-A relationship) from text. Typi-

cally an initial taxonomy is built using a combination of statistical and lexical information

and the taxonomy is then refined (using automatic classification methods) as new concepts

are identified in the text [63]. Our subclass acquisition module uses different types of infor-

mation (Web-scale co-occurrence statistics, a large number of enumeration extraction rules)

and it evaluates the acquired information using a different methodology.

The subclass extraction approach closest to ours is described in [106]. The authors use

a single lexical pattern (search engine queries) that yield sentences containing potential

hypernyms/hyponyms for a given term. After detecting synonymous words using WordNet,

the method uses frequency information to identify the most likely hypernym/hyponym

candidates. The paper does not give a precision figure, just examples of extractions, and

reports on tests in just one domain (the computer domain).

38

3.6 Augmenting WordNet Using Web Data

WordNet [73] is a widely used lexical resource with widely recognized limitations such as

the general lack of domain-specific terms and the limited coverage of useful relations (e.g.,

Cause, Part-of, etc.). This section describes our 2004 proposal [89] for a set of large-scale

WordNet extensions made possible by our Web-based information extraction architecture.

The contributions of this section are as follows:

1) We describe how the Web-based information extraction architecture at the core of

this thesis and especially the subclass extraction module previously described in this chapter

can be used to augment the WordNet IS-A hierarchy using Web data.

2) We describe two assessment methods, baseline assessment and collective assessment,

which are used to evaluate candidate instances of the IS-A relationship. We show that

collective assessment improves upon the performance of the baseline assessment method.

3) We describe a set of preliminary experiments and report on estimates of how long it

would take our system to complete a large scale WordNet extension.

The rest of this chapter is organized as follows: we start with an overview of our system,

we then describe in detail how candidate IS-A links are generated and validated using Web

data, we report on a set of preliminary experiments and give our estimates of how long it

would take to complete a large scale WordNet extension; finally, we discuss relevant related

work.

3.6.1 Proposed Extensions and System Overview

In this section we give an overview of the proposed WordNet extensions and briefly describe

the steps of our solution (see Figure 3.1).

We focus on the following two types of extensions (see Table 3.7 for examples):

a) augmenting WordNet’s IS-A hierarchy with links between known concepts and novel

concepts: e.g., given the concept segment1, we identify descendants such as marketSegment0.

b) augmenting WordNet’s IS-A hierarchy with missing links among known concepts:

e.g., given the concept domesticAnimal0, we identify corresponding descendants such as

cow0.

39

Table 3.7: Examples of IS-A Links Automatically Obtained from Web Data (additional

examples can be see in Appendix A.1).

Type of Extracted IS-A Link Concept Pair

Missing IS-A Link (herbivore0, equine0)
Between Known Concepts (domesticAnimal0, cow0)

(endoparasite0, tapeworm0)
(endoparasite0, hookworm0)

Known Concept ← Novel Concept Link (segment1, marketSegment0)
(animal0, forestAnimal0)
(construction4, tunneling0)

(construction4, paving0)
(psychologist0, neuropsychologist0)

(endoparasite0, whipworm0)

Our system starts with a seed set of target WordNet concepts - in the following we

describe how such concepts are chosen and then describe the WordNet extension process.

Seed WordNet Concepts

Based on a brief initial analysis, we imposed the following conditions on a seed target

concept:

a) The concept must have k or fewer descendants (not including named instances) - in

our experiments, we used the experimentally set value k = 10. Focusing on concepts with

few descendants (e.g., domesticAnimal0
2) is more likely to result in the addition of new

IS-A links.

b) The first term in the concept’s synset must have k′ or less senses (in our experiments

we used k′ = 4). The proliferation of senses for some words in WordNet is a well documented

problem - we noticed that in many cases the same word is used to name two different

concepts that are highly related (even subclasses of the same parent concept). The WordNet

project statistics show that on average WordNet terms have 2 senses, which means that this

condition does not significantly reduce the number of potential candidate target concepts

2The examples in this chapter are based on the 2004 version of WordNet - the team behind WordNet has
recently released a more complete version in which some of the classes listed in this chapter have more
complete hyponym lists.

40

Figure 3.1: Augmenting WordNet’s IS-A Hierarchy Using Web Data. Given a target

concept, its most common name is used to extract and assess subclass terms. The extracted subclass

terms are then used to propose concept-level IS-A links that are subsequently assessed. The WordNet

IS-A hierarchy is augmented with links between known and novel concepts as well as missing links

among known concepts.

41

but merely ensures that we eliminate a source of ambiguity.

c) When a concept that satisfies the above conditions is added to the seed set, its

descendants are added as well (with the exception of those not meeting condition b)).

In the following we describe how novel IS-A links are identified from Web data starting

with the set of seed concepts.

System Overview

Given a target concept (e.g., herbivore0), the system chooses the first synonym in the

corresponding synonym set as the target term (e.g., herbivore). The choice is motivated

by the fact that the terms in a WordNet synset are ordered by frequency in use, which

means that the first term represents the most commonly used name for the current concept.

An overview of the WordNet extension process can be seen in Figure 3.1. The system

starts with a concept seed set: for each concept, it extracts and assesses a set of subclass

terms. Each extracted subclass term is mapped to a set of WordNet concepts as follows: the

novel terms are mapped to newly created WordNet concepts and the terms already in the

WordNet dictionary are mapped to the corresponding sets of WordNet senses. The system

then establishes the set of IS-A links between the seed WordNet concepts and the set of

WordNet concepts corresponding to mined subclass terms. This step includes creating IS-A

links between seed concepts and novel concepts as well as augmenting the IS-A hierarchy

with missing links among existent WordNet concepts. Our system uses two assessment

methods for concept-level IS-A links: baseline assessment and dependency-based collective

updates.

In the following, we describe this process in more detail.

3.6.2 Extracting and Assessing Subclass Terms

Given a target term, the system uses a version of the subclass extraction module described

earlier in this chapter in order to extract candidate subclass terms in the form of simple

noun phrases (e.g., “physicist”) and two types of complex noun phrases: compound nouns

(e.g., “car service”) and complex noun phrases containing objective adjectival modifiers (e.g.,

42

“urban area”, “electric car”). The system discards noun phrases with subjective adjectival

modifiers (e.g., “good scientist”) - for this purpose we rely on a previously compiled list

of modifiers: starting with a seed set of subjective words (e.g., “good”, “bad”, etc.), we

iteratively expand the set using synonym and antonym information culled from WordNet.

This methodology has been used in many NLP projects - an alternative, but much more

expensive way to distinguish between subjective and objective modifiers is to use Turney’s

Web-based algorithm (as described in Chapter 5).

The candidate terms are then assessed using a slightly modified version of the subclass

assessment module described earlier in this chapter (see subsection 3.6.5 for a brief discussion

of these modifications). The assessed terms with corresponding probabilities p ≥ 0.8 are

used to propose novel IS-A links as described in the following.

3.6.3 Generating and Assessing Concept-Level IS-A Links: Baseline Assessment

Each novel subclass term is mapped to a newly created WordNet concept (e.g., “car ser-

vice” is mapped to carService0). Each subclass term already in the WordNet dictionary is

mapped to the corresponding set of WordNet synsets (e.g., “horse” is mapped to {horse0,

horse1}).

Given a seed concept c and a mined subclass term t, let c′ denote one of the concepts

to which t is automatically mapped. For all such c and c′, the system assesses all potential

relationship instances isA(c′, c) (e.g., isA(horse0, domesticAnimal0)). In the following, we

describe the first of the two assessment methods used by our system, baseline assessment.

Given a WordNet concept c, we characterize it using the following descriptions:

• Let d(c) denote a set of terms that contains the first (and if it exists, the second)

synonym in c’s WordNet synset. For new concepts, d(c) simply contains the newly

mined term.

• Let d′(c) denote a set of terms that contains a) the first synonym in the c’s synset,

b) either the second synonym in c’s synset or the first synonym in c’s parent’s synset.

For new concepts, d′(c) simply contains the newly mined term.

43

In order to assess a potential instance isA(c1, c2) (where c1 and c2 are WordNet concepts)

our system proceeds as follows: for each ti in d′(c1) and tj in d(c2), the system computes

the probability that ti is a subclass term for tj . These probabilities are then combined to

yield a final probability associated with isA(c1, c2) as follows:

p(isA(c1, c2)) =

|d′(c1)|∑

i=0

|d(c2)|∑

j=0

p(isA(ti, tj))

|d′(c1)| ∗ |d(c2)|)
(3.1)

As described in the Results section (subsection 3.6.5), the precision of the baseline

assessment method is relatively good but the recall is low. In the following, we describe a

method for increasing our system’s recall.

3.6.4 Generating and Assessing Concept-Level IS-A Links: Collective Assessment

In order to improve its recall, the system uses dependency information (as described below)

in order to adjust the initial probabilities assigned to potential IS-A instances: correct

instances whose initial probability was low but that have enough “support” from related

IS-A instances of which we are sure should see their probability boosted. In the following,

we describe the dependency information used by our system together with the dependency-

based probability update process.

Concept-level dependencies

Our system will build a set of graphs G =< V,E > that capture the dependencies among

related potential IS-A instances - these dependencies will be expressed in terms of depen-

dencies among concepts. We make use of the following concept-level dependency functions:

• isAWN (ci, cj) is a function that checks whether ci is a descendant of cj with respect

to WordNet. The function returns True if and only if:

1) ci is a descendant of cj in the WordNet IS-A hierarchy or

2) ci and cj are compound noun phrases such that I) ci and cj have the same head

noun and II) the modifiers in ci and cj are names of concepts related by means of a

44

IS-A relationship with respect to WordNet.

An example of such an instance isAWN (ci, cj) is isAWN (limousineService0, carService0).

If none of the conditions above is met, the function returns False.

• sibling(ci, cj) returns True if and only if if ci and cj are siblings in WordNet and False

otherwise.

• similar(ci, cj) is a function whose value is determined as follows: if ci and cj co-occur

as part of an enumeration or conjunction pattern in k sentences previously extracted

by our system from the Web, we compute the estimate SimPMI(ci, cj) as follows:

SimPMI(ci, cj) =
k

numPatterns(ci) ∗ numPatterns(cj)
,

where numPatterns(ci) and numPatterns(cj) denote the number of sentences con-

taining instantiated enumeration or conjunction patterns that include ci or, respec-

tively, cj . If the obtained value is higher than a given treshold t, the similarity function

returns True, otherwise it returns False. The threshold t is automatically estimated

using a small set of seed similar and dissimilar concepts obtained from WordNet (two

concepts are considered similar if they are siblings in the IS-A hierarchy).

The concept-level dependencies described above are used to determine dependencies

among potential IS-A instances that are represented by dependency graphs as seen below.

Building Dependency Graphs

Given each target concept, let c represent its ancestor of maximum height that is also a

target concept (if no such ancestor exists, c is simply the original target concept.) Let I

denote the set of mined concept-level IS-A instances corresponding to c and its descendants.

For each target concept c and instance set I, the system builds a dependency-graph

G =< V,E > as follows:

a) ∀i ∈ I s.t. p(i) > 0.5, add vi to V .

45

Figure 3.2: Example of Partial Neighborhood for Instance isA(whipworm0, endoparasite0).

Solid lines denote neighbors containing similar concepts (e.g., whipworm0 and tapeworm0) while

the dotted line denotes a neighbor related to the vertex of interest by means of a background IS-A

relationship (isAWN (endoparasite0, parasite0)).

b) ∀i, i′ ∈ I, i = isA(c1, c2), i′ = isA(c3, c4) s.t. p(i) > 0.5, p(i′) > 0.5, add an undirected

edge between vi and vi′ to E (G’s edge set) if and only if i and i′ satisfy one of the following

condition sets: 1) c3 = c1, isAWN (c4, c2) = True, 2) c3 = c1, isAWN(c2, c4) = True, 3)

c3 = c1, similar(c4, c2) = True, 4) c3 = c1, sibling(c4, c2) = True.

These condition sets define the immediate neighborhood of a given vertex (see Figure 3.2

for an example). Each vertex can have one of two labels: True or False. Intuitively, the

label of each node is related to the label of nodes in its immediate neighborhood - in the

following, we introduce a set of neighborhood features that collectively influence the given

node’s label.

Neighborhood Features

Given the vertex vi corresponding to the IS-A instance i = isA(c1, c2), let Ni denote its

corresponding neighborhood. Dependencies between the label of a node and the labels

associated with nodes in its neighborhood are used to generate the set of neighborhood

features that influence the value of a label’s node (Table 3.8 contains the features found

to be the most useful). Since we are highly confident in some of the prior probabilities (for

46

Table 3.8: Examples of Neighborhood Features For Vertex vi, where i = isA(c1, c2).

Notation: vi,vj = graph vertices, Ni = vi’s neighborhood, c1, c2,cm = concepts, p0(j) = the initial

value of the probability that j is a correct IS−A instance, T = True, t, t′, t′′ = thresholds.

Feature Condition

f0(l(vi) = T) = 1 iff ∃ vj ∈ Ni s.t. j = isA(cm, c2), p0(j) > 0.9, isAWN (c1, cm).

f1(l(vi) = T) = 1 iff ∃ vj ∈ Ni s.t. j = isA(c2, cm), p0(j) > 0.9, isAWN (c1, cm).

f2(l(vi) = T) = 1 iff ∃ M ≥ t nodes vj ∈ Ni s.t. j = isA(cm, c2), p0(j) > 0.9, isAWN (cm, c1).

f3(l(vi) = T) = 1 iff ∃ M ′ ≥ t′ nodes vj ∈ Ni s.t. j = isA(cm, c2), p0(j) > 0.9, sibling(cm, c1).

f4(l(vi) = T) = 1 iff ∃ M ′′ ≥ t′′ nodes vj ∈ Ni s.t. j = isA(cm, c2), p0(j) > 0.9, similar(cm, c1).

example, mined IS-A instances with probabilities greater than 0.9 are likely to be correct),

we use the corresponding instances in order to compute the feature functions.

The thresholds in Table 3.8 can be either absolute or represent percentages of the neigh-

borhood’s size. In our experiments, the neighborhoods were relatively small and so experi-

mentally set absolute thresholds worked fine.

Update Equation for Node Label Probability

Given a set of prior probabilities associated with each possible node label, the system

iteratively updates these probabilities based on a) the value of this probability computed in

the previous iteration and b) the labels of the other nodes in its neighborhood. As mentioned

above, we are highly confident in some of the prior probabilities (those over 0.9) and so we

focus on updating the probabilities of the mined instances whose prior probabilities are

lower than 0.9.

Given node vi with neighborhood Ni and current label L, the probability that vi has

label L (P (l(vi) = L)) is updated from iteration to iteration as follows:

P (l(vi) = L)m+1 =
P (l(vi) = L)m ∗ (sup(vi, L)m)

P (l(vi) = L)m ∗ (sup(vi, L)m − sup(vi, L′)m) + sup(vi, L′)m
, (3.2)

where sup(vi, L) and sup(vi, L
′) denote the neighborhood support for the two possible

labels of node vi and m, m + 1 denote the 2 consecutive iterations. This equation is a

modified version of the update equation used in the relaxation labeling framework described

47

in Chapter 5.

The system stops when the set of most likely labels doesn’t change from iteration to

iteration.

Neighborhood Support

The support function computes the probability of each label for node vi based on the labels

of nodes in vi’s neighborhood Ni.

Let Ak = {(vj , Lj)|vj ∈ Ni} , 0 < k ≤ 2|Ni| represent one of the potential assignments of

labels to the nodes in Ni. Let P (Ak)(m) denote the probability of this particular assignment

at iteration m. The support for label L of node vi at iteration m is :

sup(vi, L)(m) =
2|Ni|∑

k=1

P (l(vi) = L|Ak)(m) ∗ P (Ak)(m)

We assume that the labels of vi’s neighbors are independent of each other (this assump-

tion is only made in order to allow for a simple combination function - the labels of these

neighbors are in fact related and a more complicated function can be used):

sup(vi, L)(m) =

2|Ni|∑

k=1

P (l(vi) = L|Ak)(m) ∗

|Ni|∏

j=1

P (l(vj) = Lj)(m)

Every P (l(vj) = Lj)(m) term is the estimate for the probability that l(vj) = Lj (which

was computed at iteration m using the update equation, as seen above).

The P (l(vi) = L|Ak)(m) term quantifies the influence of a particular label assignment to

vi’s neighborhood over vi’s label - in the following we describe how this term is computed:

Given node vi with neighborhood Ni and neighborhood boolean feature functions f1, ...

fk, we have:

P (l(vi) = L|Ak)(m) =

k∑

t=1

ft(L) ∗ wt

where w0, ...wk are experimentally set weights that sum up to 1 and reflect the relative

importance of the various types of neighborhood features.

48

3.6.5 Preliminary Results and Completion Estimates

This section describes our preliminary WordNet extension results and offers an estimate

of how long it would take to complete a more ambitious WordNet extension. The most

expensive part of the WordNet extension process is repeatedly issuing queries to the Google

search engine API. In order to reduce the number of needed search engine queries, we use

the following settings:

a) Given each seed term, we use 2 extraction rule templates to generate extraction rules.

b) When assessing each subclass term we use only 2 discriminators instead of the entire

set of discriminators.

Tables 3.9 and 3.10 contain the results of enriching the WordNet IS-A hierarchy with

IS-A links between seed concepts and novel concepts as well as with missing links among

existent concepts. The seed set contains 200 concepts; on average, the system extracts 5-6

new links per seed concept if the baseline assessment method is used and 7-8 new links per

seed concept if the collective assessment method is used as well. As we can see from the

result tables, most of them are links between seed concepts and newly created WordNet

concepts, rather than missing links among WordNet concepts.

Results: IS-A Links between Existent and Novel Concepts

Table 3.9: Results: Augmenting the IS-A Hierarchy With Links Between Existent and

Novel Concepts. The Collective Assessment step increases both recall and precision.

Method Precision Recall Avg. Yield Total
Per Target Concept Yield

BaselineAssessment 78% 50.6% 5-6 1141

CollectiveAssessment 82% 69.3% 7-8 1563

In order to evaluate the performance of our system we selected 20 target concepts and

proceeded as follows:

a) Given each target concept, we collected all mined potential IS-A links corresponding

to this concept (at all probability levels). We had a human judge annotate them as correct

or incorrect.

49

b) The precision of the system is measured as the ratio between the number of correct

IS-A links proposed by the system and the sum of the correct and incorrect IS-A links.

c) Since we do not have access to the true set of all IS-A links that could be mined from

Web text for a set of target concepts, we evaluate the recall of the system as the percentage

of the correct (mined) IS-A links (regardless of the associated probabilities) that is retained

as part of the system’s final output. This recall measure is equivalent with the ratio between

the number of true positives and the sum of the number of true positives and false negatives,

which is commonly used in information retrieval applications.

The collective assessment method increased the number of extracted IS-A links - the

overall precision of the extracted links also improves.

Results: Missing IS-A Links Among Existent WordNet Concepts

Table 3.10: Augmenting the IS-A Hierarchy With Missing Links Among Existent Con-

cepts. The Collective Assessment step increases both precision and recall.

Method Precision Recall Yield

BaselineAssessment 74% 44.4% 32

CollectiveAssessment 77% 70.8% 51

The gold standard for this set of results is obtained in a manner similar to that described

above; the precision and recall measures are similarly computed. As above, the collective

assessment method results in increased yield and improved overall precision - however, the

number of this type of IS-A links remains small.

Results: Discussion

Although the precision and recall results are promising, there is room for improvement.

The main factor contributing to the error rate is the ambiguity of the used discriminators

coupled with the fact that only two discriminators are used. Additional discriminators

would reduce the overall ambiguity but they would increase the query requirement. The

recall suffers because of limited local context information that can be used to confidently

50

propose a IS-A link: some target WordNet concepts have only one name, a short definition

or a parent concept corresponding to an abstraction rarely mentioned in text - since we focus

on expanding concepts with few or no descendants, the sparsity of such context information

cannot be compensated by taking into account the concept’s hyponyms (descendants).

A significant obstacle was represented by the number of discovered compound terms that

contained subjective adjectival modifiers and had to be discarded (“fast animals”, “angry

animals”, “healthy animals”) - this meant that a lot of the discovery time and extraction

queries were spent on finding unusable terms, which greatly impacted the number of usable

terms available to the assessment step. This observation was one of the many related

experimental results that led other members of our group to recently introduce an in-house

search engine [15], so that similar research efforts wouldn’t have to contend with using

time-consuming commercial search engine queries. The resulting in-house search engine

will allow the experiments proposed in this chapter to be executed in a much shorter period

of time - one of the members of our group is investigating a similar set of experiments using

this newly available resource.

3.6.6 Estimates: Completing a Large-Scale WordNet Extension

Starting with a set of 200 seed WordNet concepts and using the settings described above, we

found that the query use per target concept was as follows (see Table 3.11 for a summary):

Table 3.11: Average Number of Search Engine Queries Per System Component and

Target Concept.

WordNet Extension System Component Avg. Query Requirement
per Target Concept

Subclass Term Extraction 22

Subclass Term Assessment 80

Baseline Assessment of Concept-Level IS-A Instances 60

Collective Assessment of Concept-Level IS-A Instances 0

Total 162

a) Extracting subclass terms required approximately 22 queries per target concept.

b) Assessing subclass terms required approximately 80 queries per target concept.

51

c) The baseline assessment of concept-level IS-A instances required approximately 60

additional queries per target concept. In this particular implementation, the collective

assessment module did not use any additional queries - more computation intensive versions

of this module can use additional Web queries in order to discover additional dependencies

among extractions.

In conclusion, the system needed approximately 162 queries per concept and, as previ-

ously mentioned, it was able to extract 7-8 new concepts (on average) for each seed concept.

The described WordNet extension can be parallelized since most of the concepts in

the seed set can be independently expanded and the proposed expansions for a particular

concept can be assessed independently from those for other concepts. The exceptions are

represented by concepts whose small number of descendants have also been included in the

seed set - as described in subsection 3.6.4, each such concept, together with its descendants,

is expanded and the corresponding potential IS-A links are evaluated independently of other

concepts in the seed set.

WordNet contains 80,000 concepts named by a noun phrase; in order to double the size

of this concept set, we would need a seed set of approximately 10,000 concepts and 1620000

queries. We had access to a Google key that allows the use of 100,000 queries per day -

expanding each target concept takes, on average, approximately 10 minutes and we found

that using 4 machines resulted in no noticeable delays when querying Google (compared

with the use of 1 machine). In conclusion, we could expand around 576 concepts a day,

which leads to a completion estimate of 17 days (this estimate assumes that the acquisition

rate of 7-8 subclass concepts per seed concept holds).

3.6.7 Related Work

Work completed prior to ours (e.g., [3], [41]) had already started addressing the problem

of coverage gaps in WordNet. For example, [3] addressed the problem of augmenting the

set of core WordNet relations by introducing topic signatures that annotate concepts with

the name of a topic of interest. [41] investigated the possibility of augmenting WordNet’s

vocabulary by extracting novel compound terms (e.g., “car service”) from domain-specific

52

texts. This latter paper was the most relevant to our work; the proposed extensions were

limited and due to the small size of the domain-specific text corpus, the set of features used

to evaluate candidate IS-A links was quite large while the basic evaluation mechanism was

quite complicated. Since our system leverages the large quantity of available Web text,

it is able to obtain good results with a much smaller feature set and much simpler basic

assessment mechanism.

Additional related work completed in the same time as ours as well as subsequent investi-

gations of large-scale WordNet extensions validate our approach. Inspired by KnowItAll,

a recent Google paper [83] takes advantage of the Google infrastructure in order to augment

WordNet with a large number of concept instances as well as with alternative concept defini-

tions (WordNet glosses). Another recent paper [85] that follows in KnowItAll’s footsteps

discusses two methods for ontologizing semantic relations mined at the term level from Web

text. While there are similarities between our work and that described in [85] (e.g., both

attempt to extend WordNet using relation instances extracted from the Web, both make

use of relation-specific lexico-syntactic patterns), there are also many differences: e.g., [85]

is concerned with different conceptual relations (Part-Of and Cause) and it uses different

feature sets and methods for proposing concept-level instances of target relations.

53

Chapter 4

LEARNING RELATION PROPERTIES

4.1 Introduction

This thesis explores the automatic extraction of detailed domain models from Web text: in

addition to extracting subclass and related class information, we are also interested in the

automatic acquisition of relation meta-properties (e.g., transitivity) and dependencies among

relations (e.g., entailment). In addition to being integral to a comprehensive model of a

given domain, this information is useful in many applications such as question answering

or information extraction systems. In the past, ontology engineers have manually provided

this information for each ontology relation of interest; given the recent interest in automati-

cally building large ontologies from textual data, the need for automated methods becomes

clear. In this chapter, we describe how relations can be labeled with meta-property and de-

pendency labels using instance information in conjunction with informative lexico-syntactic

patterns.

4.1.1 Contributions

The contributions of this chapter are as follows:

1. We show that the WIE architecture can be instantiated and adapted to the problem

of automatically learning relation properties from Web text (see subsection 4.2.1).

2. We report on encouraging preliminary results showing that relation meta-properties

and interesting dependencies among relations can be acquired from Web text data (see

Section 4.5).

3. We show that relation meta-properties and especially simple dependencies among

relations can be used to extract implicit factual information from text corpora.

The rest of the chapter is organized as follows: Section 4.2 introduces the main task

at hand and gives an overview of our solution, Section 4.3 and Section 4.4 show how re-

54

lation properties as well as inter-relation dependencies can be learned using a mixture of

relation instance data and informative lexico-syntactic patterns, Section 4.5 describes the

corresponding experimental results, Section 4.5.3 shows how the automatically acquired in-

formation can be used in an information extraction task, Section 4.6 describes related work

items and finally, Section 4.7 describes on-going work and outlines some future work items.

55

CheckBinaryRelationProperty(R, P, PatternTemplates, f,SE)

1 p(hasf (R,P))← verifyPropertyUsingFormula(R, f, SE);

2 p(hasp(R,P))← verifyPropertyUsingPatterns(R,PatternTemplates, SE);

3 p(has(R,P))← combine(p(hasf (R,P)), p(hasp(R,P)));

Figure 4.1: Overview of Property Learner. Notation: R = binary relation, P = property

of interest, f = formula corresponding to the property of interest, PatternTemplates = set of

informative lexico-syntactic pattern templates, SE = search engine

4.2 Overview

This section describes the main task addressed in this chapter and outlines our solution.

Task

Given a binary relation R and a property P , decide whether R has property P .

Solution

In the following, we give a brief description of our solution to this problem (see Figure 4.1).

Our system assumes access to a search engine SE that can a) retrieve a set of instances

for any given relation R and b) retrieve hitcounts for strings of interest. This assumption

is reasonable because KnowItAll and WIE can be used to retrieve instances of binary

relations (see remarks in Chapter 2) and existent commercial search engines used by WIE

compute hit counts for strings of interest. Additionally, the TextRunner relational search

engine [15] developed over the past year by members of our research group has the dual

functionality mentioned above as well.

We compiled a comprehensive list of binary relation properties (see Table 4.1) and no-

ticed that they can be characterized by simple first order logic formulas involving only the

predicates R(x, y) and Equal(x, y) (see subsection 4.2.2 for more details).

56

Given a binary relation R, a property of interest P with a corresponding FOL formula

f and a search engine SE, the system first checks whether R has property P by evaluating

f using the available set of relation instances.

The system then uses a complementary source of information in the form of generic

lexico-syntactic patterns in order to estimate the probability that R has property P .

A final probability estimate is derived on the basis of these two probability values.

In the following, we discuss the relationship between the property learner and the basic

WIE architecture and describe the property learner components in more detail.

4.2.1 Using WIE Ideas to Learn Relation Properties

As we can see from the above method description, the property learner adapts the WIE

architecture for the problem of automatically learning relation properties.

The property learner uses a search engine to extract relation instances and to compute

corpus statistics that reflect the use of property-specific lexico-syntactic patterns instanti-

ated with the information pertaining to the relation of interest. Two assessment steps (one

using relational information and the other using lexico-syntactic features) are employed in

order to determine the probability that relation R has property P of interest.

Current work items include testing a collective assessment step which takes into account

the dependencies among the various properties as well as the dependencies among multiple

relations in order to improve the recall of our method.

4.2.2 Binary Relation Meta-Properties

As we can see in Table 4.1, interesting and useful properties of binary relations are described

by constraints which can be expressed using FOL (first order logic) formulas - in our case,

Horn formulas.

These formulas only use R(x, y) and Equal(x, y); in order to check whether R(x, y)

holds, we use the set of instances provided by the available search engine. Equal(x, y) is

true if the strings x and y denote the same concept and false otherwise. In our case, given

x and y, Equal(x, y) has an associated probability denoting how likely x and y are to name

57

Table 4.1: Examples of Binary Relationship Properties together with Corresponding

Formulas. Notation: R ⊆ X ×X , R′ ⊆ X × Y = binary relations, Equal(x, y) = equality relation.

Note: For brevity, we use the notation ∀x ∈ X ; a well-formed formula would include an additional

elementOfX()predicate: ∀x, elementOfX(x)⇒ R(x, x).

Relation HasProperty Formula

R ⊆ X ×X Is-Reflexive ∀x ∈ X,R(x, x) (see Note in caption)

R ⊆ X ×X Is-Transitive ∀x, y, z ∈ X,R(x, y) ∧R(y, z)⇒ R(x, z)

R ⊆ X ×X Is-Symmetric ∀x, y ∈ X,R(x, y)⇒ R(y, x)

R ⊆ X ×X Is-Anti-symmetric ∀x, y ∈ X,R(x, y) ∧R(y, x)⇒ Equal(x, y)

R ⊆ X ×X Is-Asymmetric ∀x, y ∈ X,R(x, y)⇒ ¬R(y, x)

R′ ⊆ X × Y Is-Injective ∀x, y, z ∈ X,R′(x, z) ∧R′(y, z)⇒ Equal(x, y)

R′ ⊆ X × Y Is-Surjective ∀y ∈ Y,∃x ∈ X,R′(x, y)

R′ ⊆ X × Y Is-Left-total ∀x ∈ X,∃y ∈ Y,R′(x, y)

R′ ⊆ X × Y Is-Total ∀x, y ∈ X,R′(x, y) ∨R′(y, x)

R′ ⊆ X × Y Is-Bijective (∀x ∈ X,∃y ∈ Y,R′(x, y))∧
(∀y0 ∈ Y,∃x0 ∈ X,R′(x0, y0))∧
(∀x1, y1, z ∈ X,R′(x1, z) ∧R′(y1, z)⇒ Equal(x1, y1))

R ⊆ X ×X Is-EquivalenceRelation (∀x ∈ X,R(x, x))∧
(∀x1, y1, z1 ∈ X,R(x1, y1) ∧R(y1, z1)⇒ R(x1, z1))∧
(∀x2, y2 ∈ X,R(x2, y2)⇒ R(y2, x2))

R ⊆ X ×X Is-PartialOrder (∀x ∈ X,R(x, x))∧
(∀x1, y1, z1 ∈ X,R(x1, y1) ∧R(y1, z1)⇒ R(x1, z1))∧
(∀x2, y2 ∈ X,R(x2, y2) ∧R(y2, x2)⇒ Equal(x2, y2))

R ⊆ X ×X Is-TotalOrder (∀x ∈ X,R(x, x))∧
(∀x1, y1, z1 ∈ X,R(x1, y1) ∧R(y1, z1)⇒ R(x1, z1))∧
(∀x2, y2 ∈ X,R(x2, y2) ∧R(y2, x2)⇒ Equal(x2, y2))

R′ ⊆ X × Y Is-Functional ∀x ∈ X, y, z ∈ Y,R′(x, y) ∧R′(x, z)⇒ Equal(y, z)

R′ ⊆ X × Y Is-Function (∀x ∈ X, y, z ∈ Y,R′(x, y) ∧R′(x, z)⇒ Equal(y, z))∧
(∀x1 ∈ X,∃y1 ∈ Y,R(x1, y1))

R′ ⊆ X × Y Is-1-to-1 ∀x, x1, x2 ∈ X, y, y1 ∈ Y ,
(R′(x, y) ∧R′(x, z)⇒ Equal(y, z))∧
(R′(x1, y1) ∧R′(x2, y1)⇒ Equal(x1, x2))

R′ ⊆ X × Y Is-1-to-many ∀x ∈ X,∃y, y1 ∈ Y,¬Equal(y, y1) ∧R(x, y1) ∧R(x, y2)

58

the same concept 1.

Our system checks whether a given relation R has property P by automatically checking

the truth of the formula associated with P , as seen below.

Table 4.2: Examples of Relations, Corresponding Meta-properties and Dependencies.

Relation Property Examples
or Dependency

Transitive locatedSouthOf ⊆ Region ×Region, contain ⊆ Substance× Substance

Functional senatorOf ⊆ (Person× Y ear)× State
representativeOf ⊆ (Person× Y ear)× State

1-to-1 presidentOf ⊆ (Person× Y ear)× Country

Symmetry siblingOf ⊆ Person× Person, adversaryOf ⊆ Company × Company

Transitive-through [locatedIn ⊆ City ×Region, partOf ⊆ Region ×Region]

Entailment [isFullOf ⊆ Substance× Substance, contain ⊆ Substance× Substance]

Equivalence [adversaryOf ⊆ Company × Company, enemyOf ⊆ Company × Company]

4.3 Instance-based Assessment of Relation Properties

Given a binary relationship R ⊆ X × Y and a relational property P , we can intuitively

check whether R has property P by evaluating the formula f associated with P using the

set of relation instances obtained from the available search engine SE.

4.3.1 Generating and Evaluating Formula Groundings

Given relation R and formula f corresponding to property P (where f has been converted

to CNF), the system first generates a sample set G of formula groundings for f as follows:

a) Let I represent the set of R instances obtained from the search engine SE (we used the

TextRunner search engine that returns a set of relation instances together with associated

probabilities).

b) Let G represent the set of possible formula groundings obtained by considering all

the possible combinations of variable values for the set of variables in the formula.

Given a relation R, a formula f in CNF and a particular grounding g of f , we compute

the probability p(f(g)) corresponding to f being satisfied by g as follows:

1We assume that an entity resolution algorithm has been applied.

59

• Each disjunction in f is satisfied if any of its literals is satisfied - we choose the Noisy-

Or combination function to model this behavior: the probability of a disjunction in f

is set to 1−Πi=k
i=0(1− p(li)), where p(li) is the probability associated with literal li.

• The probability that the given grounding satisfies the formula is p(f(g)) = Πi=m
i=0 pi,

where pi is the probability associated with the i-th disjunction in f .

A grounding g whose associated probability is p(f(g)) > 0.5 is referred to as a true

grounding - all other groundings are referred to as false groundings.

Example Given binary relation R, the transitivity property with corresponding formula

ftrans (see Table 4.1) and a set of values g = {x,y,z} s.t. p(R(x, y)) = 0.82, p(R(y, z)) = 0.90,

and p(R(x, z)) = 0.85, we have p(ftrans({x, y, z})) = p((¬R(x, y) ∨ ¬R(y, z) ∨ R(x, z))) =

1− 0.82 ∗ 0.90 ∗ 0.15 = 0.8893.

As it is to be expected, the method described will not work if the set of known instances

for each relation is small (we address this issue later in the chapter).

4.3.2 Verifying Property-specific Formulas Using Instance Information

Let G+ and G− denote the sets of true and, respectively, false groundings of f .

Given a relation R and a property P with corresponding formula f (in CNF), we compute

the following score:

score(hasf (R,P)) =

∑

g∈G+

p(f(g))

∑

g∈G+

p(f(g)) +
∑

g′∈G−

p(f(g′))
. (4.1)

This score corresponds to the relative support offered by the instance information to the

hypothesis that R has property P . If this score is greater than a threshold t, the system

decides that the relation has the property of interest with probability p - the threshold and

p are estimated on small development sets.

Trivial formula satisfiability

In our case, the binary relations have domain and range sets that are relatively large

(the set of all people, the set of all companies, etc.) and therefore the relations are relatively

60

sparse. A random pair of elements (x, y) where x ∈ X and y ∈ Y is more likely than not to

correspond to a negative instance of R - in other words, R(x, y) will not hold. We inspect

the formulas in Table 4.1 and notice that the left-hand side of the implications is likely to

be false, which means that the formula will be trivially true.

Given a binary relation R together with a set of complete instances and a property

formula f , f ’s trivially true groundings are found in addition to the non-trivially true

groundings and the false groundings. When only a sample of R’s instances is available, the

trivially true groundings may cause the system to mistakenly infer that R has property P .

In order to avoid this problem, we discard the groundings which render the left-hand side

of the implication(s) in a given formula false and compute the support score as follows:

Let G+
n denote the set of non-trivial true groundings of f . We have:

score(hasf (R,P)) =

∑

g∈G+
n

p(f(g))

∑

g∈G+
n

p(f(g)) +
∑

g′∈G−

p(f(g′))
. (4.2)

4.4 Assessing Relation Properties With Instance and Lexical Pattern Data

Table 4.3: Examples of Patterns Correlated With the Presence or Absence of the

Functional Property. Notation : R ⊆ X × Y = binary relation, y, y1, y2 = elements of Y ,

noPrep()=function that eliminates a preposition at the end of a relation name, sg(),pl() = singu-

lar/plural forms, enum(y, y′) = enumerations containing elements of Y .

Relation Functional Pattern Example

capitalCityOf ⊆ City × Country yes R (*) sg(Y) capital city of

the country

capitalCityOf ⊆ City × Country yes sg(Y)’s noPrep(R) the country’s

capital city

capitalCityOf ⊆ City × Country yes y’s noPrep(R) France’s capital city

motherOf ⊆ Person× Person no pl(Y)’s noPrep(R) people’s mother

motherOf ⊆ Person× Person no R (*) pl(Y) mother of these people

motherOf ⊆ Person× Person no R (*) enum(y, y′) mother of Joe and
Laura

In addition to instance information a system can use lexico-syntactic patterns that are

indicative of the presence or absence of a particular property. For example, consider the

61

functional relation capitalCityOf(City,Country): we notice that it occurs in contexts such

as “the capital city of this country”, “the country’s capital city” but very rarely in contexts

such as “capital city of these countries”.

4.4.1 Pattern Templates

Let Templates denote a set of pattern templates that generate patterns we would expect

to see instantiated in text if a relation had a particular property (or lacked that property).

An example of a Functional pattern template for a binary relation R with argument types

X and Y is: T = sg(Y)|instanceOf(Y)’s R, where sg() is the function computing the

singular form of a given noun phrase and instanceOf(Y) indicates an element of Y . Table

4.3 contains examples of patterns generated using this template (among others).

Table 4.4: Examples of Patterns Correlated With the Presence or Absence of the

Functional Property. Notation : R ⊆ X × Y = binary relation, y, y1, y2 = elements of Y ,

noPrep()=function that eliminates a preposition at the end of a relation name, sg(),pl() = singu-

lar/plural forms, enum(y, y′) = enumerations containing elements of Y .

sg() pl() poss()

uniqMod: the, only, single, etc. nonUniqMod: a, some, another, other

first, last, second, third etc. noPrep()

enum(NP,NP ′) Adverb Connective

. , ;

Template Generation The templates were constructed as follows: starting with a pre-

defined set of primitives (such as the singular/plural functions listed in Table 4.4) and

constraints on template structure (e.g., must contain exactly 1 mention of the relation

name, must contain exactly 2 mentions of the relation name), a set of potential templates

were generated and instantiations of these templates were sought in text.

In previous work, people have shown that words or phrases can be cues for semantic

relations (for example, “R, therefore R′ “ contains the word “therefore” which is a useful

indicator of verb entailment). We use a similar idea when compiling the list of the template

primitives mentioned above for relation meta-properties:

a) For the Functional and 1-to-1 meta-properties, we take advantage of existent work on

noun countability [6] to compile a set of uniqueness modifiers and, respectively, multiplicity

62

modifiers. For example, another is a uniqueness modifier, while another is a multiplicity

modifier.

b) For the Symmetry and Transitivity meta-properties, we focus on identifying adverbs or

connectives that may be correlated with the meta-property of interest (given the previous

research, these are the types of phrases that are most likely to be useful). We started

with a list of connectives compiled from the linguistic literature and a set of non-subjective

adverbs (e.g. “wonderfully” is a strongly subjective adverb, whereas “often” is not). The

non-subjective adverbs were obtained by starting with a large list of English adverbs and

automatically discarding those morphologically related to subjective adjectives (we used

a list of strongly subjective adjectives available as a byproduct of Chapter 5, but similar

information can be easily obtained from the GeneralInquirer lexical resource [108]).

We used a small set of positive and negative examples of each meta-property and looked

on the Web for sentences containing contexts of the form R (*) connective R, R (*) adverb

R, R (*) R adverb, where R denotes a relation or without the meta-property of interest.

The connectives and adverbs that were common across relations with the meta-property

of interest (and respectively, without this meta-property) were retained. These identified

phrases were added to the list of template primitives, as mentioned above.

For each meta-property of interest, the templates found to be instantiated in text for a

small set of positive or negative meta-property examples were retained.

Appendix B.1 contains a summary of these potentially useful pattern templates.

4.4.2 Checking Meta-properties using Pattern Templates

Each template T generates a set of lexico-syntactic patterns

LP = LPR

⋃
LPX,Y,R

⋃
LPX,y,R

⋃
LPx,Y,R

⋃
LPx,y,R, where :

a) LPR corresponds to patterns involving only the name of the relation.

b) LPX,Y,R corresponds to the patterns also involving the names of conceptual classes

corresponding to a relation’s argument types.

c) LPX,y,R and LPx,Y,R involve a mixture of instance and argument type information.

d) LPx,y,R involves only instance information.

63

Table 4.3 contains examples of some of these pattern types for the functional property.

Given a relation of interest R, each template T ∈ Templates is associated with a boolean

feature fT whose value is determined based on the quantity score(T) that evaluates the

relative support for this template offered by the mentions of the relation and its argument

information in text sentences. The score is computed as described below.

Let CoocX,Y,R

⋃
CoocX,y,R

⋃
Coocx,Y,R

⋃
Coocx,y,R denote the co-occurrences involving

the relation name and relation argument information. Let numCooc denote the number of

such co-occurrences; let freq() denote the number of times a pattern or a set of patterns

are instantiated in the sentences containing such co-occurrences.

We define score(T) as :

score(T) =
freq(LPR) + freq(LPX,Y,R) + freq(LPX,y,R) + freq(LPx,Y,R) + freq(LPx,y,R)

numCooc
(4.3)

If score(T) > t = threshold, the boolean feature fT is set to 1, else it is set to 0 (the

thresholds can be estimated using a small set of positive and negative examples of the

relation property of interest).

The cooccurence information above is obtained from the TextRunner relational engine:

for example, a TextRunner tuple or fact f = [“R′′, “X ′′, “Y ′′] yields such information for R,

X and Y .

We also experimented with other ways of converting the counts for various types of

patterns into features (by having an individual feature for each pattern type), but data

sparsity led us to the cumulative count above.

The features are combined using a Naive-Bayes classifier which computes the final prob-

ability value p(hasp(R,P)).

4.4.3 Checking Meta-Properties using a Mixture of Instance and Pattern Data

The probabilities outputted by the formula-based and pattern-based classifiers can be used

to compute a final probability p(has(R,P)) based on the two sources of evidence.

Two boolean features, Ff and Fp are computed by checking whether the respective

64

probabilities are greater than 0.5 or not - if the corresponding probability is greater than

0.5, the feature is set to 1, otherwise is set to 0. The boolean features are combined using

a Naive-Bayes computation:

p(has(R,P)) = p0(has(R,P)) ∗
p(has(R,P)|Ff) ∗ p(has(R,P)|Fp)

p(Ff) ∗ p(Fp)
,

where p0 denotes the prior probability associated with the presence of the given meta-

property P . The meta-properties of interest are relatively rare and we manually initialize the

prior probabilities accordingly. The conditional probabilities are estimated using the small

sets of positive and negative meta-property examples mentioned in previous subsections.

4.4.4 Learning Interesting Dependencies Among Relations

The same mechanism used to learn relation meta-properties can be employed in order to

acquire interesting dependencies among relations transitive-through, entailment, equivalence,

etc. Such dependencies can be characterized using the same type of FOL formulas we

saw in the previous section (see Table 4.5 for examples). As previously mentioned in the

literature, lexical patterns indicative of entailment (especially verb entailment) can be used

as well [18] (we show examples of such patterns in Appendix B.1). The appendix also

contains examples of patterns corresponding to the Transitive-through relationship. Table

4.5 contains examples of commonly mentioned dependencies involving two relations, but

additional dependencies involving three or more relations can be similarly expressed and

evaluated.

Table 4.5: Examples of Dependencies together with Corresponding Formulas. Notation:

R ⊆ X × Y , R1 ⊆ X × Y , R′ ⊆ X ′ × Y ′ = binary relations, Equal(x, y) = equality relation.

Relations Dependency Formula

R ⊆ X × Y Transitive-through ∀x ∈ X, y ∈ Y, y′ ∈ Y ′, R(x, y) ∧R′(y, y′)⇒ R(x, y′)
R′ ⊆ X ′ × Y ′

R ⊆ X × Y Entails ∀x ∈ X, y ∈ Y,R(x, y)⇒ R′(x, y)
R′ ⊆ X ′ × Y ′

R ⊆ X × Y Equivalence ∀x ∈ X, y ∈ Y, (R(x, y)⇒ R1(x, y)) ∧ (R1(x, y)⇒ R(x, y))
R1 ⊆ X × Y

65

4.5 Results

This section describes our experimental results and suggests avenues for further investiga-

tion. In the following, we refer to the method which uses only instances to assess relation

properties as Baseline and to the method which uses a mixture of instance data and lexico-

syntactic data as Mixt. We found that the Baseline method works well if relation instances

are available and that the use of lexico-syntactic clues by the Mixt method significantly

improves recall if such instances are scarce or not available.

4.5.1 Results: Learning Relation Properties

In our experiments, we focus on a subset of the meta-properties in Table 4.1: transitivity,

symmetry, the functional property and the 1-to-1 property. This subset was chosen based

on repeated mentions in the natural language processing and ontology learning literature,

but additional meta-properties can be learned in a similar fashion.

Dataset Construction The preliminary experiments described in this section used a set

of 200 relations chosen from a TextRunner crawl containing a mixture of Nutrition, History

of Science and general knowledge information - the relations were annotated with corre-

sponding meta-properties by a human judge (see Table 4.2 for examples of these relations

and Appendix B.1 for the comprehensive list).

There are 16 conceptual classes denoting relation argument types; we obtained instances

of these conceptual classes using information from the TextRunner hyponym dictionary and

WordNet. If the proposed TextRunner hyponyms are proper nouns (“Bill Clinton”), we

retain them as instances. If the hyponyms for a particular concept class include very few

proper nouns, we use WordNet information to discover base concepts in the hyponym list

and allow them as well (base concepts C, such as pear1, are concepts whose only hyponyms

are proper nouns or compound noun phrases of the type modifier C).

Given the 16 classes corresponding to argument types, we populated the 200 relations

with corresponding relation instances using TextRunner queries 2. When these queries

yielded only a few or no instances for a particular relation, we used a simplified version of

2TextRunner can be accessed at http://turingc.cs.washington.edu:7125/TextRunner/

66

the KnowItAll binary predicate extraction module to identify additional instances on the

Web.

As we can see, some of the input relations take as arguments ordered pairs, which in our

case are used to model time-dependent relations - the potential properties of such relations

are verified in a similar manner with that employed for the simple binary relations.

Results and Discussion

We measure the precision and recall of our property learner - Table 4.6 shows the results

of our experiments. The Baseline method performs well if relation instances are available but

is not able to handle relations with few or no instances. The Mixt method is able to handle

some of these cases due to its use of lexico-syntactic patterns - its recall is on average 7%

higher than that of the Baseline method. We are in the process of producing an additional

set of results on higher-quality data - we will update the exact numbers accordingly, but we

expect the overall conclusion to remain valid: combining sources of evidence will enhance

the labeler’s performance.

Table 4.6: Results: Automatically Tagging Relations with Corresponding Meta-

properties. Notation: Baseline = instance-based property learning, Mixt = learning properties

with a mixture of instance- and lexico-syntactic data. The use of lexico-syntactic data leads to a 7%

average increase in recall while the average precision remains almost the same.

Property Precision(Baseline) Precision(Mixt) Recall(Baseline) Recall(Mixt)

Transitivity 81% +2% 62% +9%

Functional 73% -2% 68% +6%

1-to-1 70% +2% 54% +9%

Symmetry 84% +1% 74% +5%

Average 77% +1% 64.5% + 7%

4.5.2 The Importance of Relation Argument Types

Throughout this chapter we assume that our system takes as input a set of binary relations

with known argument types - the reason is that many relations are not properly defined,

and therefore cannot be analyzed, in their absence. For example, vice-president may name

the relation vice-president(Person, Country) or the relation vice-president(Person, Organi-

zation). These two relations have different properties: for example, a country typically has

67

only one vice-president whereas an organization may have multiple vice-presidents.

Nevertheless, we noticed as part of our experimental evaluation that the specific argu-

ment types of relations that are symmetric or transitive matter less than those of functional

or 1-to-1 relations. As part of a separate experiment, the symmetry property and transitive

property were reliably identified for relations after omitting the specific type information

(and simply declaring that each relation is defined over the Entity set). The average recall

for these two properties went up by 8%, while precision went up by 4% - upon inspection,

this dual improvement is due to the fact that more relation instances were available to the

instance-based property learner and that patterns that rely on the occurrence of the relation

name in a certain context (omitting argument type information) are useful for the meta-

properties at hand. Intuitively, much of the information about the relation’s symmetric or

transitive properties can be inferred based on the relation name (e.g., meet with, locatedIn,

relatedTo).

Omitting specific argument type information when assigning functional and 1-to-1 prop-

erty labels leads to 18% precision (albeit slightly increased recall). Overall, specific argument

type information is quite useful, although we see that symmetric and transitive relations

can be discovered even in its absence.

Using Relation Properties: Ongoing Work

Members of our research group are currently working on using relation properties as part

of the feature sets for two tasks: a) entity resolution and b) improving the performance of

open-domain information extraction (as embodied by the TextRunner system).

Intuitively, when trying to decide whether two relation descriptions refer to the same

underlying relation, having knowledge of the relations’ property profiles can be very useful:

if the two relations have different properties, they are less likely to be equivalent.

The second effort is looking at using relation property information (especially the func-

tional and 1-to-1 property information) in conjunction with other types of ontological in-

formation in order to improve the performance of information extraction in TextRunner.

Intuitively, knowing that a relation is functional or 1-to-1 is helpful for improving precision

68

and knowing that is symmetric or transitive can help improve the number of extracted

instances (hence, the recall of the system).

Table 4.7: Results: Automatically Acquiring Dependencies Among Relations.
Notation: Baseline = instance-based property learning, Mixt = learning properties with a
mixture of instance- and lexico-syntactic data. The use of lexico-syntactic data leads to a
12% average increase in recall and a 4% average increase in precision

.

Dependency Precision Precision Recall Recall
Baseline Mixt Baseline Mixt

Transitive-through 86% +4% 64% +14%

Entailment 83% +3% 68% +11%

Equivalence 73% +5% 73% +12%

Average 81% +4 % 68% +12%

Learning Interesting Dependencies

In addition to labeling relations with meta-properties, we also look at extracting dependen-

cies among relations. In our experiments, we focus on transitive-through, entailment and

equivalence (see Table 4.5). The preliminary experiments described in this section used a

set of 100 frequent, open-domain relations, obtained from a general TextRunner crawl (see

Table 4.2). The relations were annotated with dependencies of interest by a human judge.

Table 4.7 shows the results of our experiments. While the baseline method performs

well, the Mixt method’s recall is on average 12% higher than that of the Baseline method

while the precision is on average 4% higher.

4.5.3 A Task-based Evaluation for Relation Interdependencies

While relation meta-properties and inter-relation dependencies are interesting from a do-

main modeling perspective, our interest in this information is due to the following obser-

vation: information extraction systems have typically focused on extracting facts explicitly

spelled out in text but a large number of facts are implicitly stated in a given sentence,

paragraph or text corpus; such facts can be inferred from a combination of explicitly stated

facts and background rules describing the relation properties and the dependencies among

the various domain relations.

69

In this section, we describe how this scenario is used to evaluate the automatically

learned relation-specific information.

Extracting Implicit Facts from Text Corpora

Figure 4.2: Example of Implicit Factual Information.

In the following we propose a two-pass fact extraction procedure for a given text corpus.

I. A first pass extracts explicitly stated facts from each sentence in the corpus.

A relation property and inter-relation dependency learning step uses the methods de-

scribed in 4.3 and 4.4 to acquire a set of relation meta-properties and inter-relation depen-

dencies - this step focuses on frequently mentioned relations.

II. A second extraction pass examines the corpus anew, using the extracted explicit facts

and the learned relation-specific information in order to extract implicit facts. Facts can

be implicitly stated at the sentence, paragraph, article or corpus level - in our preliminary

experiments we looked at extracting implicit facts at corpus level, but the experiments can

be repeated with a focus on a specific set of articles or article paragraphs.

In these experiments we focused on concrete facts (e.g., [vitamin D, is found in, egg])

rather than abstract facts (e.g., [vitamins, are found in, foods])3.

In the following we describe how implicit facts are extracted from a body of text using a

combination of known facts, relation properties (specifically, symmetry and transitivity) and

inter-relation dependencies. For example, Figure 4.2 shows how the implicit fact [vitamin

3This terminology is consistent with that used in the TextRunner project [15].

70

D, is found in, eggnog] can be established based on the explicit facts [vitamin D, is found

in, egg] and [egg, is found in, eggnog].

4.5.4 Generating Potential Implicit Facts

Given a text corpus, potential implicit facts are generated as follows:

For each pair of entities (e1, e2) mentioned in the corpus and each relation R ⊆ X × Y ,

a potential fact f = (R, e1, e2) is generated if the following conditions are met:

a) e1 and e2 are instances of X and, respectively, Y ,

b) e1, e2 and R co-occur in at least 1 sentence or

c) e1 and R and, respectively, e2 and R co-occur in at least 1 sentence.

The above conditions ensure that the generated potential fact is well-formed (condition

a)) and try to eliminate unlikely candidates by focusing on entities and relations that co-

occur in text rather than on combinations of entities and relations that seem to have no

connection (conditions b) and c)).

4.5.5 Assessing Potential Implicit Facts

Given a collection of explicit facts F , a set of rules T describing relation meta-properties

and relation interdependencies and a potential fact f , the system finds the set of proof

trees for f in the context of F and T (in our experiments, we limit ourselves to trees of

height ≤ 3). If there are no such proof trees, the fact is considered false. The obtained proof

trees are used to instantiate a very simple Bayesian network that estimates the probability

of the potential fact f - the predictions of multiple parent nodes are combined using the

Noisy-OR combination function (this type of instantiation is common in knowledge-based

model construction frameworks). If the final probability associated with the True label for

the target fact is greater than 0.5, the fact is labeled True, otherwise it is labeled False.

4.5.6 Preliminary Results: Extracting Implicit Facts from Text Corpora

In our experiments, we used a Nutrition text corpus generated by the TextRunner system

by crawling the Web; TextRunner also performs an initial extraction of explicit facts from

71

Table 4.8: Preliminary Results: Extracting Implicit Facts in the Nutrition Domain.

Relation interdependencies prove useful in assessing potential implicit facts with high accu-
racy.

Potential Facts Size Precision Accuracy Recall

Actual Facts 176 74% 71% 64%

Non-facts 124 88% 83% 82%

Overall 300 81% 77% 73%

each sentence. As part of this set of initial experiments, we focused on acquiring the meta-

properties and inter-relation dependencies for a set S of 100 frequent relations (see Section

4.5). The system automatically generated a set of potential implicit facts (by generating

a set of potential facts as described above and eliminating all those already in the set of

extracted explicit facts) and restricted it to potential implicit facts involving relations in

the set S above.

A human judge manually labeled 300 elements of this set as actual facts or non-facts:

there were 176 actual facts and 124 non-facts.

Results and Discussion Our system has an average labeling accuracy of 77% - the system

recognizes actual facts with 71% accuracy and non-facts with 83% accuracy (see Table 4.8 for

a summary of these results). For the purpose of this experiment, we made the closed world

assumption which resulted in non-facts being recognized with good precision. However, the

majority of potential implicit facts will end up being non-facts in most knowledge domains

- finding actual implicit factual information is of greater importance.

The factors that led to decreased precision were:

a) the presence of incorrect interdependencies: fight(X,Z) : −cause(X,Y), leadto(Y,Z).

This rule is responsible for conclusions such as [milk, fights, heart attack] based on the facts

[milk, causes, heart disease] and [heart disease, leads to, heart attack]. The incorrect interde-

pendencies are in turn extracted based on either erroneous TextRunner-extracted relation

instances or, more often, on using abstract facts instead of concrete facts when learning

interdependencies. An example of such an abstract fact is diet, contains, vitaminC - us-

ing this fact as an instance of the Contain relation is incorrect and will lead to incorrect

generalizations or relation interdependencies.

72

b) the presence of erroneous TextRunner facts and the incorrect substitution of abstract

facts for concrete facts when computing the proof trees.

The factors that led to decreased recall are the sparsity of the relation instance data

and, as a result, the lack of rules that may have proven useful when computing the final

proof trees. With this in mind, our current work focuses on finding additional high-quality

actual facts by extracting additional types of relation interdependencies.

4.6 Related Work

The ontology editing, modeling and learning literature is quite large - in the following we

will first focus on the papers most relevant to our work and then briefly mention other

related recent efforts.

Learning Relation Properties The paper most relevant to ours is [120], which looks at

automatically annotating ontology concepts with a specific set of meta-properties (rigid-

ity, stability, identity and unity). These meta-properties are useful for a recently introduced

ontology evaluation mechanism (OntoClean [43]) which automatically detects ontology mod-

eling errors (such as incorrect subclasses) by checking whether the three meta-properties

involved satisfy a specified set of constraints. Inspired by KnowItAll and previous NLP

work, [120] investigates the use of lexical patterns in conjunction with Web data in order

to eliminate the need for human annotation of concepts with the relevant meta-properties.

The initial version of this chapter was independently completed in 2005 in parallel with this

related work - in our case, the use of Web statistics and lexical patterns for this task seemed

like a natural follow-up to the work on learning class extraction from the Web. While our

approaches have similar elements, there are also many differences: 1) we examine a different

set of meta-properties, 2) unlike [120], we use a mixture of instance data and lexical pat-

tern data, 3) our lexical pattern feature set is richer than theirs and makes use of instance

information, 4) our assessment mechanism is different than that of [120] and finally, 5) we

are currently investigating the effect of dependency-based update modules on this task.

Recent efforts to improve the representation of ontology axioms (which include property-

specific axioms such as those in Table 4.1) include [127] and [23]. [127] introduces an ontol-

ogy editor which has been built to support ontology development with help of inferencing

73

and development of ontology axioms. This editor builds on previous work ([107]) that exam-

ines ways of representing ontology axioms - while the papers describe a representation and

an architecture that allows axioms to be checked after being elicited from users, they do not

contain an experimental evaluation. Similarly, [23] focuses on eliciting axioms from ontol-

ogy users by presenting them with (manually created) easy-to-understand and easy-to-use

templates.

Learning Interesting Dependencies Among Relations

The most relevant related paper concerning the learning and use of interesting depen-

dencies among relations is [27], which looks at automatically learning simple axioms from a

noisy textual database. The axioms are used to clean up the database by eliminating some

of the incorrect extractions - additionally, the axioms can be used to extract additional facts

from text. While some of the learned axioms are similar to those discussed in this chapter,

the paper’s approach is limited by its reliance on noisy instance data. Our approach looks

at augmenting this source of information with lexico-syntactic patterns; furthermore, [27]

treats the simple learned dependencies as merely additional patterns rather than FOL rules

that can be used to retrieve proof trees.

In the past two years, other researchers (e.g., [18], [112]) have looked at the potential

of lexical patterns to uncover semantic relations (such as entailment) between verbs - our

work combines lexical patterns with instance information.

4.7 Ongoing Work

We are currently investigating the effect of collective assessment on the performance of the

property learner described in this chapter: we are exploring the use of various types of

dependencies in order to improve the performance of the property learner: dependencies

among relations (such as entailment or cluster membership for a set of automatically com-

puted clusters) as well as dependencies among the meta-properties of interest (a transitive

relation is not 1-to-1).

In addition to investigating the effect of a dependency-based update module on the

performance of the property learner, we are also exploring a different collective assessment

scheme based on the URNS model introduced in [31]. This model was developed in order to

74

predict more accurate probabilities associated with an extraction being a potential instance

of a given concept class - in our case, the model will predict a probability associated with

a particular relation being a member of the set of relations with property P. Additionally,

we are in the process of testing a set of relation entailment measures devised on top of the

URNS model (under preparation).

75

Chapter 5

EXTRACTING PRODUCT FEATURES AND OPINIONS FROM

REVIEW DATA

This chapter describes our work on applying the ideas behind the information extrac-

tion architecture at the core of this thesis to the problem of in-depth review mining. In

the following, we introduce the problem at hand and give an overview of the chapter’s

contributions and structure.

5.1 Introduction

The Web contains a wealth of opinions about products, politicians, and more, which are

expressed in newsgroup posts, review sites, and elsewhere. As a result, the problem of

“opinion mining” has seen increasing attention over the past three years from [116, 49]

and many others. This chapter focuses on product reviews, though we plan to extend our

methods to a broader range of texts and opinions.

Product reviews on Web sites such as amazon.com and elsewhere often associate meta-

data with each review indicating how positive (or negative) it is using a 5-star scale, and

also rank products by how they fare in the reviews at the site. However, the reader’s taste

may differ from the reviewers’. For example, the reader may feel strongly about the quality

of the gym in a hotel, whereas many reviewers may focus on other aspects of the hotel, such

as the decor or the location. Thus, the reader is forced to wade through a large number of

reviews looking for information about particular features of interest.

This chapter introduces opine, an unsupervised information extraction system which

mines and summarizes product review information. We decompose the problem of review

mining into the following main subtasks:

I. Identify product features. In a given review, features can be explicit (e.g., “the

size is too big”) or implicit (e.g., “the scanner is slow” refers to the “scanner speed”).

76

II. Identify opinions regarding product features. For example, “the size is too

big” contains the opinion phrase “too big”, which corresponds to the “size” feature.

III. Determine the polarity of opinions. Opinions can be positive (e.g., “this

scanner is so great”) or negative (e.g., “this scanner is a complete disappointment”).

IV. Rank opinions based on their strength. For example, “horrible” is a stronger

indictment than “bad”.

opine is an unsupervised information extraction system which embodies solutions to all

of the above subtasks.

Figure 5.1: Opinion Summary for the Mandarin Oriental New York Hotel

Figure 5.1 shows the opinion summary generated from a set of customer reviews for the

Mandarin Oriental New York hotel. Information about the polarity and relative strength

of opinions is used to compare different hotels with respect to a particular feature. For

77

example, the rooms at the Mandarin Oriental New York are more beautiful than those at

33 other hotels.

5.1.1 Contributions

The contributions of this chapter are as follows:

1. We show that the ideas underlying the WIE information architecture can be used to

solve various subtasks of review mining.

2. We compare opine with the review mining system of Hu and Liu [49] and find that

opine’s precision on the feature extraction task is 22% higher than that of Hu&Liu, although

its recall is 3% lower. We show that 1/3 of opine’s increase in precision comes from the use

of its feature assessment mechanism on review data while the rest is due to Web statistics.

3. We describe opine’s novel use of a relaxation labeling method to find the semantic

orientation of words in the context of given product features and sentences.

4. While many other systems have used extracted opinion phrases in order to determine

the polarity of sentences or documents, opine reports its precision and recall on the tasks

of opinion phrase extraction and opinion phrase polarity extraction in the context of known

product features and sentences. On the first task, opine has a precision of 79% and a recall

of 76%. On the second task, opine has a precision of 86% and a recall of 89%.

5. Additionally, opine ranks the opinion phrases corresponding to a particular property

based on their strength and registers a precision of 73% (according to an evaluation of its

output by a human judge).

6. Finally, we report good preliminary results on the problem of extracting opinion

sentences and establishing their positive or negative character.

The rest of this chapter is organized as follows: Section 5.2 introduces the terminology

used throughout this chapter, Section 5.3 describes how our information extraction model is

used to handle review mining, Sections 5.4 through 5.9 give an overview of opine, describe

and evaluate its main components in detail, Section 5.10 discusses related work and Section

5.11 contains our conclusions and future work directions.

78

5.2 Terminology

A product class (e.g., Scanner) is a set of products (e.g., Epson1200). opine extracts the

following types of product features: properties, parts, features of product parts, related con-

cepts, parts and properties of related concepts (see Table 5.1 in subsection 5.5 for examples

in the Scanner domain). Related concepts are concepts relevant to the customers’ experience

with the main product (e.g., the company that manufactures a scanner). The relationships

between the main product and related concepts are typically expressed as verbs (e.g., “the

company manufactures scanners”) or prepositions (“scanners from Epson”). Features can

be explicit (“good scan quality”) or implicit (“good scans” implies good ScanQuality).

opine also extracts opinion phrases, which are adjective, noun, verb or adverb phrases

representing customer opinions. Opinions can be positive or negative and vary in strength

(e.g., “fantastic” is stronger than “good”).

5.3 Review Mining with WIE

opine was built by instantiating and adapting the WIE architecture for the case of in-depth

product review mining. Potential product features are extracted from review text and then

assessed using a classifier whose features are generated based on instantiated lexico-syntactic

patterns and corresponding Web-scale statistics. Our experimental results show that the

Web-scale computation of the statistics significantly contributes to the high precision of the

extracted features, thereby validating this key component of our underlying architecture.

The WIE architecture is further validated by opine’s ability to identify with high preci-

sion the semantic orientation of feature-specific opinion phrases. Potential opinion phrases

are first extracted from product review data and their semantic orientation is then com-

puted by a collective assessment step that uses a mix of Web-scale statistics, statistics

computed over the corpus of reviews and information gleaned from outside resources (in

this case, WordNet). Once again, the ideas underlying the WIE architecture - the use of

lexico-syntactic patterns, corpus statistics and the inclusion of a collective assessment step

- prove useful in the context of a specific information extraction task.

Due to the specific requirements of our review mining application (outlined in the In-

79

troduction section), we introduce an additional module that computes a strength-based

ordering of opinions for each feature in the extracted product feature set. While this mod-

ule is not part of the basic WIE architecture, it benefits from key WIE ideas: instantiated

lexico-syntactic patterns are used to determine the relative strength of two opinion phrases

corresponding to the same underlying property. These partial strength-based orderings of

the opinion phrases are then used to determine a total ordering of the given opinion phrase

set for a specific product feature.

In conclusion, the opine system represents an instantiation and extension of our core

WIE architecture - the applicability of fundamental WIE ideas to the various review mining

subtasks strengthens our claim that WIE is a useful and extensible information extraction

architecture.

5.4 opine Overview

This section gives an overview of opine (see Figure 5.2) - its components are described in

more detail in the following sections.

Given product class C with instances I and corresponding reviews R, opine’s goal is

to find a set of (feature, opinions) tuples {(f, oi, ...oj)} such that f ∈ F and oi, ...oj ∈ O,

where:

a) F is the set of product class features in R.

b) O is the set of opinion phrases in R.

c) f is a feature of a particular product instance.

d) o is an opinion about f in a particular sentence.

d) the opinions associated with f are ranked based on opinion strength.

The steps of our solution are outlined in Figure 5.2 above. opine parses the reviews

using MINIPAR [61] and implements a simple pronoun resolution algorithm which is then

run on the parsed review data. The pronoun resolution uses a set of simple rules (such as

number agreement rules) compiled from the pronoun resolution literature (e.g., [101]) in

order to find pronouns that can be confidently resolved - if a pronoun is ambiguous in the

context of a sentence, we do not currently resolve it.

The resulting version of the data is used to find explicit product features. opine’s

80

Input

product class C, reviews R, parser P, search engine S,

generic meronymy lexico-syntactic patterns PT,

generic rules RL for extracting potential opinions,

generic rule templates RT for finding phrases with related semantic orientations,

WordNet lexical ontology WN and WordNet-based adjective similarity rules RS (optional).

Output

set of [feature, ranked opinion list] tuples.

ExtractFeaturesAndOpinions

R’ ← parseReviews(R,P);

E ← findExplicitFeatures(R’, C, S, PT);

O ← findOpinions(R’, E, S, RL, RT, WN);

CO ← clusterOpinions(O, RS, S, WN);

I ← findImplicitFeatures(CO, E, R’, S, WN);

RO ← rankOpinionsBasedOnStrength(CO);

{(f , oi, ...oj)...}←outputTuples(RO, I ∪ E);

Figure 5.2: OPINE Overview. OPINE takes as input a product class C, a corresponding set of
reviews R, a parser P and a small set of patterns or rule templates for each of the review mining
subtasks addressed. The system assumes access to a search engine S and to the WordNet lexical
ontology (the latter is optional).

Feature Assessor and its use of Web PMI statistics are vital for the extraction of high

quality features (see 5.5.1). opine then identifies opinion phrases associated with explicit

features and finds their polarity. opine’s novel use of relaxation labeling techniques for

determining the semantic orientation of potential opinion words in the context of given

features and sentences leads to high precision and recall on the tasks of opinion phrase

extraction and opinion phrase polarity extraction (see 5.7).

Opinion phrases refer to properties, which are sometimes implicit (e.g., “tiny phone”

refers to the size of the phone). In order to extract implicit properties, opine first clusters

81

Table 5.1: Explicit Feature Information

Explicit Features Examples % Total

Properties ScannerSize 7%

Parts ScannerCover 52%

Features of Parts BatteryLife 24%

Related Concepts ScannerImage 9%

Related Concepts’ Features ScannerImageSize 8%

opinion phrases (e.g., tiny and small will be placed in the same cluster), automatically labels

the clusters with property names (e.g., Size) and uses them to extract implicit features (e.g.,

PhoneSize). The final component of our system is the ranking of opinions that refer to the

same property based on their strength (e.g., fantastic > great > good). Finally, opine

outputs a set of (feature, ranked opinions) tuples for each identified feature.

In the following, we describe each of these steps in more depth.

5.5 Finding Explicit Features

opine extracts explicit features for the given product class from parsed review data. The

system recursively identifies the parts and the properties of the given product class and their

parts and properties, in turn, continuing until no more such features are found or for a set

number of iterations (we found that 1 or 2 iterations were usually enough to find most of the

features of this type). The system then finds related concepts and extracts their meronyms

(parts and properties). Table 5.1 shows that each feature type contributes to the set of final

features (averaged over 7 product classes, as described in Section 5.5.1).

In order to find parts and properties, opine first extracts the noun phrases from reviews

and retains those with frequency greater than an experimentally set threshold t. opine’s

Feature Assessor, which is an instantiation of KnowItAll’s Assessor, evaluates each noun

phrase by computing the PMI scores between the phrase and meronymy discriminators

associated with the product class (see Table 5.2 for possible discriminators). The system

first uses the review corpus to compute the PMI scores; the explicit features identified in

this manner are set aside and the rest of the potential features are assessed using the Web.

82

If necessary, opine is able to distinguish parts from properties using WordNet’s IS-A

hierarchy (which enumerates different kinds of properties) and morphological cues (e.g.,

“-iness”, “-ity” suffixes). Distinguishing between parts and properties of a product can be

useful for ontologies such as the ones currently being built by the CALO project [1] (opine

represents the contribution of the University of Washington team to this project).

Meronymy Discriminators opine primarily uses three high precision meronymy lexi-

cal patterns ([M] of [C], [C] has [M], [C]’s [M]) that were previously introduced in the NLP

literature [9]. The experimental section of this chapter reports on good results obtained

using this small set of generic lexical patterns and leveraging the Web corpus - however,

one of the active areas of this project is better leveraging the available review corpus by

learning additional domain-specific meronymy patterns and using their instantiations in the

review corpus to assess a potential meronym.

In order to learn additional meronymy patterns, the system considers a sample of the

meronyms acquired using the generic patterns and proceeds as described below. Let C

denote the product class of interest: given a parsed sentence s that contains C (or an

instance of C) and a known meronym M, the system finds the shortest path from C to M in

the parse tree and retains the words along the path in order to form a new lexical pattern.

For example, consider the product class C = Scanner, the meronym M = DocumentFeeder

and the sentence: “The 1640SU-OFFICE Scanner is equipped with a document feeder

that scans up to 30 pages of legal size documents”.

Based on this sentence, the system generates the lexical pattern “[C] (be) equipped with

[M]”. If at least k paths involving different meronyms generate the same pattern P , P is

added to the set of meronymy lexical patterns (see Table 5.2). We noticed that even if some

of these patterns are two general as meronymy patterns, they are still very useful as general

feature extraction patterns (encompassing meronyms and related concepts).

Related Concepts Given a target product class C, opine finds concepts related to C

by extracting frequent noun phrases as well as noun phrases linked to C or C’s instances

through verbs or prepositions (e.g., “The scanner produces great images”). Related concepts

are assessed as described in [92] and then stored as product features together with their parts

and properties.

83

Table 5.2: Meronymy Lexical Patterns Notation: [C] = product class (or instance), [M] =

candidate meronym (∗) = wildcard character

[M] of (*) [C] [C] has (*) [M]
[C]’s M [M] for (*) [C]
[C] with (*) [M] [C] contain(s)(ing) (*) [M]
[C] equipped with (*) [M] [C] endowed with (*) [M]
[C] offer(s)(ing) (*) [M] [C] boast(s)(ing) (*) [M]

Extracting Explicit Features: Running Time Discussion

Let S represent the set of review sentences of interest and let len represent the maximum

sentence length. Let PF represent the set of potential features - |PF | is at most len ∗ |S|.

Finally, let tassess denote the time it takes to check that a noun phrase f is a feature of a

given concept class C (tassess is a small constant).

The running time of the explicit feature extraction step is as follows:

a) Parsing the available sentences, running the pronoun resolution module and recording

frequency information for identified noun phrases is done in O(|S| ∗ len3) time (the bulk of

this time is spent on computing the full parse for each sentence). In practice, the parser

includes a large number of optimizations that allow the parsing to be quite fast. Once

frequency information is available, potential features are extracted at no additional cost.

b) Given the product class C, finding its direct features takes O(|S| ∗ len3 + |PF | ∗

tassess) = O(|S| ∗ len3 + |S| ∗ len) time, but the parser optimizations mean the time is closer

to O(|S| ∗ len2) or even O(|S| ∗ len ∗ log(len)).

If finding derived features is necessary, the worst case running time for this additional

step will be O(|PF |2∗tassess) - however, in practice we implement a number of optimizations

that greatly reduce this time:

1) Direct features that are frequently mentioned yield most derived features, so the

system can consider only the most frequent k direct features in step 2) below;

2) Related features tend to be discussed in close proximity: given a direct feature f , let

PF ′ represent the size k′ subset of potential features that most frequently cooccur with it

within a size m window - k′ is an experimentally set constant that is much smaller than

|PF |. Computing PF ′ can be done in O(k ∗ log(k)) - where k is the number of direct

84

Table 5.3: Precision Comparison on the Explicit Feature Extraction Task. OPINE’s

precision is 22% better than Hu’s precision; Web PMI statistics are responsible for 2/3 of the

precision increase. All results are reported with respect to Hu’s.

Dataset Hu Hu Hu OPINE OPINE

Assess(Reviews) Assess(Reviews,Web) (Reviews)

D1 0.75 +0.05 +0.17 +0.07 +0.19

D2 0.71 +0.03 +0.19 +0.08 +0.22

D3 0.72 +0.03 +0.25 +0.09 +0.23

D4 0.69 +0.06 +0.22 +0.08 +0.25

D5 0.74 +0.08 +0.19 +0.04 +0.21

Avg 0.72 +0.06 + 0.20 +0.07 +0.22

features considered by the system - by recording additional appropriate information during

step a) above.

5.5.1 Experiments: Explicit Feature Extraction

The previous review mining systems most relevant to our work are those in [49] and [126].

We only had access to the data used in [49] and the latter system is very difficult to

reproduce, therefore our experiments include a comparison between opine and Hu&Liu’s

system, but no direct comparison between opine and IBM’s SentimentAnalyzer [126] (see

the related work section for a discussion of this work). Since Hu&Liu’s system was widely

considered the state-of-the-art system at the time we developed opine, we think that this

comparison is sufficient.

Hu&Liu’s system uses association rule mining to extract frequent review noun phrases

as features. Frequent features are used to find potential opinion words (only adjectives)

and the system uses WordNet synonyms and antonyms in conjunction with a set of seed

words in order to find actual opinion words. Finally, infrequent phrases modified by opinion

words discovered in this manner are extracted as well as product features. The system only

extracts explicit features (as we will see later in the chapter, opine also extracts implicit

features).

We compared opine with Hu&Liu’s system using the 5 publicly available product elec-

tronics review sets introduced in [49] (500 reviews). We found that opine’s precision is 22%

85

higher than Hu’s at the cost of a 3% recall drop. There are two important differences be-

tween opine and Hu’s system: a) opine’s Feature Assessor uses PMI assessment to evaluate

each candidate feature and b) opine incorporates Web PMI statistics in its assessment. In

the following, we quantify the performance gains from a) and b).

a) In order to quantify the benefits of opine’s Feature Assessor, we use the Assessor in

conjunction with only the available review data in order to evaluate the potential features

extracted by Hu’s algorithm. The Feature Assessor improves Hu’s precision by 6%.

b) In order to evaluate the impact of using Web PMI statistics, we assess opine’s

features first on reviews, and then on reviews in conjunction with the Web. Web PMI

statistics increase precision by another 14.5% (on average) over the use of the review data

alone.

Table 5.4: Recall Comparison on the Explicit Feature Extraction Task. OPINE’s recall

is 3% lower than the recall of Hu’s original system (precision level = 0.8). All results are reported

with respect to Hu’s.

Dataset Hu Hu Hu OPINE OPINE

Assess(Reviews) Assess(Reviews,Web) (Reviews)

D1 0.82 -0.16 -0.08 -0.14 -0.02

D2 0.79 -0.17 -0.09 -0.13 -0.06

D3 0.76 -0.12 -0.08 -0.15 -0.03

D4 0.82 -0.19 -0.04 -0.17 -0.03

D5 0.80 -0.16 -0.06 -0.12 -0.02

Avg 0.80 -0.16 -0.07 -0.14 -0.03

Overall, 1/3 of OPINE’s precision increase over Hu’s system comes from using PMI

assessment on reviews and the other 2/3 from the use of the Web PMI statistics.

The drop in recall for our system is due to the fact that Hu’s system proposes as features

words or phrases that occur at least once in the review corpus, whereas opine requires a

potential feature to occur at least twice. We ran opine with the same settings as Hu’s system

on a subset of the reviews (for 2 products) and the recall was higher than that of Hu’s at

higher precision; however, this is not a feasible setting for larger review sets - in order to be

able to extract rare features, we are currently investigating methods that take advantage of

86

sentence-level dependencies among product features; for example, once a feature f has been

identified, one can use enumerations (including conjunctions) or disjunctions to identify

additional potential features that may only occur a small number of times in the given

review corpus.

In order to show that opine’s performance is robust across multiple product classes,

we used two sets of 1307 reviews downloaded from tripadvisor.com for Hotels (1000

reviews) and amazon.com for Scanners (307 reviews) 1. Two annotators labeled a set

of unique 450 opine extractions as correct or incorrect. The inter-annotator agreement

was 86%. The extractions on which the annotators agreed were used to compute opine’s

precision, which was 89%. Furthermore, the annotators extracted explicit features from

800 review sentences (400 for each domain). The inter-annotator agreement was 82%.

opine’s recall on the set of 179 features on which both annotators agreed was 73%. The

explicit features for the Hotel domain can be seen as part of the opine demo accessible

at http://www.cs.washington.edu/homes/amp/opine/; the explicit features for the Scanner

domain can be found in Appendix C.1.

5.6 Finding Implicit Features

We now address the extraction of implicit features. The system first extracts opinion phrases

attached to explicit features, as detailed in 5.7. Opinion phrases refer to properties (e.g.,

“clean” refers to “cleanliness”). When the property is implicit (e.g., “clean room”), the

opinion is attached to an explicit feature (e.g., “room”). opine examines opinion phrases

associated with explicit features in order to extract implicit properties. If the opinion

phrase is a verb, noun or adverb, opine associates it with Quality; if the opinion phrase

is an adjective, opine maps it to a more specific property. For instance, if “clean” and

“spacious” are opinions about hotel rooms, opine associates “clean” with Cleanness and

“spacious” with Size.

The problem of associating adjectives with an implied property is closely related to that

of finding adjectival scales [46]. opine uses WordNet synonymy and antonymy information

1See Appendix C.1 for information about how to obtain these review sets.

87

Table 5.5: WordNet-based and Web-based Adjective Similarity Rules. Notation: s1, s2 =

WordNet synsets., pertain(), attribute() = relations between adjective and noun synsets.

adj1 and adj2 are similar if

∃s1, s2 s.t. pertain(adj1, s1), attribute(adj2, s2), isA(s1, s2)
∃s1, s2 s.t. pertain(adj1, s1), pertain(adj2, s2), isA(s1, s2)
∃s1, s2 s.t. attribute(adj1, s1), attribute(adj2, s2), isA(s1, s2)
∃p ∈ {“[X], even[Y]′′, “[X], almost[Y]′′, ...} s.t. hits(p(adj1, adj2)) > t, t = threshold

to group the adjectives in a set of initial clusters. Next, any two clusters A1 and A2 are

merged if multiple pairs of adjectives (a1, a2) exist such that a1 ∈ A1, a2 ∈ A2 and a1 is

similar to a2 (an explanation of adjective similarity is given below). For example, A1 =

{“intuitive”} is merged with A2 = {“understandable”, “clear”}.

Clusters are labeled with the names of their corresponding properties (see Table 5.6).

The property names are obtained from either WordNet (e.g., big is a value of size), or from

a name-generation module which adds suffixes (e.g., “-iness”, “-ity”) to adjectives and uses

the Web to filter out non-words and highly infrequent candidate names. If no property

names can be found, the label is generated based on adjectives (e.g., “beWelcome”).

Adjective Similarity The adjective similarity rules in Table 5.5 consist of WordNet-

based rules and Web-based rules. WordNet relationships such as pertain(adjSynset, nounSynset)

and attribute(adjSynset, nounSynset) are used to relate adjectives to nouns representing

properties: if two adjectives relate to the same property or to related properties, the two

adjectives are similar. In addition to such WordNet-based rules, opine bootstraps a set of

lexical patterns (see 5.8 for details) and instantiates them in order to generate search-engine

queries which confirm that two adjectives correspond to the same property. Given clusters

A1 and A2, opine instantiates patterns such as “a1, (*) even a2 “ with a1 ∈ A1 and a2 ∈ A2

in order to check if a1 and a2 are similar. For example, hits (“clear, (*) even intuitive”)

> 5, therefore “clear” is similar to “intuitive”.

Given an explicit feature f and a set of opinions associated with f which have been

clustered as previously described, opine uses the opinion clusters to extract implicit features.

For example, given f=Room and opinions clean, spotless in the Cleanness cluster, opine

88

Table 5.6: Examples of Labeled Opinion Clusters

Quality: like, recommend, good, very good, incredibly good, great, truly great
Clarity: understandable, clear, straightforward, intuitive
Noise: quiet, silent, noisy, loud, deafening
Price: inexpensive, affordable, costly, expensive, cheap
Cleanness: clean, messy, dirty, very dirty, spotless

Table 5.7: Domain-independent Rules for Potential Opinion Phrase Extraction. No-

tation: po=potential opinion, M=modifier, NP=noun phrase, S=subject, P=predicate, O=object.

Extracted phrases are enclosed in parentheses. Features are indicated by the typewriter font. The

equality conditions on the left-hand side use po’s head.

Extraction Rules Examples

if ∃(M,NP = f)→ po = M (expensive) scanner

if ∃(S = f, P,O)→ po = O lamp has (problems)

if ∃(S,P,O = f)→ po = P I (hate) this scanner

if ∃(S = f, P)→ po = P program (crashed)

generates the implicit feature RoomCleanness. We evaluated the impact of implicit feature

extraction in the Hotels and Scanners domains 2. Implicit features led to a 2% average

increase in precision and a 6% increase in recall, mostly in the Hotel domain, which is rich

in adjectives (e.g., “clean room”, “soft bed”).

A list of found adjective clusters can be seen in Appendix C.1. The running time of the

clustering algorithm is quadratic in the number of the extracted adjective opinions.

5.7 Finding Opinion Phrases and Their Polarity

This section describes how opine extracts potential opinion phrases, distinguishes between

opinions and non-opinions, and finds the polarity of each opinion in the context of its

associated feature in a particular review sentence.

opine uses explicit features to identify potential opinion phrases. Our intuition is that

an opinion phrase associated with a product feature will occur in its vicinity. This idea

is similar to that of [53] and [49], but instead of using a window of size k or the output

2Hu’s datasets have few implicit features and Hu’s system doesn’t handle implicit feature extraction.

89

Table 5.8: Dependency Rule Templates For Finding Words w, w′ with Related Se-

mantic Orientation Labels Notation: v,w,w’=words; f, f’=feature names; dep=dependent;

mod=modifier; conj = conjunction

Rule Templates Example Rules

dep(w,w′) mod(w,w′)

∃v s.t. dep(w, v), dep(v,w′) ∃v s.t. mod(w, v), object(v,w′)

∃v s.t. dep(w, v), dep(w′ , v) ∃v s.t. mod(w, v), object(w′ , v)

∃f, f ′ s.t. dep(w, f), dep(w′, f ′), dep(f, f ′) ∃f, f ′ s.t. mod(w, f),mod(w′, f ′), conj(f, f ′)

of a noun phrase chunker, opine takes advantage of the dependencies computed by the

MINIPAR parser. Our intuition is embodied by a set of extraction rules, the most important

of which are shown in Table 5.7. If an explicit feature is found in a sentence, opine applies

the extraction rules in order to find the heads of potential opinion phrases. Each head word

together with its modifiers is returned as a potential opinion phrase. The running time of

extracting potential opinions is O(|S|), where |S| the number of review sentences.

opine examines the potential opinion phrases in order to identify the actual opinions.

First, the system finds the semantic orientation for the lexical head of each potential opinion

phrase. Every phrase whose head word has a positive or negative semantic orientation is

then retained as an opinion phrase. In the following, we describe how opine finds the

semantic orientation of words.

5.7.1 Context-specific Word Semantic Orientation

Given a set of semantic orientation (SO) labels ({positive, negative, neutral}), a set of

reviews and a set of tuples (w, f , s), where w is a potential opinion word associated with

feature f in sentence s, opine assigns a SO label to each tuple (w, f , s). For example,

the tuple (sluggish, driver, “I am not happy with this sluggish driver”) will be assigned a

negative SO label 3.

opine uses the 3-step approach below to label each (w, f , s) tuple:

1. Given the set of reviews, opine finds a SO label for each word w.

3We use “word” to refer to a potential opinion word w and “feature” to refer to the word or phrase that
represents the explicit feature f .

90

2. Given the set of reviews and the set of SO labels for words w, opine finds a SO label

for each (w, f) pair.

3. Given the set of SO labels for (w, f) pairs, opine finds a SO label for each (w, f , s)

input tuple.

Each of these subtasks is cast as an unsupervised collective classification problem and

solved using the same mechanism. In each case, opine is given a set of objects (words, pairs

or tuples) and a set of labels (SO labels); opine then searches for a global assignment of

labels to objects. In each case, opine makes use of local constraints on label assignments

(e.g., conjunctions and disjunctions constraining the assignment of SO labels to words [47]).

A key insight in opine is that the problem of searching for a global SO label assignment

to words, pairs or tuples while trying to satisfy as many local constraints on assignments as

possible is analogous to labeling problems in computer vision (e.g., model-based matching).

opine uses a well-known computer vision technique, relaxation labeling [50], in order to

solve the three subtasks described above.

5.7.2 Relaxation Labeling Overview

Relaxation labeling is an iterative procedure that takes as input:

a) a set of objects (e.g., words)

b) a set of labels (e.g., SO labels)

c) initial probabilities for each object’s possible labels

d) the definition of an object o’s neighborhood (a set of other objects which influence the

choice of o’s label)

e) the definition of neighborhood features

f) the definition of a support function for an object label

The influence of an object o’s neighborhood on its label L is quantified using the support

function. The support function computes the probability of the label L being assigned to

o as a function of o’s neighborhood features. Examples of features include the fact that a

certain local constraint is satisfied (e.g., the word nice participates in the conjunction and

together with some other word whose SO label is estimated to be positive).

91

Relaxation labeling is an iterative procedure whose output is an assignment of labels

to objects. At each iteration, the algorithm uses an update equation to re-estimate the

probability of an object label based on its previous probability estimate and the features

of its neighborhood. The algorithm stops when the global label assignment stays constant

over multiple consecutive iterations.

We employ relaxation labeling for the following reasons: a) it has been extensively used,

with good results, in computer vision research as well as in other projects, such as ontology

matching [29]; b) its formalism allows for many types of constraints on label assignments to

be used simultaneously. As mentioned before, constraints are integrated into the algorithm

by means of neighborhood features that influence the assignment of a particular label to a

particular object.

opine uses the following sources of constraints:

a) conjunctions (e.g., “and”) and disjunctions (e.g., “but”) in the review text.

b) a small number of manually-supplied syntactic dependency rule templates (see Table

5.8). The templates are automatically instantiated by our system with different dependency

relationships (premodifier, postmodifier, etc.) in order to obtain syntactic dependency rules

which find words with related SO labels.

c) automatically derived morphological relationships (e.g., “wonderful” and “wonder-

fully” are likely to have similar SO labels).

d) WordNet-supplied synonymy, antonymy, IS-A and morphological relationships be-

tween words (the use of WordNet information is optional). For example, clean and neat are

synonyms and so they are likely to have similar SO labels.

Negation Modifiers In order to correctly extract constraints on the SO labels of words

(or, as we will later see, SO labels of (word,feature) and (word,feature,sentence) tuples),

the system takes into consideration the presence of negation-type modifiers: not, not at all,

never, no, barely, hardly, scarcely, etc. For the purposes of our experiments, we use a list of

modifiers compiled from previous NLP literature; an item of current work is automatically

discovering n-grams that function as negation modifiers as described in the following.

Starting with a) a set of seed words with known positive and negative semantic ori-

entation labels and b) a set of high-precision constraints (such as the conjunction- and

92

disjunction- based constraints), the system examines automatically extracted unlikely in-

stances of the known constraints: a constraint instance is unlikely if the set of word labels

it involves is dissimilar to those in other instances of the same constraint (in other words,

if the constraint instance is an outlier). N-grams that are common across outlier constraint

instances (after a normalization step) and across different constraint types can be extracted

as potential negation modifiers.

Each of the SO label assignment subtasks previously identified is solved using a relaxation

labeling step. In the following, we describe in detail how relaxation labeling is used to find

SO labels for words in the given review sets.

5.7.3 Finding SO Labels for Words

For many words, a word sense or set of senses is used throughout the review corpus with

a consistently positive, negative or neutral connotation (e.g., “great”, “awful”, etc.). Thus,

in many cases, a word w’s SO label in the context of a feature f and sentence s will be the

same as its SO label in the context of other features and sentences. In the following, we

describe how opine’s relaxation labeling mechanism is used to find a word’s dominant SO

label in a set of reviews.

For this task, a word’s neighborhood is defined as the set of words connected to it through

conjunctions, disjunctions and all other relationships previously introduced as sources of

constraints.

RL uses an update equation to re-estimate the probability of a word label based on its

previous probability estimate and the features of its neighborhood (see Neighborhood

Features). At iteration m, let q(w,L)(m) denote the support function for label L of w and

let P (l(w) = L)(m) denote the probability that L is the label of w. P (l(w) = L)(m+1) is

computed as follows:

General RL Update Equation [94]

P (l(w) = L)(m+1) =
P (l(w) = L)(m)(1 + αq(w,L)(m))∑
L′ P (l(w) = L′)(m)(1 + αq(w,L′)(m))

where L′ ∈ {pos, neg, neutral} and α > 0 is an experimentally set constant. This form

93

of the update equation adds 1 to the support function and includes an α factor in order

to ensure that the computed value is positive under any circumstances (e.g., if the used

support function has negative values). The values of the main support function opine used

in its experiments are positive values in the [0,1] interval - other support functions with

which we experimented also had negative values. If the values of the support function are

known to be positive, the normalization factors from the above equation can be omitted.

RL’s output is an assignment of dominant SO labels to words.

In the following, we describe in detail the initialization step, the support function and

the use of neighborhood features.

RL Initialization Step opine uses a version of Turney’s PMI-based approach [113]

in order to derive the initial probability estimates (P (l(w) = L)(0)) for a subset S of the

potential opinion words (since the process of getting the necessary hitcounts can be expen-

sive, S contains either the top k% most frequent potential opinions or the potential opinions

that are linked to the largest numbers of other words by means of constraint-inducing de-

pendencies (in other words, the “best connected” potential opinions)). The experimental

results in this chapter use the first definition of S and k = 15% (k = 20% led to similar

results). In the future, we plan to experiment with the use of large, domain-independent

opinion lexicons (currently being built by a number of researchers, the author included) as

part of the initialization step.

opine computes a SO score so(w) for each w in S as the difference between the PMI of

w with positive keywords (e.g., “excellent”) and the PMI of w with negative keywords (e.g.,

“awful”). When so(w) is small, or w rarely co-occurs with the keywords, w is classified

as neutral. Otherwise, if so(w) > 0 w is positive, and if so(w) < 0 w is negative. opine

then uses the labeled S set in order to compute prior probabilities P (l(w) = L), L ∈

{pos, neg, neutral} by computing the ratio between the number of words in S labeled L

and |S|. These probabilities will be used as initial probability estimates associated with the

labels of the words outside of S.

Support Function The support function computes the probability of each label for

word w based on the labels of objects in w’s neighborhood N .

Let Ak = {(wj , Lj)|wj ∈ N} , 0 < k ≤ 3|N | represent one of the potential assignments of

94

labels to the words in N . Let P (Ak)(m) denote the probability of this particular assignment

at iteration m. The support for label L of word w at iteration m is :

q(w, L)(m) =

3|N|∑

k=1

P (l(w) = L|Ak)(m) ∗ P (Ak)(m)

We assume that the labels of w’s neighbors are independent of each other and so the

formula becomes:

q(w, L)(m) =

3|N|∑

k=1

P (l(w) = L|Ak)(m) ∗

|N |∏

j=1

P (l(wj) = Lj)(m)

Every P (l(wj) = Lj)(m) term is the estimate for the probability that l(wj) = Lj (which

was computed at iteration m using the RL update equation).

The P (l(w) = L|Ak)(m) term quantifies the influence of a particular label assignment to

w’s neighborhood over w’s label. In the following, we describe how we estimate this term.

Neighborhood Features Each type of word relationship which constrains the assign-

ment of SO labels to words (synonymy, antonymy, conjunction, morphological relations etc.)

is mapped by opine to a neighborhood feature. This mapping allows opine to simultane-

ously use multiple independent sources of constraints on the label of a particular word. In

the following, we formalize this mapping.

Let T denote the type of a word relationship in R and let Ak,T represent the labels

assigned by Ak to neighbors of a word w which are connected to w through a relationship

of type T . We have Ak =
⋃

T Ak,T and

P (l(w) = L|Ak)(m) = P (l(w) = L|
⋃

T

Ak,T)(m)

For each relationship type T , opine defines a neighborhood feature fT (w,L,Ak,T) which

computes P (l(w) = L|Ak,T), the probability that w’s label is L given Ak,T (see below).

P (l(w) = L|
⋃

T Ak,T)(m) is then estimated combining the information from various features

about w’s label as follows:

95

P (l(w) = L|Ak)(m) =

j∑

i=1

f i(w,L,Ak,i)(m) ∗ ci

where c0, ...cj are weights whose sum is 1 and which reflect opine ’s confidence in each

type of feature. An alternative means of computing this quantity uses the sigmoid func-

tion, which has previously been shown to work well in a similar context but in a different

application (ontology matching).

Given word w, label L, relationship type T and neighborhood label assignment Ak, let

NT represent the subset of w’s neighbors connected to w through a type T relationship.

The feature fT computes the probability that w’s label is L given the labels assigned by Ak

to words in NT :

fT (w,L,Ak,T)(m) = P (l(w) = L|Li, ...Ln),

where Li, ...Ln represent the labels of the neighbors in NT .

This probability can be evaluated in a number of ways, such as:

a)

fT (w,L,Ak,T)(m) =

|NT |∑

j=1

P (l(w) = L|Lj)

|NT |

or

b) using Bayes’s Law and making an independence assumption:

fT (w,L,Ak,T)(m) =

P (l(w) = L)(m) ∗

|NT |∏

j=1

P (Lj |l(w) = L)

P (Ak,T)(m)
.

P (Lj |l(w) = L) is the probability that word wj has label Lj if wj and w are linked by

a relationship of type T and w has label L. We make the following assumptions, which are

appropriate in our case and supported by both the constraint types involved and by data:

I) P (l(w) = L|Lj) depends only on T , L and Lj , not of the particular words wj and w and

II) P (Lj |l(w) = L) = P (l(w) = L|Lj).

96

Table 5.9: Examples of Conditional Probabilities for Neighboring Words or Tuples

Linked by Conjunctions or Disjunctions. Notation: p(l(e) = L|link, l(e′) = L′) = probability

that entity e (word or tuple) has label L given the current label L′ of e′ and the type of link between

e and e′; (conj, +) = link type is conj and label of e′ is +, (conj, |) = link type is conj and label of

e′ is | and so on. + = positive label, − = negative label, | = neutral label.

p(l(e) = L|link, l(e′) = L′) conj,+ conj,− conj, | disj,+ disj,− disj, |

l(e) = + 0.8 0.08 0.12 0.09 0.79 0.12

l(e) = − 0.08 0.78 0.14 0.79 0.09 0.12

l(e) = | 0.12 0.14 0.74 0.12 0.12 0.76

For each tuple (T , L, Lj), L,Lj ∈ {pos, neg, neutral}, opine uses a probability table

built using a small set of positive, negative and neutral words (see Table 5.9 for some

examples).

5.7.4 Finding (Word, Feature) SO Labels

This subtask is motivated by the existence of frequent words which change their SO label

based on associated features, but whose SO labels in the context of the respective features are

consistent throughout the reviews (e.g., in the Hotel domain, “hot water” has a consistently

positive connotation, whereas “hot room” has a negative one).

In order to solve this task, opine initially assigns each (w, f) pair the (label, probability)

information corresponding to w. The system then executes a relaxation labeling step during

which syntactic relationships between words and, respectively, between features, are used

to update the default SO labels whenever necessary. For example, (hot, room) appears in

the proximity of (broken, fan). If “room”and “fan” are conjoined by and, this suggests that

“hot” and “broken” have similar SO labels in the context of their respective features. If

“broken” has a strongly negative semantic orientation, this fact contributes to opine’s belief

that “hot” may also be negative in this context. Since (hot, room) occurs in the vicinity of

other such phrases (e.g., stifling kitchen), “hot” acquires a negative SO label in the context

of “room”.

97

5.7.5 Finding (Word, Feature, Sentence) SO Labels

This subtask is motivated by the existence of (w,f) pairs (e.g., (big, room)) for which w’s

orientation changes depending on the sentence in which the pair appears (e.g., “ I hated

the big, drafty room because I ended up freezing” vs. “We had a big, luxurious room”.)

In order to solve this subtask, opine first initializes the label probabilities for each

(w, f, s) tuple with the label probabilities for the (w, f) pair. The system then uses syntactic

relationships between words and, respectively, features in order to update the SO labels

when necessary. For example, in the sentence “I hated the big, drafty room because I

ended up freezing.”, “big” and “hate” satisfy condition 2 in Table 5.8 and therefore opine

expects them to have similar SO labels. Since “hate” and “drafty” have strong negative

connotations, “big” acquires a negative SO label in this context.

5.7.6 Identifying Opinion Phrases

After opine has computed the most likely SO labels for the head words of each potential

opinion phrase in the context of given features and sentences, opine can extract opinion

phrases (“very hot”, “incredibly beautiful”, “etc.) and establish their polarity. Phrases

whose head words have been assigned positive or negative labels are retained as opinion

phrases. Furthermore, the polarity of an opinion phrase o in the context of a feature f and

sentence s is given by the SO label assigned to the tuple (head(o), f, s) (the system takes

into account the presence of negation modifiers when appropriate).

5.7.7 Experiments

In this section we evaluate opine’s performance on the following tasks: finding SO la-

bels of words in the context of known features and sentences (word SO label extraction);

distinguishing between opinion and non-opinion phrases in the context of known features

and sentences (opinion phrase extraction); finding the correct polarity of extracted opinion

phrases in the context of known features and sentences (opinion phrase polarity extraction).

We first ran opine on 13841 sentences and 538 previously extracted features; as in

the case of explicit features extraction, we used the product electronics data in Hu&Liu’s

98

Table 5.10: Finding Word Semantic Orientation Labels in the Context of Given Features

and Sentences. opine’s precision is higher than that of PMI++ and Hu++. All results are

reported with respect to PMI++.

Word POS PMI++ Hu++ OPINE

Precision Recall Precision Recall Precision Recall

Adjectives 0.73 0.91 +0.02 -0.17 +0.07 -0.03

Nouns 0.63 0.92 +0.04 -0.24 +0.11 -0.08

Verbs 0.71 0.88 +0.03 -0.12 +0.01 -0.01

Adverbs 0.82 0.92 +0.02 -0.01 +0.06 +0.01

Avg 0.72 0.91 +0.03 -0.14 +0.06 -0.03

experiments, as well as review data from the Hotel and Scanner domains.

opine searched for a most likely SO label assignment for 1756 different words in the

context of the given features and sentences. We compared opine against two baseline

methods, PMI++ and Hu++.

PMI++ is an extended version of [116]’s method for finding the SO label of a word

or a phrase. For a given (word, feature, sentence) tuple, PMI++ ignores the sentence,

generates a phrase containing the word and the feature (e.g., “clean room”) and finds its

SO label using PMI statistics. If unsure of the label, PMI++ finds the orientation of the

potential opinion word instead. The search engine queries use domain-specific keywords

(e.g., “clean room” + “hotel”), which are dropped if they lead to low counts. PMI++

also uses morphology information (e.g., wonderful and wonderfully are likely to have similar

semantic orientation labels).

Hu++ is a WordNet-based method for finding a word’s context-independent semantic

orientation. It extends Hu’s adjective labeling method [49] in order to handle nouns, verbs

and adverbs and in order to improve coverage. Hu’s method starts with two sets of positive

and negative words and iteratively grows each one by including synonyms and antonyms

from WordNet. The final sets are used to predict the orientation of an incoming word.

Hu++ also makes use of WordNet IS-A relationships (e.g., problem0 IS-A difficulty0)

and morphology information.

99

5.7.8 Experiments: Word SO Labels

On the task of finding SO labels for words in the context of given features and review

sentences, opine obtains higher precision than both baseline methods at a small loss in

recall with respect to PMI++. As described below, this result is due in large part to

opine’s ability to handle context-sensitive opinion words.

We randomly selected 200 (word, feature, sentence) tuples for each word type (adjective,

adverb, etc.) and obtained a test set containing 800 tuples. The sources of these tuples are

reviews from all the available product domains: the Hotel reviews contain predominantly

adjective opinions (and some noun opinions), while product electronics reviews (including

Scanner reviews) contain primarily adjective as well as verb and adverb opinions.

Two annotators assigned positive, negative and neutral labels to each tuple (the inter-

annotator agreement was 78%). We retained the tuples on which the annotators agreed as

the gold standard. We ran PMI++ and Hu++ on the test data and compared the results

against opine’s results on the same data.

In order to quantify the benefits of each of the three steps of our method for finding SO

labels, we also compared opine with a version which only finds SO labels for words and a

version which finds SO labels for words in the context of given features, but doesn’t take

into account given sentences. We have learned from this comparison that opine’s precision

gain over PMI++ and Hu++ is mostly due to its ability to handle context-sensitive words

in a large number of cases.

Although Hu++ does not handle context-sensitive SO label assignment, its average

precision was reasonable (75%) and better than that of PMI++. Finding a word’s SO label

is good enough in the case of strongly positive or negative opinion words, which account

for a large number of opinion instances. However, the method’s recall is limited due to

a number of reasons: it is unable to handle words or phrases absent from WordNet (e.g.,

“depth-adjustable”); it refuses to label highly polysemous words whose semantic orientation

depends on the word sense; it also refuses to label WordNet terms that cannot be “reached”

from the seed set of positive/negative words by means of WordNet relations (synonymy,

antonymy, IS-A).

100

PMI++ typically does well in the presence of strongly positive or strongly negative

words. Its main shortcoming is misclassifying terms such as “casual” or “basic” that change

orientation based on context (see Table 5.11 for examples of such words and see Appendix

C.1 for examples of specific contexts - features and sentences).

Appendix C.1 also contains examples of positive or negative dominant semantic orien-

tation labels assigned by our system to words in the Hotel review set.

Table 5.11: Context-sensitive Words

open closed young old
new full empty big
small central straight deep
atypical downtown uptown homemade
low high real common
solid bound dark simple
soft formal casual informal
joint separate thin thick

5.7.9 Experiments: Opinion Phrases

In order to evaluate opine on the tasks of opinion phrase extraction and opinion phrase

polarity extraction in the context of known features and sentences, we used a set of 550

sentences containing previously extracted features. The sentences were annotated with the

opinion phrases corresponding to the known features and with the opinion polarity. The

task of opinion phrase polarity extraction differs from the task of word SO label assignment

Table 5.12: Extracting Opinion Phrases and Opinion Phrase Polarity In the Context of

Known Features and Sentences. opine’s precision is higher than that of PMI++ and Hu++.

All results are reported with respect to PMI++.

Measure PMI++ Hu++ OPINE

Opinion Extraction: Precision 0.71 +0.06 +0.08

Opinion Extraction: Recall 0.78 -0.08 -0.02

Opinion Polarity: Precision 0.80 -0.04 +0.06

Opinion Polarity: Recall 0.93 +0.07 -0.04

101

above as follows: the polarity extraction for opinion phrases only examines the assignment

of pos and neg labels to phrases which were found to be opinions (that is, not neutral) after

the word SO label assignment stage is completed.

We compared opine with PMI++ and Hu++ on the tasks of interest. We found

that opine had the highest precision on both tasks at a small loss in recall with respect to

PMI++. opine’s ability to identify a word’s SO label in the context of a given feature and

sentence allows the system to correctly extract opinions expressed by words such as “big”

or “small”, whose semantic orientation varies based on context.

Challenges

opine’s performance is negatively affected by a number of factors: parsing errors lead

to missed candidate opinions and incorrect opinion polarity assignments; other problems

include sparse data (in the case of infrequent opinion words) and complicated opinion ex-

pressions (e.g., nested opinions, conditionals, subjunctive expressions). In our experience,

some knowledge domains have been easier to handle than others: product reviews contained

more colloquial language as well as more complicated opinion expressions, while the Hotel

reviews were better written (containing simpler, more concise and grammatical sentences,

etc.). However, this is a likely artifact of data collection from different sites with different

user profiles; in the future, we plan to build on preliminary work on automatically identify-

ing helfpul reviews (reviews that are easy to understand while providing information about

salient product features).

5.8 Ranking Opinion Phrases

opine clusters opinions in order to identify the properties to which they refer. Given an

opinion cluster A corresponding to some property, opine ranks its elements based on their

relative strength. The probabilities computed at the end of the relaxation-labeling scheme

generate an initial opinion ranking.

In order to improve this initial ranking, opine uses additional Web-derived constraints

on the relative strength of phrases. As pointed out in [46], patterns such as “a1, (*) even

a2” are good indicators of how strong a1 is relative to a2. To our knowledge, the sparse

data problem mentioned in [46] has so far prevented such strength information from being

102

Table 5.13: Lexical Patterns Used to Derive Opinions’ Relative Strength.

a, (∗) even b a, (∗) not b

a, (∗) virtually b a, (∗) almost b

a, (∗) near b a, (∗) close to b

a, (∗) quite b a, (∗) mostly b

computed for adjectives from typical news corpora. However, the Web allows us to use such

patterns in order to refine our opinion rankings. opine starts with the pattern mentioned

before and bootstraps a set of similar patterns (see Table 5.13). Given a cluster A, queries

which instantiate such patterns with pairs of cluster elements are used to derive constraints

such as:

c1 = (strength(deafening) > strength(loud)),

c2 = (strength(spotless) > strength(clean)).

opine also uses synonymy and antonymy-based constraints, since synonyms and antonyms

tend to have similar strength:

c3 = (strength(clean) = strength(dirty)).

The set S of such constraints induces a constraint satisfaction problem (CSP) whose

solution is a ranking of the cluster elements affected by S (the remaining elements maintain

their default ranking). In the general case, each constraint would be assigned a probability

p(s) and opine would solve a probabilistic CSP as described in [36]. We simplify the problem

by only using constraints supported by multiple patterns in Table 5.13 and by treating them

as hard rather than soft constraints. Finding a strength-based ranking of cluster adjectives

amounts to a topological sort of the induced constraint graph. In addition to the main opin-

ion word, opinion phrases may contain intensifiers (e.g., very). The patterns in Table 5.13

are used to compare the strength of modifiers (e.g., strength(very) > strength(somewhat))

and modifiers which can be compared in this fashion are retained as intensifiers. opine uses

intensifier rankings to complete the adjective opinion rankings (e.g., “very nice” is stronger

than “somewhat nice”). In order to assess opine’s performance on the opinion ranking

task, we scored the set of adjective opinion rankings for the top 20 most frequent properties

as follows: every partial ranking of the type strength(op) > strength(op′) produced by the

103

system (where op and op′ are opinions), is scored as correct or incorrect by a human judge.

The system’s precision was 73%.

5.9 Identifying and Analyzing Opinion Sentences

In order to fully compare opine with the related system in [49], we look at how to extract

opinion sentences and their polarity. [49] extracts sentences containing a product feature

and at least one opinion word (an adjective) as opinion sentences. opine refines this defini-

tion by extracting each sentence that contains at least one product class feature and at least

one corresponding opinion phrase (adjective, adverb, verb or noun) as an opinion sentence.

After opinion sentences are extracted, we classify them as positive or negative.

For each feature f with associated opinion phrases opi, ...opj in sentence s, opine uses

the harmonic mean formula to derive the probability that the overall opinion label for f is

L, where L ∈ {pos, neg} and k is the number of opinion phrases with label L:

P (L|f) = k ∗

∏k
i=0 strength(opi)∑k
i=0 strength(opi)

If P (pos|f) > P (neg|f), the overall opinion associated with f is positive, otherwise it is

negative.

In order to find the overall opinion label associated with the sentence, opine uses the

same formula to combine the information from the features with positive and, respectively,

negative labels:

P (L|s) = m ∗

∏m
i=0 P (L|fi)∑m
i=0 P (L|fi)

where L ∈ {pos, neg} and m is the number of sentence features with overall opinion

label L.

If |P (pos|s)− P (neg|s)| > t (t = experimentally set threshold, opine classifies the sen-

tence as positive if P (pos|s) > P (neg|s) and negative otherwise. If |P (pos|s)−P (neg|s)| < t,

opine uses the fact that same-polarity sentences tend to appear in the same paragraph and

assigns to the sentence s the polarity of the previous sentence in the review. Table 5.14 con-

tains examples of positive and negative sentences, together with an example of a sentence

104

whose polarity is decided by that of the previous review sentence.

Table 5.14: Examples of Opinion Sentences and their Polarity. Notation: “+” = positive,

“-” = negative, “?” = undecided (using polarity of previous sentence). The italic font indicates

opinion phrases and the typewriter font indicates product features.

Polarity Sentence

+ It was immaculate, comfortable
(beds are a dream), centrally located
and the service was amazing.

+ I would highly recommend this hotel.

+ We enjoyed our breakfasts,
what a great way to start the day.

- Prices are competitive,
but it can be difficult to book.

- We stayed in the Shubert suite and
it was noisy late into the night.

? Our room was clean, but when we walked
into the bathroom, we saw it was dirty.

5.9.1 Experimental Results: Opinion Sentences

In order to quantify the advantage of using opine’s features and corresponding opinions,

we compared opine and Hu’s system on the tasks of extracting opinion sentences and

determining their polarity. On the first task, Hu has 64% precision and 69% recall. opine

obtains 86% precision and 80% recall, which corresponds to 16% F-measure increase (see

Table 5.15).

In order to quantify the advantage of using opine’s high-quality features, we compared

Hu’s original system (Hu) with a version of opine which uses opine’s explicit features, but

keeps the other characteristics of Hu’s system intact (Hu’s opinion sentence definition, Hu’s

absence of a pronoun resolution module and Hu’s exclusive use of adjectives as potential

opinions). This version of opine, OP(F), registers a 4% F-measure increase over Hu’s

system.

In order to quantify the relative advantage of opine’s additions and changes with respect

to Hu’s system, we compare OP(F) to three other versions of opine : OP(F,Def) incor-

porates opine’s opinion sentence definition (Def), OP(F,Def,Pron) incorporates simple

105

Table 5.15: Opinion Sentence Extraction Comparison (F-measure values). OPINE out-

performs Hu’s original system by 16% (22% on precision, 11% on recall). The improvement is due

to OPINE’s better features, better sentence definition, use of a simple pronoun resolution module

and augmented set of opinion types. All improvements are reported with respect to Hu’s system.

Notation: OP(F) = method similar to Hu, but using OPINE’s features, OP(F,Def) = method sim-

ilar to OP(F), but using OPINE’s definition of an opinion sentence, OP(F,Def,Pron) = method

similar to OP(F,Def), but using a simple pronoun resolution module.

Dataset Opinion Sentence Extraction: Hu vs. OPINE

Hu OP(F) OP(F,Def) OP(F,Def,Pron) OPINE

D1 0.67 +0.04 +0.11 +0.13 +0.16

D2 0.58 +0.06 +0.13 +0.16 +0.24

D3 0.73 +0.04 +0.07 +0.09 +0.11

D4 0.67 +0.05 +0.08 +0.11 +0.14

D5 0.62 +0.03 +0.07 +0.11 +0.15

Avg 0.66 +0.04 +0.09 +0.12 +0.16

pronoun resolution and finally, OPINE adds additional opinion types (nouns, verbs, ad-

verbs). Comparing OP(F,Def) to OP(F) shows that a more restrictive opinion sentence

definition in conjunction with high-precision feature and opinion phrase extraction leads to

increased performance.

Comparing OP(F,Def,PronRes) to OP(F,Def) shows that simple pronoun resolution

helps as well. Finally, comparing OPINE to OP(F,Def,PronRes) shows the benefits of

including nouns, verbs and adverbs in the opinion vocabulary. The datasets used in [49]

consist of consumer electronics reviews; while the vast majority of opinion phrases in hotel

or restaurant reviews are adjective phrases, consumer electronics contain a large number

of verb and adverb phrases describing people’s opinions about a product’s functionality

(“works”, “breaks”, etc.). Therefore, opine benefits from being able to handle multiple

opinion types.

As seen in Table 5.16, on the task of determining opinion sentence polarity, opine sees an

8% increase over the 84% accuracy of Hu’s system. opine benefits from including adverbs,

nouns and verbs in the set of possible opinions.

106

Table 5.16: Sentence Polarity Extraction Comparison. OPINE’s accuracy is 8% higher than

that of Hu’s. The differences between OPINE’s results and Hu’s are in bold.

Dataset Hu OPINE

D1 0.92 +0.01

D2 0.95 -0.03

D3 0.76 +0.12

D4 0.84 +0.11

D5 0.73 +0.18

Average 0.84 +0.08

5.10 Related Work

The review-mining work most relevant to our research is described in [49], [54] and [126]. All

three systems identify product features from reviews, but opine significantly improves on

the first two and its reported precision is comparable to that of the third (although we were

not able to perform a direct comparison, as the system and the data sets are not available).

[49] doesn’t assess candidate features, so its precision is lower than opine’s. [54] employs an

iterative semi-automatic approach which requires human input at every iteration. Neither

model explicitly addresses composite (feature of feature) or implicit features. [126] uses a

sophisticated feature extraction algorithm whose precision is comparable to opine’s much

simpler approach; opine’s use of meronymy lexico-syntactic patterns is inspired by papers

such as [9] and [4]. Other systems [74, 56] also look at Web product reviews but they do

not extract opinions about particular product features.

Recognizing the subjective character and polarity of words, phrases or sentences has been

addressed by many authors, including [113, 97, 47]. Most recently, [111] reports on the use

of spin models to infer the semantic orientation of words. The chapter’s global optimization

approach and use of multiple sources of constraints on a word’s semantic orientation is

similar to ours, but the mechanism differs and the described approach omits the use of

syntactic information. Subjective phrases are used by [116, 81, 56, 53] and others in order

to classify reviews or sentences as positive or negative. So far, opine’s focus has been

on extracting and analyzing opinion phrases corresponding to specific features in specific

sentences, rather than on determining sentence or review polarity. To our knowledge, [126]

107

and [122] describe the only other systems which address the problem of finding context-

specific word semantic orientation. [126] uses a large set of human-generated patterns which

determine the final semantic orientation of a word (in the context of a product feature) given

its prior semantic orientation provided by an initially supplied word list. opine’s approach,

while independently developed, amounts to a more general version of the approach taken

by [126]: opine automatically computes both the prior and final word semantic orientation

using a relaxation labeling scheme which accommodates multiple constraints. [122] uses

a supervised approach incorporating a large set of features in order to learn the types of

linguistic contexts which alter a word’s prior semantic orientation. The paper’s task is

different than the one addressed by opine and [126], as it involves open-domain text and

lacks any information about the target of a particular opinion.

[113] suggests using the magnitude of the PMI-based SO score as an indicator of the

opinion’s strength while [123, 40] use a supervised approach with large lexical and syntactic

feature sets in order to distinguish among a few strength levels for sentence clauses. opine’s

unsupervised approach combines Turney’s suggestion with a set of strong ranking constraints

in order to derive opinion phrase rankings.

Finding properties implied by adjective opinions in reviews is related to finding adjectival

scales [46]. opine benefits from the use of Web- and WordNet-derived information in

clustering adjective opinions; also, the space of properties to which reviews refer tends to

be smaller than in the case of a large news corpus.

5.11 Conclusions and Future Work

opine is an unsupervised information extraction system which extracts fine-grained features,

and associated opinions, from reviews. opine’s use of the Web as a corpus helps identify

product features with improved precision compared with previous work. opine uses a novel

relaxation-labeling technique to determine the semantic orientation of potential opinion

words in the context of the extracted product features and specific review sentences; this

technique allows the system to identify customer opinions and their polarity with high

precision and recall. In the future, we plan to extend opine’s techniques to open-domain

text.

108

Chapter 6

ACQUIRING COMMONSENSE INFORMATION FROM WEB TEXT

6.1 Introduction

In the past few years advances in probabilistic inference and sensor technology have led

to a new generation of integrated AI systems that includes systems for activity and state

recognition. Such systems have been found to benefit from commonsense information about

daily human activities available in volunteer-created knowledge bases such as OpenMind

and its offshoot, the Open Mind database for Indoor Common Sense (OMICS). However,

knowledge bases created by volunteers suffer from semantic gaps and noise - additionally,

the human effort involved in creating and updating them is significant. In this chapter, we

show how Web data can be used to clean up and augment existent commonsense knowledge

bases for integrated AI systems.

The contributions of this chapter are as follows:

1. We describe a simple, high precision method that uses Web-scale statistics to as-

sess potential event-level relation instances and show that the assessed data significantly

improves the precision and accuracy of a state-of-the-art system for state recognition [86].

2. We show that focused mining of event-level relation instances from the Web can

mitigate the knowledge gaps in volunteer-created commonsense knowledge bases by discov-

ering new high quality facts. We then evaluate the mined data in the context of the state

recognition task and show that it leads to results comparable to those obtained when using

the assessed version of volunteer-supplied data from 1. In other words, volunteer created

content can be replaced by automatically mined information (in preparation).

The rest of this chapter is organized as follows: Section 6.2 describes the domain model

for household activities and introduces the OMICS knowledge base created for integrated

AI systems; Section 6.3 shows how instances of event-level commonsense relations can be

assessed using Web-scale statistics; Section 6.4 describes the iterative acquisition of relation

109

instances with the help of Web data ; Section 6.5 gives an overview of our results; Section

6.6 discusses related work areas and Section 6.7 gives an overview of our on-going work.

110

6.2 A Domain Model for Household Activities

This section describes the structure of a basic domain model for commonsense information

specific to household activities. A subset of the domain-specific predicates can be populated

using techniques described in previous chapters of this thesis, as well as other NLP methods

(see subsection 6.2.3) - for the purpose of this chapter, these predicates will be treated as

background knowledge. The remaining predicates are complex target predicates (see sub-

section 6.2.2); the current chapter focuses on automatically populating and assessing them

using Web data.

6.2.1 Domain Model for Household Activities: Background Knowledge

Given a set of concepts (e.g., Person, Table), their corresponding properties (e.g., TableCleanliness)

and a set of relations among concepts (e.g., Person,Clean, Table), we are interested in state

and action events defined as follows:

a) A state event is a tuple e = [concept, Be, propertyValue], where Be denotes the IS-A

relation and propertyValue denotes the value of a concept property.

For example, e = [Door, Be, Clean] corresponds to a particular state of the door. In the

following, we omit the relation and simply denote each state by a [concept, propertyValue]

tuple.

b) An action event is a tuple [concept, relation, conceptSet].

For example, e = [Person, Open, Door] corresponds to a particular action performed by

Person and involving a Door object. The concepts in the conceptSet correspond to direct or

indirect objects: for example, another potential complex action event is e = [Person, Open,

Door, (with) Hand]. In this case, the indirect object Hand is preceded by the corresponding

preposition with.

Given a set of state and action events, we define the following utility predicates that will

be used to characterize higher-level target predicates.

a) sameImplicitProperty(e0, e1): the value of this predicate is True if e0 and e1 are

states corresponding to the same implicit property (e.g., [Door, Open], [Door, Closed]) and

False under any other circumstances. Given an event pair, the value of this predicate is

111

computed automatically using the available domain model.

b) positiveSemanticOrientation(e), negativeSemanticOrientation(e),

neutralSemanticOrientation(e) are predicates that characterize a particular event with

respect to its desirability: for example, [Door,Broken] has a negative semantic orientation.

These predicates were evaluated using a version of Turney’s PMI-IR method as described

in Chapter 5 - we are also able to use our own techniques from Chapter 5 to evaluate the

semantic orientation of a particular event in the context of another (e.g., [Water,Hot] has

a positive connotation in the context of [Person,Make, Tea], but not in the context of

[Person,Water, P lant]), but the driving state recognition application described in Section

6.5 has yet to incorporate this type of information in its model.

6.2.2 Domain Model for Household Activities: Target Predicates

In this chapter we are interested in the acquisition and assessment of instances for the

following event level predicates:

a) causal relationship: Cause(e1, e2), Effect(e1, e2)

b) manner relationship: Manner(e1, e2)

c) temporal relationships: Before(e1, e2), After(e1, e2), During(e1, e2)

d) preference relationship: isPreferableTo(e1, e2)

e) general context relationship: Context(e1, e2)

f) no relationship: NoRel(e1, e2).

As we see in the evaluation section (Section 6.5), these relationships - which are compiled

based on the existent natural language processing literature - can be used to express essential

n-ary predicates in useful, volunteer-created knowledge bases.

6.2.3 Obtaining the Background Knowledge

The background knowledge is currently obtained in a semi-automatic manner, as described

below. It is important to point out that the background knowledge can be obtained in a

purely automatic manner (as detailed in the following subsection) - for the current project,

we take advantage of the availability of a large amount of background knowledge in the

112

Table 6.1: Basic Binary Event Relations and Corresponding Examples. Notation: e1, e2

= state or action events.

Cause(e1, e2) Cause([Person, Hear, Knock], [Person, Open, Door])

Effect(e1, e2) Effect([Person, Open, Door], [Person, Hear, Knock])

Before(e1, e2) Before[(Person, Leave, House), (Person, Open, Umbrella)]

During(e1, e2) During[(Person, Use, Water), (Person, Wash,Face)]

After(e1, e2) After[(Person, Open, Umbrella), (Person, Leave, House)]

Context(e1, e2) Context([Person, Brush, Teeth], [Person, Use, Toothpaste])

IsPreferableTo(e1, e2) IsPreferableTo([Tea, Warm], [Tea, Cold])

NoRel(e1, e2) No-rel([Person,Make,Tea], [Person,Water,Plant])

form of the Open Mind Indoor Common Sense database (described below) and focus on

augmenting this knowledge as needed.

The Open Mind Indoor Common Sense Knowledge Base: OMICS [44]

The SRCS state estimation system that provides the evaluation framework for our

commonsense fact acquisition and assessment procedures (see Section 6.5) started by using

the basic facts available in the Open Mind Indoor Common Sense (OMICS) [44]. Similar to

CyC [59], OMICS is a user-contributed database; unlike Cyc, which had a small dedicate

team of humans adding information (and recently undertook efforts to acquire some facts

from the Web [68]), OMICS allows users from all over the Internet to add facts. Users

are presented with fill-in-the-blank questions such as “You blank when you are blank”, with

the expectation that the users will fill in, e.g., “eat” and “hungry” in the two blanks.

The sentence templates map into relations, e.g., the people (Action, Context) relation,

which may contain the people(eat, hungry). A cleanup step is performed to remove noisy

entries; the step uses WordNet-based distance functions to eliminate entries with entered

values that are completely or mostly unrelated. The cleanup step also eliminates offensive

entries.

The resulting data still contains some noise as well as irrelevant information; additionally,

the collected information suffers from coverage gaps - in the following, we describe how the

background knowledge used in this chapter is obtained by further cleaning up and restricting

OMICS to a smaller, high-precision subset which is then augmented directly using the Web.

Concepts We start by compiling a set of concepts of interest. As seen in previous work,

113

such a set can be compiled by retrieving concrete frequent terms from Web pages describing

how-to information about household activities [87, 124]. In this chapter, we start with the

basic object set provided by the volunteer created OMICS knowledge base and automatically

eliminate the erroneous entries by using Web statistics to check that they are subclasses of

the Object class (using the subclass assessment mechanism described in Chapter 3).

Relations Given the set of concepts of interest, a number of relation extraction methods

can be used to identify corresponding relations involving the given concepts. In this chapter,

we avail ourselves of the relation set provided by OMICS.

Concept Properties Given a set of concepts, the methods described in Chapter 5 can be

employed to derive a set of explicit concept properties by parsing Web pages with how-to

information, identifying potential properties and assessing them using Web statistics. In

this chapter, we take advantage of the fact that the state facts in OMICS correspond

to a large set of (object, property value) pairs (e.g., state(Door, Broken), state(Door,

Fixed), state(Door, Open), state(Door, Closed)). Given the set of (object, property

value) pairs provided by OMICS, our system uses the unsupervised adjective clustering

mechanism described in Chapter 5 in order to uncover the implicit object properties referred

to by the state information. In the examples above, the system would uncover the implicit

properties beFixed (whose values are Broken and Fixed) as well as beOpen (whose values

are Open and Closed).

6.3 Assessing Instances of Commonsense Relations

We start by describing how we evaluate instances of binary event relations and continue by

describing how we evaluate instances of ternary relations.

6.3.1 Binary Relation Assessment: Using Lexico-Syntactic Patterns

Let R be a binary event-level relation and let e0 = [s0, v0, oo] and e1 = [s1, v1, o1] correspond

to two event descriptions for the events of interest e0 and e1. As previously mentioned,

events can contain more than one object o - for simplicity, we focus on this simplest case in

our write-up.

In the following we describe how we compute the probability that R(e0, e1) holds.

114

Intuitively, R(e0, e1) is more likely to hold if we can find instantiations of relation-specific

lexico-syntactic patterns with complete or partial event descriptions for e0 and e1. As in

previous chapters, we use the Web as a corpus and use the Google search engine to find

hitcounts for queries based on such instantiated patterns. In the following, we describe this

process in more detail.

Table 6.2: Relation-specific Patterns. Notation: e1, e2, e3 = state or action events, [X],
[Y] = argument slots.

Cause(e1, e2) [Y] because [X], [X] leads to [Y], [Y] due to [X]

Before(e1, e2) [X] before [Y], [Y] after [X], [X] in order to [Y], [X] on the way to [Y]

Manner(e1, e2) [X] is a way to [Y], [Y] by [X], [X] as a means to [Y], [Y] using [X]

Context(e1, e2) [Y] while [X], [X] and [Y], [X] or [Y], [Y] if [X]

IsPreferableTo(e1, e2) [X] rather than [Y], [X] instead of [Y], [X] better than [Y]

Let partial1, partial2 and complete represent possible types of event descriptions: partial1

and partial2 refer to size 1 and 2 subsets of the complete event description while complete

refers to the complete description. For example, given e0 = [s0, v0, oo], [s0, v0] is a size 2

subset of e0’s complete description and therefore is of type partial2.

Let D = {partial1, partial2, complete} represent the set of types of event descriptions.

Let PT represent the set of relation-specific patterns (see Table 6.2). Due to the high query

cost of estimating the quantities of interest from the Web, we chose a small number of

patterns with high precision rather than a larger number of patterns with lower average

precision. The patterns were selected based on a combination of our previous research

experience with some of these relations ([67], [91]) and bootstrapping for relations such as

Context().

We estimate p(R(e0, e1)) as follows:

p(R(e0, e1)) =
∑

d∈D

wd ∗ p(R(e0, e1)|Fd),

where d is a type of event description, wd reflects the confidence in d (the sum of the

weights is 1) and Fd is a boolean feature computed as follows:

Fd = 1 iff fd(e0, e1) > th = threshold where fd(e0, e1) is defined as follows:

115

fd(e0, e1) = maxpt(fd,pt(e0, e1) ∗ wpt),

where pt ∈ PT , fd,pt(e0, e1) captures the information provided by the individual pattern

pt and wpt is the weight reflecting the importance of this individual pattern. We estimate

the value of fd,pt(e0, e1) as follows:

fd,pt(e0, e1) =

∑

(si,sj),si∈e0,sj∈e1

Score(si, sj , pt) ∗ p(e0|si, R) ∗ p(e1|sj , R)

#(si, sj)
,

where (si, sj) is a pair of d-type subsets of e0 and, respectively e1, Score(si, sj , pt) is a

quantity reflecting how likely si and sj are to be related by means of pattern pt (see below)

and finally, the product of p(e0|si, R) and p(e1|sj, R) is a measure of how likely (si, sj) is

to be a good substitute for (e0, e1) (if si, sj are very frequent and not highly correlated

with a particular event pair, this measure will penalize their contribution, Score(si, sj , pt),

accordingly).

Score(si, sj , pt) is computed as follows:

Score(si, sj , pt) =
hits(pt(si, sj))

hits(cocc(si, sj))
.

cooc(si, sj) denotes event co-occurrences in Web text: in order to find such co-occurrences,

we employ the queries “si ∗ sj “ and “sj ∗ si “ (or, if the returned hitcounts are 0, “ si + sj

“ and “ sj + si ”).

p(e|s,R) is computed as seen below:

p(e|s,R) =

∑

pt′∈PT

hits(pt′(e)

∑

pt′′∈PT

hits(pt′′(s))

Initial experiments have shown that estimating these conditional probability terms can

be problematic due to the sparse data problem (even when computing these terms at Web

scale). In order to mitigate this problem, we ignore the R term and compute p(e|s) instead

whenever necessary.

116

Thresholds and weights The thresholds used to convert fd(e0, e1) quantities into boolean

features are estimated based on a set of 20 positive and 20 negative examples for the relation

of interest. In our experiments, the wd weights - reflecting the importance of type d event

descriptions - were manually set (we required that wpartial1 > wpartial2 > wcomplete), but

we are in the process of experimenting with values learned on the training set mentioned

above. Finally, each of the high-precision relation-specific pattern was given the same wpt

weight (the default value was 0.9).

6.3.2 Binary Relation Assessment: Using Relational Definitions

In the previous subsection, we used lexico-syntactic patterns to directly check whether a

particular event-level relation holds. While lexico-syntactic patterns are useful for more

specific relations such as Cause, higher-level predicates such as isPreferableTo() could

benefit from additional sources of evidence.

One potential such evidence source is represented by relational definitions, taking the

form of Horn formulas. In our case, the predicates in the formulas are defined on top of

the existent domain model (which can be augmented as described below). The formulas

themselves can be supplied manually or can be learned using traditional ILP techniques or

recent methods such as Markov Logic Network structure learning; the results in this chapter

use a small number of manually supplied definitions describing the relation of interest.

Example

Here is an example of a relational definition for a higher-level event relation:

isPreferableTo(e0, e1) := isState(e0) ∧ isState(e1) ∧ sameImplicitProperty(e0, e1) ∧

positiveSemanticOrientation(e0) ∧

negativeSemanticOrientation(e1)

In our case, each literal will have an associated probability (some of them will have

probability 1.0 - for example, an event is or is not a state event - while others will have

probabilities less than 1.0 - for example, the semantic orientation predicates). The proba-

117

bility associated with the value of isPreferableTo(e0, e1) can be computed using any of a

number of combination functions (mean rule, product rule, etc.).

Some relations have multiple definitions, as seen in the example below - additionally,

definitions can have associated parameters indicating how likely they are to capture the

desired semantics of the relation.

context(e0, e1) := cause(e0, e1)|effect(e0, e1)|before(e0, e1)

after(e0, e1)|during(e0, e1)|manner(e0, e1)

If a particular relation has k alternative definitions, the probability of a relation instance

can be estimated in a number of ways - for simplicity, we use the Noisy-Or and Noisy-Max

functions.

Let p(R(e0, e1),DR) correspond to the probability of a particular relation instance com-

puted using evidence from available relational definitions. Let p(R(e0, e1), PR) correspond

to the probability of a relation instance computed using lexico-syntactic information, as

detailed in the previous sections.

We combine the probabilities corresponding to these sources of evidence in order to

derive the final value of a probability associated with a particular instance:

p(R(e0, e1)) = α0 ∗ p(R(e0, e1), PR) + α1 ∗ p(R(e0, e1),DR),

where α0 and α1 are parameters indicating how much importance to attach to a particu-

lar source of evidence (if no evidence from a particular source is available, the corresponding

parameter is 0 and the remaining parameter is set to 1).

6.3.3 Ternary Relation Assessment: Using Relational Definitions

Most of the commonsense relations of interest to us are binary - the exception is repre-

sented by the stateChange relation below, which is an important relation in the Open Mind

118

commonsense database. Additionally, our current work explores the learning of other util-

ity predicates: ternary and n-ary relations that correspond to constraints involving more

than 2 events: for example, activitySteps(e0, e1, e2) denotes the fact that e0, e1 and e2 are

consecutive steps of a particular human activity.

An example relational definition used for the stateChange relation can be seen below:

stateChange(e0, e1, e2) := isState(e0) ∧ isAction(e1) ∧ isState(e2) ∧

cause(e0, e1) ∧ cause(e1, e2) ∧

sameImplicitProperty(e0, e2)

For the purposes of this chapter’s experimental evaluation, instances of ternary relations

were assessed using the corresponding set of relational definitions as in the case of previously

described binary relations.

6.3.4 Labeling Potential Instances with Appropriate Relation Names

Section 6.4 describes our procedure for iterative mining of complex relation instances - as

part of this procedure, the system labels each potential relation instance with the appropri-

ate relation name (e.g., Cause) as described below.

Given the set of target predicates TR and an event pair (e, e′), the system assigns the

event pair the relation label R ∈ TR such that

R = argmaxR[p(R(e, e′))], where p(R(e, e′)) is computed as described above.

In the experiments described in this chapter, we used the simple method described above

in order to label potential relation instances; however, a more accurate labeling procedure

would take into account the dependencies among the target relations, as described in our

on-going work section (Section 6.7).

We have described how potential instances of event-level relations are assessed using

Web-scale statistics - in the following, we describe our iterative instance acquisition mech-

anism.

119

6.4 Mining Commonsense Facts from the Web

In this section we describe how commonsense facts can be automatically acquired from

the Web in the context of existent background knowledge (in the form of a populated basic

domain model).

6.4.1 Finding Commonsense Facts: An Overview

Section 6.2 describes the basic domain model as consisting of

a) O, a set of objects and object properties together with property values,

b) E, a set of action and state events,

c) BR, a set of background event-level predicates such as positiveSemanticOrientation().

Given this basic domain model, the system augments it by finding pairs of known events

that correspond to instances of event-level commonsense relations (see Table 6.1).

Figure 6.1 contains an overview of this instance acquisition process.

Given the basic domain model < O,E,BR > and the set of target relations TR, the

space of potential instances to be labeled is quite large. In order to prune it, the system

takes as input a set of queries of interest Q and restricts the set of objects O to contain

observable objects (objects whose use is directly tracked using sensors).

The system uses the iterative procedure described in Figure 6.1 to find instances of

target relations. At each iteration, the events matching the target queries (e.g., [person,

swallow, pill] matches the query swallow) are selected: for each such event e, all events e′ also

matching target queries or, alternatively, containing observable objects, are also selected.

The system examines each resulting event pair (e, e′) in order to decide whether it’s

a potential instance of a target relation - at this step, a cheap classifier that uses mostly

background knowledge to decide whether e and e′ are conceptually related is employed. If

e and e′ are found to be related, a second Web-based classifier is used to decide if (e, e′) is

an instance of one of the target relations. If so, e′ is added to the set of target queries Q.

Once the set of events e has been exhausted, the process is repeated with the updated

target query set as many times as desired.

In the following, we describe how potential instances of target relations are identified.

120

FocusedFactMining(Q, O, E, BR, TR, numIterations)

1 i = 0; F = {};

2 while i < numIterations

3 ∀e ∈ E s.t. matchesQuery(e,Q)

4 ∀e′ ∈ E s.t. matchesQuery(e′, Q) or containsObject(e′, O)

5 if potentialTargetRelationInstance(e, e′, R)

6 F ← F ∪ generateRelationInstances(e, e′, R);

7 Q← Q ∪ {e′};

8 i + +;

9 return F ;

Figure 6.1: Overview of the Focused Fact Mining Process. Notation: Q = set of queries

of interest, O = set of objects of interest, BR = set of background relations, TR = set of target

relations, E = set of events, e, e’ = events in E, F = set of facts (final instances of event level

relations), numIterations = number of iterations.

.

6.4.2 Identifying Potential Facts

Given a pair of events (e, e′), our system first uses a simple decision tree classifier Crel to

determine whether (e, e′) are likely to be linked by means of a direct relation. If so, the

appropriate relation label is computed as described in Section 6.3.

The Crel classifier checks whether two events e and e′ are directly related as follows:

a) If overlap(e, e′) ≥ ct, e and e′ are considered to be related - overlap(e, e′) is defined

as follows:

overlap(e, e′) = max(
∑

t∈e

p(contains(e′, t))/size(e),
∑

t′∈e′

p(contains(e, t′))/size(e′))

where size(e) denotes the number of terms in e and p(contains(e, t′)) is the probability

that e′ contains term t from e. This probability is 1.0 if t′ appears in e - if e contains a term

t such that t and t′ are linked by means of a background relation R, the probability is set

to that of the corresponding instance of R.

121

b) If overlap(e, e′) < ct but PMIScore(e, e′) ≥ ct′, e and e′ are considered to be related,

where:

PMIScore(e, e′) =
hits(cooc(e, e′))

hits(e) ∗ hits(e′)

.

cooc(e, e′) denotes event co-occurrences in Web text: in order to find such co-occurrences,

we employ the queries “e * e’ “ and “e’ * e “ (or, if the returned hitcounts are 0, “ e + e’ “

and “ e’ + e ”).

c) If overlap(e, e′) < ct and PMIScore(e, e′) < ct′, e and e′ are unrelated.

The identified potential facts are labeled with the appropriate relation label as described

in Section 6.3.

6.5 Results

This section describes our experimental results - we show that:

a) Web statistics can be used to compute useful scores for available commonsense infor-

mation provided by volunteers - when using this assessed version of the data, the recently

introduced state estimation system SRCS (see subsection 6.5.1) sees a 13% increase in

precision over using the initial version of the data.

b) High precision instances of useful commonsense relations can be automatically ac-

quired from the Web - the performance of the SRCS system when using automatically

mined data is similar to the performance of SRCS when using the assessed version of the

volunteer-supplied data.

In the following we describe our evaluation and results in more detail.

6.5.1 Using Commonsense Knowledge For State Recognition with SRCS

Our evaluation uses the recently introduced SRCS system for state estimation [86]. SRCS

operates by collecting sensory input from a user and employing statistical inference meth-

ods to reason about various predefined facts about the state of the world (e.g., “Is the light

on?”, “Is the user in the kitchen ?”, “Is the user hungry ?”). The model translating be-

tween observations and abstract states is acquired from existing hand-created commonsense

122

databases. As mentioned earlier in this chapter, SRCS relies on the information provided

by the OMICS knowledge base. Currently, SRCS makes use of a subset of the OMICS

relations (see Table 6.3) although more are being integrated in the system’s formalism. As

seen in Table 6.3, the OMICS relations of interest can be expressed in terms of the basic

target predicates defined in section 6.2. In order to assess potential instances of OMICS

predicates, we first check the typing constraints: if they are not met, the instance is not a

correct instance - if they are met, we assess the corresponding target predicate as described

in the previous sections.

Table 6.3: OMICS Relations. Notation: e1, e2, e3 = state or action events.

OMICS Predicate Type Constraints Basic Predicate

CauseOMICS(e1, e2) Action(e1), State(e2) Cause(e1, e2)

ResponseOMICS(e1, e2) State(e1), Action(e2) Cause(e1, e2)

PeopleOMICS(e1, e2) State(e1), Action(e2), agentTypePerson(e1) Cause(e1, e2)

ContextOMICS(e1, e2) N/A Context(e1, e2)

DesireOMICS(e1, e2) State(e1), State(e2) isPreferableTo(e1, e2)

In the following, we describe two different evaluations that show the value of assessing

and mining commonsense information using Web data.

6.5.2 Using Web Statistics to Assess Manually Supplied Commonsense Facts

Table 6.4: The set of activities for which experimental trace data was collected.

brush teeth take medication water plants
shave your face take a shower watch television
dust shelves eat cereal groom hair
write a letter make cereal wash windows

make tea

The OMICS knowledge base contains a lot of valuable information, but since the data

is supplied by volunteers it contains some noisy or not very relevant information. We use

Web statistics to assess the manually created instances of commonsense relations, which are

then supplied to the SRCS system - as seen in Table 6.5, the use of the assessed instances

results in a 13% precision improvement.

123

For the experimental evaluation whose results are summarized in Table 6.5, traces of the

iBracelet’s output were collected in an experimental setting as worn by three users while

performing various daily activities in a simulated home environment. The list of activities

performed can be seen in Table 6.4. A total of 5-7 minutes worth of performance of each

activity was collected, for a total of approximately 70-75 minutes of data. These traces

were divided into time slices of 2.5 seconds - reasoning was to be performed over each of the

time slices. For these activities, we selected a set of 24 Boolean variables from the OMICS

database which represented them and recorded their “truth” value as being true of false

for each interval of time in the trace - this human labeling of these traces is the source of

ground truth.

Table 6.5: The Impact of Assessed Commonsense Knowledge on the Performance of
SRCS : Assessed Information Significantly Improves the Performance of the State Es-
timation System. Notation: Precision, Recall and Accuracy are the performance measures of
interest; SRCS/original data = SRCS using the original set of OMICS facts ; SRCS/assessed data
= SRCS using the assessed version of the OMICS facts; Random = randomly labeling the variables
in the test set as True or False.

Method Accuracy Recall Precision

Random 50% 50% 8%

SRCS/original data 80% 46% 18%

SRCS/assessed data 88% 53% 31%

We compared the human labeling of these traces for the 24 variables of interest to the

labeling automatically obtained from SRCS when using a) the original set of OMICS facts

and then b) the assessed set of OMICS facts (that is, the set of OMICS facts together with

the probabilities computed using Web statistics).

The measures we consider are the standard information retrieval measures of precision

and recall with respect to discovery of True labels in addition to the labeling accuracy

measure; in the case of the state recognition problem, most of the variables are false most

of the time (94% of labels are false) and finding true variables is of greater interest.

Assessing OMICS facts considerably improved the accuracy and precision of the system

- much of the difference in results is caused by a decrease in positive labels (that is, variables

labeled “true”); while this lowers the recall slightly, the precision is considerably improved

124

by the decrease in false positives.

Table 6.6: Identifying Highly Relevant Commonsense Information. Notation: Rel =
relation name; Num. Facts = number of OMICS facts for the relation of interest; % Facts
(p > 0.7) = percentage of original facts whose assigned probability is greater than or equal to 0.7;
Prec. Orig. Facts = precision of original facts; Prec. Facts (p ≥ 0.7) = precision of facts with
prob. greater or equal to 0.7.

Rel Num. Facts % Facts (p ≥ 0.7) Prec. Orig. Facts Prec. Facts (p ≥ 0.7)

causeOMICS 6749 70% 84% 97%

contextOMICS 3014 64% 96% 100%

responseOMICS 6903 56% 96% 100%

peopleOMICS 1235 68% 94% 97%

desireOMICS 1186 33% 90% 96%

Average 19087 61% 92% 98%

As seen in Table 6.5, the mined probabilities are effective in weeding out correlations

of lower quality in the OMICS data. Even outside the SRCS system, the advantages of

assessing OMICS information can be quantified as seen in Table 6.6: given a set of 250

OMICS facts (50 per OMICS relation), this table shows that assessed OMICS facts with

high associated probabilities are more relevant than unassessed OMICS facts. The precision

measure not only takes into account the truth value of a fact, but also reflects the perceived

importance of a fact (for example, a toothbrush being opened is an unlikely cause of a

toothbrush being used to brush teeth).

Table 6.7 contains additional examples of incorrect or unlikely instances of a common-

sense relation. Typical errors include typing or spelling errors (“launcher” vs. “lawn chair”)

and mistaking the cause for the effect (“people watch television because people know latest

news”, instead of viceversa). Additionally, people input sometimes irrelevant (or potentially

wrong information) (the door being unattached is preferable to the door being broken).

Meanwhile, the OMICS facts with highest assigned probabilities tend to represent useful

dependencies among states of the same object (“ if the coffee maker is plugged in, the coffee

maker is on”) or dependencies among closely related objects (“if the cushions are soft, the

couch is soft”).

125

Table 6.7: Examples of Incorrect or Less than Relevant Information Eliminated by

Using Web-based Statistics.

Relation Example

causeOMICS (toothbrush,opened) → (toothbrush, used to brush, teeth)

(phone,ringing) → (phone,connected)

(nightstand,used to keep lamp) → (lamp, usable for reading)

contextOMICS (broken,launcher) → (replace,lawn chair)

peopleOMICS (people,know,latest news) → (people,watch,television)

desireOMICS (door,broken) → (door,unattached)

6.5.3 Using the Web to Replace and Augment Existent Commonsense Knowledge Bases

A second evaluation looked at whether high quality instances of event-level relations can be

acquired from the Web: we measured the quality of the acquired instances both directly and

by supplying them to the SRCS system, which then used them as its background knowledge

in order to solve its state recognition task.

As we can see in Table 6.8, directly measuring the precision of the acquired instances

shows that the found facts are of good quality - additionally, we found many facts missing

from OMICS, which shows that the Web is a valuable resource for automatically augmenting

existent knowledge bases. As previously mentioned, the preliminary experiments on which

we report here have used the data obtained after only 2 iterations of our focused fact

mining routine: running the fact mining routine for more iterations will of course result in

an increased yield.

Additionally, we show that the acquired relation instances are valuable in the context of

the state estimation task solved by SRCS (see Table 6.9 for a summary of the corresponding

results). In order to do so, we repeated the experiments described in the previous sections,

with a few modifications: a) we used both the original version of the SRCS system and an

improved version which includes an additional learning component, b) we ran SRCS with

the assessed version of the original OMICS data, the mined commonsense data and the two

data sets combined.

As seen in Table 6.9, using the mined data and using the assessed version of the original

OMICS data lead to similar performance numbers. This is an encouraging result, as it

shows that commonsense relation models mined from the Web can replace manually supplied

126

Table 6.8: Mining Commonsense Facts. Notation: Precision = precision of extracted facts,Yield
= number of extracted facts, Proportion of Novel Facts =% of mined facts that are not in OMICS.
The results are reported for facts with p > 0.75 found after 2 iterations of the fact mining routine.

Relation Precision Yield Proportion of Novel Facts

causeOMICS 76% 424 68%

responseOMICS 73% 253 74%

contextOMICS 71% 326 71%

desireOMICS 82% 400 66%

peopleOMICS 82% 153 94%

stateChangeOMICS 85% 459 77%

Table 6.9: The Impact of Mined Commonsense Data on the SRCS system: Using
the mined event data in addition to the assessed original data improves the system’s
performance. Notation: Orig = SRCS using the assessed original data, Mined = SRCS using the
mined event data, Orig/Mined = SRCS using both the assessed original data and the mined event
data, Learning = boolean variable reflecting the system’s use of its learning component. We report
on the Precision, Recall and Accuracy measures.

Method Learning Accuracy Precision Recall

Orig No 82% 25% 51 %

Orig Yes 83% 24% 67 %

Mined No 84% 23% 52 %

Orig/Mined No 86% 30% 83 %

relation models for this task.

Using the two data sets together results in significant improvements in recall and pre-

cision over the best results of the SRCS system when using only one or the other of the

two sets. This result reflects the fact that our system was able to augment the manually

supplied set of commonsense relation instances with additional high quality information

from the Web.

6.6 Related Work

The Web as a corpus. Recent work on Cyc [68] and activity recognition [124] has shown

that it is possible to extract common sense information from the Web. In the case of the

former work, Cyc follows the lead of KnowItAll in using the Web to extract instances of

simple binary relations (simple factoids) from the Web - we focus on more complex, event-

level relations suitable for activity and state recognition applications. The latter work is

127

restricted to capturing the very simple and vague Use binary relationship between activities

and objects - in this chapter, we extract more complex and varied information suitable for

state recognition.

Semantic Relationship and Inference Rules Extraction. One of the important common-

sense relations we discussed in this chapter is the Cause relation. While NLP researchers

(including the author of this thesis) have started addressing the extraction of causal rela-

tionships ([42], [51], [66], [67]), there are still many advances to be made in this area. So

far, people have focused on extracting instances of causal relations at the level of phenom-

ena described by simple nouns (e.g., “flood” potentially causes “hunger”) or, alternatively,

the more vague type of discourse causal relations (sentence A is connected to sentence B

my means of the Cause discourse relation rather than by means of the Contrast relation).

In this chapter we investigate an additional type of Causal relation: concrete, event-level

Causal relations in the context of background knowledge. In fact, the absence of background

knowledge has greatly limited the types of causal information people were able to extract

from text in previous work - most efforts focus on open domain, general causal links (such

as the flood causes hunger example) or sentence-level links (sentence A causes sentence B).

Most previous projects focus on mining explicit causal relations - relations explicitly

stated at the level of a sentence or relations between two consecutive sentences expressed

and expressed by connective markers (e.g., because, because of). We are interested in both

explicit and implicit causal relations (instances of causal relations that can only be assessed

at the level of the Web rather than found in one particular sentence). Additionally, we use

a different mechanism for assessing the extracted data and we make use of automatically

acquired IS-A and Part-of information.

A related effort is the extraction of inference rules from text ([82], [112]): [82] is limited

to paraphrases while [112] uses a statistical approach to validate potential If-Then rules

based on word co-occurence information extracted from Japanese text. While we also take

advantage of corpus statistics when assessing potential relation instances, we validate more

complex instances and do so by combining statistical and relational information - our work

can be seen as extending that in [112] and combining it with insights from [72], a paper

that addresses the assessment of n-ary relation instances that are decomposable into sets of

128

binary relation instances.

6.7 Work in Progress

There are many directions for future work and we are currently pursuing a few, as detailed

in the following.

We are looking into the automatic evaluation of the context-specific semantic orientation

of a particular event e e.g., contextSpecificPositiveSO(e, ec), where ec represents the con-

text of interest. We are also looking at the assessment of additional commonsense predicates

in the OMICS database, as they are being integrated into the SRCS formalism.

In order to improve the quality of the mined models, we are currently testing a scheme

that combines a linear label propagation method with active learning heuristics in order to

both improve the precision and yield of our mining routine as well as reduce the number of

necessary search engine queries (under preparation).

129

BIBLIOGRAPHY

[1] Calo: Cognitive assistant that learns and organizes. Technical report, SRI Interna-
tional, 2005.

[2] E. Agichtein and L. Gravano. Snowball: Extracting Relations from Large Plain-
Text Collections. In Proceedings of the 5th ACM International Conference on Digital
Libraries, pages 85–94, San Antonio, Texas, 2000.

[3] E. Agirre, O. Ansa, D. Martinez, and E. Hovy. Enriching WordNet concepts with topic
signatures. In Proceedings of the NAACL worshop on WordNet and Other Lexical
Resources: Applications, Extensions and Customizations, 2001.

[4] A. Almuhareb and M. Poesio. Attribute-based and value-based clustering: An evalu-
ation. In Procs. of EMNLP, pages 158–165, 2004.

[5] N. Ashish and C. Knoblock. Semi-automatic wrapper generation for Internet informa-
tion sources. In Proceedings of the Second IFCIS International Conference on Coop-
erative Information Systems, pages 160–169, Los Alamitos, CA, June 1997. IEEE-CS
Press.

[6] T. Baldwin and F. Bond. Learning the countability of english nouns from corpus data.
In Proceedings of ACL, 2003.

[7] M. Banko, M. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni. Open informa-
tion extraction from the Web. In Proceedings of the IJCAI, 2007.

[8] M. Bauer, D. Dengler, and G. Paul. Instructible information agents for web mining.
In Proceedings of the 2000 Conference on Intelligent User Interfaces, January 2000.

[9] M. Berland and E. Charniak. Finding parts in very large corpora. In Procs. of ACL,
pages 57–64, 1999.

[10] C. Blake and W. Pratt. Collaborative information synthesis. In Proceedings of ASIST,
2002.

[11] A. Blum and T. Mitchell. Combining Labeled and Unlabeled Data with Co-Training.
In Proceedings of the 11th Annual Conference on Computational Learning Theory,
pages 92–100, Madison, Wisconsin, 1998.

130

[12] E. Brill. Some Advances in Rule-Based Part of Speech Tagging. In Proceedings of
the Twelfth National Conference on Artificial Intelligence, pages 722–727, Seattle,
Washington, 1994.

[13] S. Brin. Extracting Patterns and Relations from the World Wide Web. In
WebDB Workshop at 6th International Conference on Extending Database Technol-
ogy, EDBT’98, pages 172–183, Valencia, Spain, 1998.

[14] R. Bunescu and R. Mooney. Collective information extraction with Relational Markov
Networks. In Proceedings of ACL, pages 439–446, 2004.

[15] M.J. Cafarella, M. Banko, and O. Etzioni. Relational web search. Unpublished, UW
CSE, April 2006.

[16] M.E. Califf and R.J. Mooney. Relational Learning of Pattern-Match Rules for In-
formation Extraction. In Working Notes of AAAI Spring Symposium on Applying
Machine Learning to Discourse Processing, pages 6–11, Menlo Park, CA, 1998. AAAI
Press.

[17] Jinxiu Chen, Donghong Ji, Chew L. Tan, and Zhengyu Niu. Relation extraction
using label propagation based semi-supervised learning. In Proceedings of the 21st
International Conference on Computational Linguistics and 44th Annual Meeting of
the Association for Computational Linguistics, pages 129–136, 2006.

[18] T. Chklovski and P. Pantel. VerbOcean: Mining the Web for Fine-Grained Seman-
tic Verb Relations. In Proceedings of Conference on Empirical Methods in Natural
Language Processing, pages 33–40, 2004.

[19] K.W. Churck and P. Hanks. Word association norms, mutual information and lexi-
cography. In Proceedings of the 27th Annual Conference of the Association of Com-
putational Linguistics, pages 76–83, 1989.

[20] K.W. Churck, P. Hanks, and D. Hindle. Using statistics in lexical analysis. In Lex-
ical Acquisition: Exploiting On-Line Resources to Build a Lexicon, pages 115–164.
Lawrence Erlbaum, 1991.

[21] F. Ciravegna. Adaptive Information Extraction from Text by Rule Induction and
Generalisation. In Procs. of the 17th International Joint Conference on Artificial
Intelligence (IJCAI 2001), pages 1251–1256, Seattle, Washington, 2001.

[22] F. Ciravegna, A. Dingli, D. Guthrie, and Y. Wilks. Integrating Information to Boot-
strap Information Extraction from Web Sites. In Procs. of the IIWeb Workshop at
the 19th International Joint Conference on Artificial Intelligence (IJCAI 2003), pages
9–14, Acapulco, Mexico, 2003.

131

[23] M.Musen C.J. Hou, N.Noy. A template-based approach towards acquisition of logical
sentences. Intelligent Information Processing, pages 77–89, 2002.

[24] M. Collins and Y. Singer. Unsupervised Models for Named Entity Classification. In
Procs. of the Joint SIGDAT Conference on Empirical Methods in Natural Language
Processing and Very Large Corpora, pages 100–111, Maryland, USA, 1999.

[25] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and
S. Slattery. Learning to Construct Knowledge Bases from the World Wide Web.
Artificial Intelligence 118(1-2), pages 69–113, 2000.

[26] Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew McCallum, Tom Mitchell, Ka-
mal Nigam, and Sean Slattery. Learning to extract knowledge from the world wide
web. In Proceedings of the Fifteenth National Conference on Artificial Intelligence
(AAAI-98), 1998.

[27] A. Culotta, A. McCallum, and J. Betz. Integrating probabilistic extraction models
and data mining to discover relations and patterns in text. In Proceedings of the
HLT-NAACL, 2006.

[28] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo, S. Ra-
jagopalan, A. Tomkins, J. Tomlin, and J. Zien. SemTag and Seeker: Bootstrapping
the Semantic Web via Automated Semantic Annotation. In Proceedings of the 12th
International Conference on World Wide Web, pages 178–186, Budapest, Hungary,
2003.

[29] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between
ontologies on the semantic web. In Proceedings of the Eleventh International WWW
Conference, 2002.

[30] P. Domingos and M. Pazzani. On the Optimality of the Simple Bayesian Classifier
under Zero-One Loss. Machine Learning, 29:103–130, 1997.

[31] D. Downey, S. Soderland, and O. Etzioni. A probabilistic model of redundancy in
information extraction. In IJCAI, 2005.

[32] M. Erdmann, A. Maedche, H. Schnurr, and S. Staab. From manual to semi-automatic
semantic annotation: About ontology-based text annotation tools. In Proceedings of
the COLING Workshop on Semantic Annotation and Intelligent Content, 2000.

[33] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu, T. Shaked, S. Soderland,
D. Weld, and A. Yates. Web-scale information extraction in knowitall (preliminary
results). In Proceedings of the World Wide Web Conference, 2004.

132

[34] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu, T. Shaked, S. Soderland,
D. Weld, and A. Yates. Unsupervised named-entity extraction from the web - an
experimental study. Artificial Intelligence Journal, 2005.

[35] O. Etzioni, M. Cafarella, D. Downey, A. Popescu, T. Shaked, S. Soderland, D. Weld,
and A. Yates. Methods for domain-independent information extraction from the Web:
An experimental comparison. In Proceedings of the Nineteenth National Conference
on Artificial Intelligence (AAAI-2004), pages 391–398, 2004.

[36] H. Fargier and J. Lang. A constraint satisfaction framework for decision under uncer-
tainty. In Procs. of UAI, pages 167–174, 1995.

[37] D. Faure and C. Nedellec. A corpus-based conceptual clustering method for verb
frames and ontology acquisition. In Proceedings of the LREC Workshop on Adapting
Lexical and Corpus Resources to Sublanguages and Applications, 1998.

[38] Jenny Finkel, Trond Grenager, and Christopher Manning. Incorporating non-local
information into information extraction systems by Gibbs sampling. In Proceedings o
the ACL, 2005.

[39] D. Freitag and A. McCallum. Information Extraction with HMMs and Shrinkage. In
Proceedings of the AAAI-99 Workshop on Machine Learning for Information Extrac-
tion, Orlando, Florida, 1999.

[40] M. Gamon. Sentiment classification on customer feedback data: Noisy data, large
feature vectors and the role of linguistic analysis. In Procs. of COLING, pages 841–
847, 2004.

[41] A. Gangemi, R. Navigli, and P. Velardi. The Ontowordnet Project: Extension and
Axiomatization of Conceptual Relations in WordNet. In International Conference on
Ontologies, Databases and Applications of Semantics, 2003.

[42] R. Girju. Automatic detection of causal relations for question answering. In Proceed-
ings of the ACL, 2003.

[43] N. Guarino and C.A. Welty. An Overview of OntoClean. In S. Staab and R. Studer,
editors, Handbook on Ontologies in Information Systems, pages 151–172. Springer,
2004.

[44] R. Gupta and M.J. Kochenderfer. Common Sense Data Acquisition for Indoor Mobile
Robots. In Proceedings of AAAI, pages 605–610, 2004.

[45] A. Halevy, O. Etzioni, A. Doan, Z. Ives, J. Madhavan, L. McDowell, and I. Tatarinov.
Crossing the structure chasm. In Proceedings of CIDR, 2003.

133

[46] V. Hatzivassiloglou and K. McKeown. Towards the automatic identification of ad-
jectival scales: clustering adjectives according to meaning. In Procs. of ACL, pages
182–192, 1993.

[47] V. Hatzivassiloglou and K. McKeown. Predicting the semantic orientation of adjec-
tives. In Procs. of ACL/EACL, pages 174–181, 1997.

[48] M. Hearst. Automatic Acquisition of Hyponyms from Large Text Corpora. In Procs.
of the 14th International Conference on Computational Linguistics, pages 539–545,
Nantes, France, 1992.

[49] M. Hu and B. Liu. Mining and Summarizing Customer Reviews. In Procs. of KDD,
pages 168–177, Seattle, WA, 2004.

[50] R.A. Hummel and S.W. Zucker. On the foundations of relaxation labeling processes.
In PAMI, pages 267–287, 1983.

[51] T. Inui. Acquiring causal knowledge from text using connective markers. In Ph.D
Thesis, 2004.

[52] R. Jones, R. Ghani, T. Mitchell, and E. Riloff. Active learning for information extrac-
tion with multiple view feature sets. In Proceedings of the ECML/PKDD Workshop
on Adaptive Text Extraction and Mining, 2003.

[53] S. Kim and E. Hovy. Determining the sentiment of opinions. In Procs. of COLING,
2004.

[54] N. Kobayashi, K. Inui, K. Tateishi, and T. Fukushima. Collecting Evaluative Expres-
sions for Opinion Extraction. In Procs. of IJCNLP, pages 596–605, 2004.

[55] B. Krulwich. The BargainFinder agent: Comparison price shopping on the Internet.
In J. Williams, editor, Bots and Other Internet Beasties, chapter 13. SAMS.NET,
1996.

[56] D. Kushal, S. Lawrence, and D. Pennock. Mining the peanut gallery: Opinion extrac-
tion and semantic classification of product reviews. In Procs. of WWW, 2003.

[57] N. Kushmerick, D. Weld, and R. Doorenbos. Wrapper Induction for Information
Extraction. In Proceedings of the Fifteenth International Joint Conference on Artificial
Intelligence, pages 729–737. San Francisco, CA: Morgan Kaufmann, 1997.

[58] C. T. Kwok, O. Etzioni, and D. Weld. Scaling Question Answering to the Web. ACM
Transactions on Information Systems (TOIS), 19(3):242–262, 2001.

134

[59] D. Lenat and R.V. Guha. Building Large, Knowledge-based Systems: Representation
and Inference in the Cyc Project. Addison-Wesley, 1990.

[60] H. Li and N. Abe. Generalizing case frames using a thesaurus and the MDL principle.
Computational Linguistics, 24(2), 1998.

[61] D. Lin. Dependency-based evaluation of MINIPAR. In Procs. of ICLRE’98 Workshop
on Evaluation of Parsing Systems, 1998.

[62] A. Maedche and S. Staab. Discovering conceptual relations from text. In Proceedings
of the 13th European Conference on Artificial Intelligence, 2000.

[63] A. Maedche and S. Staab. Learning ontologies for the semantic web. In Proceedings
of the Second International Workshop on the Semantic Web, 2001.

[64] B. Magnini, M. Negri, and H. Tanev. Is It the Right Answer? Exploiting Web
Redundancy for Answer Validation. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages 425–432, 2002.

[65] Gideon Mann and David Yarowsky. Multi-field information extraction and cross-
document fusion. In Proceedings of the ACL, 2005.

[66] D. Marcu and A. Echihabi. An unsupervised approach to recognizing discourse rela-
tions. In ACL, 2002.

[67] D. Marcu and A. Popescu. Towards developing probabilistic generative models for
reasoning with natural language representations. In CICLING, 2005.

[68] C. Matuszek, M. Witbrock, R.C. Kahlert, J. Cabral, D. Schneider, P. Shah, and
D. Lenat. Searching for common sense: Populating Cyc from the web. In Proceedings
of AAAI, 2005.

[69] M.Banko, E.Brill, S.Dumais, and J.Lin. AskMSR: Question Answering Using the
Worldwide Web. In Proceedings of 2002 AAAI Spring Symposium on Mining Answers
from Texts and Knowledge Bases, pages 7–9, Palo Alto, California, 2002.

[70] A. McCallum. Efficiently Inducing Features of Conditional Random Fields. In Pro-
ceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence, pages
403–410, Acapulco, Mexico, 2003.

[71] A. McCallum and B. Wellner. Object consolidation by graph partitioning with a
conditionally trained distance metric. In Proceedings of SIGKDD Workshop on Data
Cleaning, Record Linkage and Object Consolidation, pages 19–24, 2003.

135

[72] Ryan McDonald, Fernando Pereira, Seth Kulick, Scott Winters, Yang Jin, and Pete
White. Simple algorithms for complex relation extraction with applications to biomed-
ical IE. In Proceedings of the ACL, 2005.

[73] G. Miller. WordNet: An on-line lexical database. International Journal of Lexicogra-
phy, 3(4):235–312, 1991.

[74] S. Morinaga, K. Yamanishi, K. Tateishi, and T. Fukushima. Mining product reputa-
tions on the web. In Procs. of KDD, pages 341–349, 2002.

[75] P. Nakov and M. Hearst. Search engine statistics beyond the n-gram: Application to
noun compound bracketing. In CoNLL, 2005.

[76] P. Nakov and M. Hearst. A study of using search engine hits as a proxy for n-gram
frequencies. In RANLP, 2005.

[77] P. Nakov and M. Hearst. Using the web as an implicit training set: Application to
structural ambiguity resolution. In HLT-NAACL, 2005.

[78] K. Nigam, J. Lafferty, and A. McCallum. Using Maximum Entropy for Text Clas-
sification. In Procs. of IJCAI-99 Workshop on Machine Learning for Information
Filtering, pages 61–67, Stockholm, Sweden, 1999.

[79] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Learning to classify text from
labeled and unlabeled documents. In Proceedings of the Fifteenth Conference of the
American Association for Artificial Intelligence, pages 792–799, 1998.

[80] B. Pang and L. Lee. A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts. In Proceedings of the 42nd Meeting of the
Association for Computational Linguistics, pages 271–278, 2004.

[81] Lee L. Pang, B and S. Vaithyanathan. Thumbs up? sentiment classification using
machine learning techniques. In Procs. of EMNLP, pages 79–86, 2002.

[82] Pantel.P and Lin.D. Discovery of inference rules from text. In Proceedings of ACM-
SIGKDD, 2001.

[83] M. Pasca. Finding Instance Names and Alternative Glosses on the Web: WordNet
Reloaded. In Proceedings of CICLING, 2005.

[84] M. Pennacchiotti and P. Pantel. A Bootstrapping Algorithm for Automatically Har-
vesting Semantic Relations. In Proceedings of Inference in Computational Semantics,
pages 87–96, 2006.

136

[85] M. Pennacchiotti and P. Pantel. Espresso: Leveraging Generic Patterns for Automat-
ically Harvesting Semantic Relations. In Proceedings of the ACL, 2006.

[86] B. Pentney, A. Popescu, S. Wang, M. Philipose, and H. Kautz. Sensor-based Under-
standing of Daily Life via Large-Scale Use of Commonsense. In Proceedings of AAAI,
2006.

[87] M. Perkowitz, M. Philipose, D. Patterson, and K. Fishkin. Mining Models of Human
Activities from the Web. In Proceedings of WWW, 2004.

[88] W. Phillips and E. Riloff. Exploiting strong syntactic heuristics and co-training to
learn semantic lexicons. In Proceedings of the 2002 Conference on Empirical Methods
in Natural Language Processing, 2002.

[89] A. Popescu and O. Etzioni. Large-Scale Ontology Extension from the Web. In Uni-
versity of Washington - Microsoft Research Symposium, 2004.

[90] A. Popescu and O. Etzioni. Extracting product features and opinions from reviews.
In Proceedings of the EMNLP, 2005.

[91] A. Popescu and O. Etzioni. In-depth review mining. In Text Mining and Natural
Language Processing. Spring, 2006.

[92] A. Popescu, A. Yates, and O. Etzioni. Class extraction from the World Wide Web.
In AAAI-04 Workshop on Adaptive Text Extraction and Mining, pages 68–73, 2004.

[93] W. Pratt and M. Yetisgen-Yildiz. LitLinker: Capturing connections across the
biomedical literature. In Proceedings of K-Cap, 2003.

[94] A. Rangarajan. Self annealing and self annihilation: unifying deterministic annealing
and relaxation labeling. In Pattern Recognition, 33:635-649, 2000.

[95] E. Riloff. Automatically Constructing a Dictionary for Information Extraction Tasks.
In Proceedings of the Eleventh National Conference on Artificial Intelligence, pages
811–6, 1993.

[96] E. Riloff and R. Jones. Learning Dictionaries for Information Extraction by Multi-
level Bootstrapping. In Proceedings of the Sixteenth National Conference on Artificial
Intelligence, pages 474–479, 1999.

[97] E. Riloff, J. Wiebe, and T. Wilson. Learning Subjective Nouns Using Extraction
Pattern Bootstrapping. In Procs. of CoNLL, pages 25–32s, 2003.

137

[98] B. Roark and E. Charniak. Noun-phrase co-occurence statistics for semi-automatic
semantic lexicon construction. In Proceedings of the 36th Annual Meeting of the
Association for Computational Linguistics, 1998.

[99] L. Schubert. Can we derive general world knowledge from texts. In Procs. of Human
Language Technology Conference, 2002.

[100] Y. Shinyama and S. Sekine. Preemptive information extraction using unrestricted
relation discovery. In Proceedings of the HLT-NAACL, 2006.

[101] A. Siddharthan. Resolving pronouns robustly: Plumbing the depths of shallowness.
In EACL 2003 Workshop on Computation Treatments of Anaphora, 2003.

[102] Parag Singla and Pedro Domingos. Object identification with attribute-mediated de-
pendencies. In Proceedings of the 9th European Conference on Principles and Practice
of Knowledge Discovery in Databases (PKDD-2005), 2005.

[103] Parag Singla and Pedro Domingos. Entity resolution with Markov Logic. In Pro-
ceedings of the 10th European Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD-2006), 2006.

[104] Rion Snow, Daniel Jurafsky, and Andrew Ng. Semantic taxonomy induction from
heterogenous evidence. In Proceedings of COLING/ACL 2006, 2006.

[105] S. Soderland. Learning Information Extraction Rules for Semi-structured and Free
Text. Machine Learning, 34(1–3):233–272, 1999.

[106] R. Sombatsrisomboon, Y. Matsuo, and M. Ishizuka. Acquisition of Hypernyms and
Hyponyms from the WWW. In Procs. of 2nd International Workshop on Active
Mining, Maebashi City, Japan, 2003.

[107] S. Staab and A. Maedche. Ontology engineering beyond the modeling of concepts and
relations. In Proceedings of ECAI, 2000.

[108] P.J. Stone. General inquirer. In http://www.wjh.harvard.edu/ inquirer/.

[109] C. Sutton and A. McCallum. Collective segmentation and labeling of distant entities
in information extraction. In University of Massachusetts TR 04-49, 2004.

[110] H. Takamura, T. Inui, and M. Okumura. Extracting semantic orientation of words
using spin model. In Proceedings of the ACL, 2005.

[111] H. Takamura, T. Inui, and M. Okumura. Extracting semantic orientations of words
using spin model. In Procs. of ACL, pages 133–141, 2005.

138

[112] K. Torisawa. An unsupervised learning method for commonsensical inference rules on
events. In CoLogNET-ElsNet Symposium, 2003.

[113] P. Turney. Inference of Semantic Orientation from Association. In CoRR cs.
CL/0309034, 2003.

[114] P. D. Turney. Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL. In
Proceedings of the Twelfth European Conference on Machine Learning (ECML-2001),
pages 491–502, Freiburg, Germany, 2001.

[115] P. D. Turney. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Un-
supervised Classification of Reviews. In Procs. of the 40th Annual Meeting of the
Association for Computational Linguistics, pages 129–159, Philadelphia, Pennsylva-
nia, 2002.

[116] P. D. Turney. Thumbs up or thumbs down? semantic orientation applied to unsuper-
vised classification of reviews. In Procs. of ACL, pages 417–424, 2002.

[117] P. D. Turney and M. Littman. Measuring Praise and Criticism: Inference of Semantic
Orientation from Association. ACM Transactions on Information Systems (TOIS),
21(4):315–346, 2003.

[118] O. Uryupina. Semi-supervised learning of geographical gazetteers from the internet.
In Proceedings of the HLT-NAACL 2003 Workshop on Analysis of Geographic Refer-
ences, pages 18–25, 2003.

[119] O. Uryupina. Semi-Supervised Learning of Geographical References within Text. In
Procs. of the NAACL-03 Workshop on the Analysis of Geographic References, pages
21–29, Edmonton, Canada, 2003.

[120] J. Volker, D. Vrandecic, and Y. Sure. Automatic evaluation of ontologies (AEON).
In Proceedings of ISWC, 2005.

[121] Michael Wick, Aron Culotta, and Andrew McCallum. Learning field compatibilities
to extract database records from unstructured text. In EMNLP, 2006.

[122] T. Wilson, J. Wiebe, and P. Hoffmann. Recognizing contextual polarity in phrase-level
sentiment analysis. In Procs. of HLT-EMNLP, 2005.

[123] T. Wilson, J. Wiebe, and R. Hwa. Just how mad are you? finding strong and weak
opinion clauses. In Procs. of AAAI, pages 761–769, 2004.

[124] D. Wyatt, M. Philipose, and T. Choudhury. Unsupervised activity recognition using
automatically mined common sense. In AAAI, 2005.

139

[125] A. Yates, S. Schoenmackers, and O. Etzioni. Detecting parser errors using Web-based
semantic filters. In Proceedings of the EMNLP, 2006.

[126] J. Yi, T. Nasukawa, R. Bunescu, and W. Niblack. Sentiment analyzer: Extracting
sentiments about a given topic using natural language processing techniques. In Procs.
of ICDM, pages 1073–1083, 2003.

[127] J.Angele Y.Sure and S.Staab. OntoEdit: Multifaceted Inferencing for Ontology En-
gineering. Journal of Data Semantics, 1(1):128–152, 2003.

140

Appendix A

CLASS EXTRACTION FROM THE WEB

A.1 Examples of Extracted Class Information

Chapter 3 describes our work on extracting subclass and related class information from the

Web - it also includes some examples of discovered subclasses and related classes. In the

following, we list additional examples of extracted IS-A links for WordNet enrichment.

A.1.1 Subclass Extraction For WordNet Enrichment

WordNet Concept: parasite_0 WordNet Concept: construction_4 WordNet Concept: carnivore_0

[0.99 - 0.90]

subclassOf(parasite:flies) subclassOf(construction:drilling) subclassOf(carnivore:wolves)

subclassOf(parasite:worms) subclassOf(carnivore:tigers)

subclassOf(parasite:tapeworms) subclassOf(carnivore:snakes)

subclassOf(parasite:lice) subclassOf(carnivore:skunks)

subclassOf(parasite:ants) subclassOf(carnivore:raccoons)

subclassOf(parasite:roundworms) subclassOf(carnivore:pumas)

subclassOf(parasite:protozoa) subclassOf(carnivore:mink)

subclassOf(parasite:hookworms) subclassOf(carnivore:lions)

subclassOf(parasite:giardia) subclassOf(carnivore:jaguars)

subclassOf(parasite:beetles) subclassOf(carnivore:jackals)

subclassOf(parasite:ticks) subclassOf(carnivore:hyenas)

subclassOf(parasite:bugs) subclassOf(carnivore:foxes)

subclassOf(parasite:mites) subclassOf(carnivore:dogs)

subclassOf(parasite:ringworms) subclassOf(carnivore:coyotes)

subclassOf(parasite:amoebae) subclassOf(carnivore:cheetahs)

subclassOf(parasite:heartworm) subclassOf(carnivore:raptors)

subclassOf(parasite:fungi)

subclassOf(parasite:threadworms)

subclassOf(parasite:trypanosomes)

subclassOf(parasite:viruses)

subclassOf(parasite:malaria)

subclassOf(parasite:nematodes)

subclassOf(parasite:pinworms)

[0.90 - 0.85]

subclassOf(parasite:sponges) subclassOf(construction:tunneling) subclassOf(carnivore:wolverine)

subclassOf(parasite:crabs) subclassOf(construction:excavation) subclassOf(carnivore:vultures)

subclassOf(parasite:earwigs) subclassOf(construction:installation) subclassOf(carnivore:mongooses)

subclassOf(parasite:mice) subclassOf(construction:paving) subclassOf(carnivore:mites)

141

subclassOf(parasite:whipworms) subclassOf(construction:removal) subclassOf(carnivore:lynx)

subclassOf(parasite:dinoflagellates) subclassOf(construction:laying) subclassOf(carnivore:leopard)

subclassOf(parasite:roaches) subclassOf(construction:framing) subclassOf(carnivore:felids)

subclassOf(parasite:rabies) subclassOf(construction:dredging) subclassOf(carnivore:falcons)

subclassOf(parasite:flatworms) subclassOf(construction:clearing) subclassOf(carnivore:cougars)

subclassOf(construction:quarrying) subclassOf(carnivore:bobcats)

subclassOf(construction:blasting)

subclassOf(construction:filling)

subclassOf(construction:staging)

subclassOf(construction:erosion)

142

Appendix B

ANNOTATING RELATIONS WITH META-PROPERTY AND

DEPENDENCY LABELS

B.1 Templates of Useful Lexico-syntactic Patterns

Symmetric Pattern Templates

yes pl(X)|enum(x, x′) are noPrep(R)|sg(noPrep(R))|pl(noPrep(R)) .|; |,

no R (*) but|and (*) the other way around|viceversa|
reversely | conversely | reverse | opposite | (*) R

no R (*) and |but R back

Table B.1: Templates for Patterns Correlated with the Presence or Absence of Relation

Symmetry For Target Relation R ⊆ X×X. Notation: enum() = enumeration pattern (including

conjunctions), x,x′ = elements of X , sg(), pl() = plural form, noPrep() = function that removes the

preposition at the end of the relation’s name.

Transitive Pattern Template

yes in turn R

yes R x1 which|and therefore|thus|because|as |
since|and so (*) R x2

yes R x1 which|and therefore|thus|because|as|
since|and so (*) R′ x2 , entails(R, R′)

Table B.2: Templates For Patterns Correlated with Relation Transitivity For Target

Relation R ⊆ X ×X. Notation: x,x1,x2 = values in X , entails(R, R′) = R′ is entailed by R.

143

1-to-1 Pattern Template

yes uniqueMod sg(R) sg(Y)|instanceOf(Y)

no multipleMod sg(R) sg(Y)|instanceOf(Y)

yes sg(X)|instanceOf(X) R sg(Y)|instanceOf(Y)

no pl(X)|enum(x, x′) R sg(Y)|instanceOf(Y)

Table B.3: Templates for Patterns Correlated With the Presence or Absence of the

1-to-1 Property for Target Relation R ⊆ X × Y . Notation: sg(), pl() = singular/plural forms;

x, y = elements of X, Y ; uniqueMod, multipleMod = n-grams that indicate countability (e.g., “the”

is an example of a modifier indicating uniqueness, “another” is an example of a modifier indicating

multiplicity), enum() = enumeration. Note: The patterns in this table are used in addition to the

patterns below, common to the 1-to-1 and functional properties.

Functional Pattern Template

yes R sg(Y)|instanceOf(Y)

yes sg(Y)|instanceOf(Y)’s (*) noPrep(R)

no R pl(Y)|enum(y, y′)

no pl(Y)|enum(y, y′)’s (*) noPrep(R)

Table B.4: Templates for Patterns Correlated With the Presence or Absence of the

Functional Property for Target Relation R ⊆ X × Y .

Dependency Type Pattern Templates

Entailment R (*) therefore | thus | and/or even | (*) in turn R′

Entailment R (*) because it | before | in order to | on the way to R′

Transitive-through because| since | R (*) which | that (*) R′

Table B.5: Templates for Patterns Correlated With Entailment and the Transitive-

Through Dependency. Notation: R, R′ = relations of interest

144

Appendix C

MINING PRODUCT FEATURES AND CORRESPONDING

OPINIONS FROM REVIEWS

C.1 Review Sets, Features and Opinion Cluster Information

Chapter 5 describes our work on mining product features and corresponding opinions from

product reviews. In the following, we describe the data used as well as the mined information

in more detail, give examples of learned features and discovered opinions (and opinion

clusters) and indicate where the product reviews can be found.

C.1.1 Product Review Sets

Our main experimental results used the product reviews compiled by B.Liu and M.Hu,

which are publicly available from their website (see [49] for details); additionally, we used a

set of Hotel reviews and a set of Scanner reviews - the former were obtained with the help

of Fetch.com from tripadvisor.com and the latter were collected (using a locally developed

wrapper) from Amazon.com.

The Hotel and Scanner reviews will be available shortly from the opine project site:

opine Project Site: http://www.cs.washington.edu/homes/amp/opine/

The site also contains a demonstration of the system’s summarization capabilities on a

larger set of approximately 10,000 Hotel reviews obtained from Fetch.com as part of the

CALO project [1].

C.1.2 Explicit Features for the Hotel and Scanner Product Classes

The opine project site contains numerous examples of explicit features mined from Hotel

reviews. opine was also used to identify features corresponding to numerous other products

of interest to the CALO project - in the following, we list the features corresponding to the

Scanner class (a product class for which a large set of reviews had been compiled).

145

Explicit Features for the Scanner Product Class

Notation: “Feature” = name of explicit feature, “Type” = feature type: part, property,

related concept (“rel”), “Of” = indicates the concept to which the feature corresponds. The

feature information is organized in a 2-column format.

Product Class: Scanner

| Feature: [] Of: [] Type: [] | Feature: [] Of: [] Type: []

| Feature: scanner Of: Type: | Feature: software Of: scanner Type: part

| Feature: scan Of: scanner Type: rel | Feature: image Of: scanner Type: rel

| Feature: photo Of: scanner Type: rel | Feature: picture Of: scanner Type: rel

| Feature: button Of: scanner Type: part | Feature: resolution Of: scanner Type: property

| Feature: price Of: scanner Type: property | Feature: driver Of: scanner Type: part

| Feature: color Of: scanner Type: property | Feature: size Of: scanner Type: property

| Feature: printer Of: scanner Type: part | Feature: window Of: scanner Type: part

| Feature: setting Of: scanner Type: property | Feature: interface Of: scanner Type: part

| Feature: speed Of: scanner Type: property | Feature: port Of: scanner Type: part

| Feature: support Of: scanner Type: rel | Feature: cable Of: scanner Type: part

| Feature: card Of: scanner Type: part | Feature: hardware Of: scanner Type: part

| Feature: connection Of: scanner Type: part | Feature: screen Of: scanner Type: part

| Feature: application Of: scanner Type: rel | Feature: glass Of: scanner Type: part

| Feature: fax Of: scanner Type: part | Feature: cover Of: scanner Type: part

| Feature: light Of: scanner Type: part | Feature: function Of: scanner Type: property

| Feature: case Of: scanner Type: part | Feature: lamp Of: scanner Type: part

| Feature: warranty Of: scanner Type: property | Feature: capability Of: scanner Type: property

| Feature: performance Of: scanner Type: property | Feature: panel Of: scanner Type: part

| Feature: footprint Of: scanner Type: part | Feature: document_feeder Of: scanner Type: part

| Feature: feeder Of: scanner Type: part | Feature: bed Of: scanner Type: part

| Feature: firmware Of: scanner Type: part | Feature: arm Of: scanner Type: part

| Feature: depth Of: scanner Type: property | Feature: manual Of: scanner Type: rel

| Feature: lens Of: scanner Type: part | Feature: body Of: scanner Type: part

| Feature: detector Of: scanner Type: part | Feature: life Of: scanner Type: property

| Feature: control_panel Of: scanner Type: part | Feature: field Of: scanner Type: part

| Feature: copy Of: scanner Type: rel | Feature: detector Of: scanner Type: part

| Feature: back Of: scanner Type: part | Feature: density Of: scanner Type: rel

| Feature: attachment Of: scanner Type: part | Feature: cord Of: scanner Type: part

| Feature: drum Of: scanner Type: part | Feature: base Of: scanner Type: part

| Feature: adaptor Of: scanner Type: part | Feature: bias Of: scanner Type: property

| Feature: input Of: scanner Type: part | Feature: head Of: scanner Type: part

| Feature: look Of: scanner Type: property | Feature: keyboard Of: scanner Type: part

| Feature: dialog Of: scanner Type: part | Feature: capture Of: scanner Type: part

| Feature: door Of: scanner Type: part | Feature: delay Of: scanner Type: property

| Feature: focus Of: scanner Type: property | Feature: carrier Of: scanner Type: part

| Feature: display Of: scanner Type: part | Feature: grain Of: scanner Type: property

| Feature: controller Of: scanner Type: part | Feature: holder Of: scanner Type: part

| Feature: id Of: scanner Type: part | Feature: camera Of: scanner Type: part

| Feature: facility Of: scanner Type: property | Feature: build Of: scanner Type: property

| Feature: framework Of: scanner Type: part | Feature: board Of: scanner Type: part

| Feature: fan Of: scanner Type: part | Feature: bar Of: scanner Type: part

| Feature: history Of: scanner Type: part | Feature: fit Of: scanner Type: part

| Feature: data Of: scanner Type: part | Feature: form Of: scanner Type: property

| Feature: class Of: scanner Type: property | Feature: make Of: scanner Type: property

146

| Feature: noise Of: scanner Type: property | Feature: adjustment_resolution Of: scanner Type: property

| Feature: hardware_resolution Of: scanner Type: property | Feature: horizontal_resolution Of: scanner Type: property

| Feature: image_resolution Of: scanner Type: property | Feature: optical_resolution Of: scanner Type: property

| Feature: output_resolution Of: scanner Type: property | Feature: physical_resolution Of: scanner Type: property

| Feature: preview_resolution Of: scanner Type: property | Feature: scan_resolution Of: scanner Type: property

| Feature: screen_resolution Of: scanner Type: property | Feature: shadow_resolution Of: scanner Type: property

| Feature: site_resolution Of: scanner Type: property | Feature: software_resolution Of: scanner Type: property

| Feature: ultra_resolution Of: scanner Type: property | Feature: vertical_resolution Of: scanner Type: property

| Feature: video_resolution Of: scanner Type: property | Feature: web_resolution Of: scanner Type: property

| Feature: application_software Of: scanner Type: part | Feature: brochure_software Of: scanner Type: part

| Feature: built-in_software Of: scanner Type: part | Feature: bundle_software Of: scanner Type: part

| Feature: calibration_software Of: scanner Type: part | Feature: character recognition_software Of: scanner Type: part

| Feature: character_software Of: scanner Type: part | Feature: communication_software Of: scanner Type: part

| Feature: consumer_software Of: scanner Type: part | Feature: control_panel_software Of: scanner Type: part

| Feature: creator_software Of: scanner Type: part | Feature: device_software Of: scanner Type: part

| Feature: director_software Of: scanner Type: part | Feature: disc_software Of: scanner Type: part

| Feature: document_management_software Of: scanner Type: part | Feature: document_software Of: scanner Type: part

| Feature: editing_software Of: scanner Type: part | Feature: editor_software Of: scanner Type: part

| Feature: email_software Of: scanner Type: part | Feature: film_software Of: scanner Type: part

| Feature: grade_software Of: scanner Type: part | Feature: hardware_software Of: scanner Type: part

| Feature: image-editing_software Of: scanner Type: part | Feature: image_manipulation_software Of: scanner Type: part

| Feature: image_processing_software Of: scanner Type: part | Feature: image_recognition_software Of: scanner Type: part

| Feature: image_software Of: scanner Type: part | Feature: imaging_software Of: scanner Type: part

| Feature: indicator_software Of: scanner Type: part | Feature: interface_software Of: scanner Type: part

| Feature: knowledge_base_software Of: scanner Type: part | Feature: layout_software Of: scanner Type: part

| Feature: level_software Of: scanner Type: part | Feature: loading_software Of: scanner Type: part

| Feature: mail_software Of: scanner Type: part | Feature: main_software Of: scanner Type: part

| Feature: manufacturer_software Of: scanner Type: part | Feature: menu_software Of: scanner Type: part

| Feature: music_software Of: scanner Type: part | Feature: newsletter_software Of: scanner Type: part

| Feature: number crunching_software Of: scanner Type: part | Feature: ocr_software Of: scanner Type: part

| Feature: optical_software Of: scanner Type: part | Feature: panel_software Of: scanner Type: part

| Feature: parallel_software Of: scanner Type: part | Feature: particular_software_package Of: scanner Type: part

| Feature: photo-editing_software Of: scanner Type: part | Feature: photo-enhancing_software Of: scanner Type: part

| Feature: photo-manipulation_software Of: scanner Type: part | Feature: picture-organization_software Of: scanner Type: part

| Feature: preview_software Of: scanner Type: part | Feature: print_software Of: scanner Type: part

| Feature: processing_software Of: scanner Type: part | Feature: reference_software Of: scanner Type: part

| Feature: scan-management_software Of: scanner Type: part | Feature: scanner_software_driver Of: scanner Type: part

| Feature: scanning_software_side Of: scanner Type: part | Feature: scan_software Of: scanner Type: part

| Feature: scan_software_setting Of: scanner Type: part | Feature: scan_suite_software Of: scanner Type: part

| Feature: setup_software Of: scanner Type: part | Feature: site-creation_software Of: scanner Type: part

| Feature: site_software Of: scanner Type: part | Feature: software_application Of: software Type: part

| Feature: software_assistance Of: software Type: rel | Feature: software_character Of: software Type: property

| Feature: software_check Of: software Type: rel | Feature: software_component Of: software Type: part

| Feature: software_control Of: software Type: property | Feature: software_driver Of: software Type: part

| Feature: software_ease Of: software Type: property | Feature: software_enhancement Of: software Type: property

| Feature: software_feature Of: software Type: part | Feature: software_icon Of: software Type: part

| Feature: software_installation Of: software Type: part | Feature: software_installing Of: software Type: part

| Feature: software_instruction Of: software Type: part | Feature: software_program Of: software Type: part

| Feature: software_quality Of: software Type: property | Feature: software_setting Of: software Type: property

| Feature: software_title Of: software Type: property | Feature: software_upgrade Of: software Type: part

| Feature: software_usability Of: software Type: property | Feature: software_vendor Of: software Type: rel

147

C.1.3 Opinion Examples

In the following, we list examples of identified opinions with dominant positive and negative

semantic orientation labels (the domain is that of Hotel reviews). We then give examples

of contexts that influence the semantic orientation of words such as cold, hot, small and

casual.

Examples of Positive Opinion Words Examples of Negative Opinion Words

___ ___

possible intimate finest luxurious adequate thrilling unsafe preserved hate ordinary painful

prefer sumptuous intercontinental brisk bargain unable difficult rainy empty terrible

advantage pleased necessary fantastic durable inadequate ugly moldy kids unsubstantial

reliable colorful cute undamaged eager unclean long sharp colorless abstract

marvelous free airy calm rested unpopular impure nonaged malicious retired

important discerning delicious casual weak unresponsive stingy incomplete obsequious

ready dry available low-pitched friendly contaminating corrupt stale alcoholic cautionary

traditional super gigantic tasteful domestic busy imperfect dull afraid lucky

at_least gem viewable stylish love space unoriginal forced inappropriate incorrect individual

quiet short good welcoming high-end soiled misguided trick outdated adjacent

specific informal complete stocked gorgeous nonmodern depressed mediocre dark unequipped

best generous concrete timely complimentary unpleasant nominal busted unhelpful colourless

wireless popular ideal interesting unique disgusting evil formal insecure supernatural

European-style original modern heavenly effusive bound unavailable off unprotected mediate

bonus favorite lucious unmistakeable impeccable irresponsible noncrucial unreal wired

|Feature|Opinion|Semantic Orientation Label|Review Sentence|

bathroom_shower_temperature*cold*-*Cold showers are not fun .*

bathroom_shower_temperature*cold*-*One morning I couldnt figure out how to get the hot water

to work so I had to take a cold shower .*

bathroom_shower_temperature*cold*-*I had to take a cold shower because the hot water was out

on the 6th floor .*

atmosphere_temperature*cold*-*On first impressions, the atmosphere was quite cold and un-welcoming

from the deskperson and we were horrified to find that we had to

carry our extremely large bags up three flights of steep stairs .*

breakfast_temperature*cold*-*The buffet breakfast that was included was cold and bland, if not just

generally depressing for the lack of options .*

breakfast_temperature*cold*-*The Fettucini Alfredo was awful and the breakfast I had at the cafe was cold .*

breakfast_temperature*cold*+*Cold breakfast is included is a bonus and much appreciated .*

breakfast_temperature*cold*+*The Inn serves a cold breakfast that is ok .*

breakfast_temperature*cold*+*Our NY1 rate included a full, cold buffet breakfast which included some

of the best bagels I have tasted .*

room_temperature*cold*+*great views and ice cold - it was hot so the cold room was wonderful .*

room_temperature*cold*-*Once in the bitter cold room, my husband tried to figure out what

the problem was with the heat .*

room_temperature*hot*-*The lobby is done out poshly, but I was on floor 14 and I thought Id gone to hell ,

hot and humid , noisy , tiny room, dirty bathrooms, construction from 8am

every morning .*

room_temperature*hot*-* Hot, small, stuffy, noisy room .*

bathroom_shower_temperature*hot*+*At least the dribbling shower was hot .*

bathroom_shower_temperature*hot*-*When taking a hot shower, it became difficult to breathe .*

food_temperature*hot*+*The breakfasts at this hotel were most enjoyable, with a great selection of hot

foods, cereals, fruits,and many other things.*

atmosphere_quality*casual*+*Very upscale and luxurious but it maintains a casual atmosphere, this is

leisure traveling at its best.*

148

restaurant_quality*casual*+*We enjoyed good service in the casual restaurant, and wonderful cocktails

in the bar .*

restaurant_quality*casual*-*The restaurant was casual, the decor tasteless and the food

was at best average.*

room_size*small*+*A small room with fabulous breakfast every morning .*

room_size*small*+* Room is small but not cramped, and very, very clean .*

room_size*small*+*Good clean small room in a vibrant neighborhood with good local restaurants .*

room_size*small*-*The room was small but it was pretty clean .*

room_size*small*-*The staff are indifferent, the lobby feels like a taxi-cab booking office and the rooms

are small, uncomfortable and stale .*

C.1.4 Opinion Clusters and Implicit Features

In the following, we give examples of opinion clusters and corresponding implicit features

learned from Hotel and Scanner data - for the purposes of the CALO project, this data is

being used as an initial lexicon for many new product domains with good initial results.

Cluster Name|Cluster Elements

NONAME|crowded|uncrowded|packed

NONAME|discerning|undiscerning

NONAME|downtown|uptown

NONAME|earthly|divine|heavenly

NONAME|factory-made|homemade

NONAME|inefficient|efficient

NONAME|intercontinental|continental

NONAME|known|unknown

NONAME|looseleaf|bound

NONAME|lost|missing|found

NONAME|lost|saved

NONAME|lost|won

NONAME|lyric|dramatic

NONAME|marked|unmarked

NONAME|maximal|minimal|nominal|maximum

NONAME|misused|used

NONAME|nonprofessional|professional

NONAME|off|on

NONAME|professional|unprofessional

NONAME|steep|gradual|sloping|

NONAME|stocked|unequipped|equipped|unfurnished|furnished

NONAME|unwritten|spoken|written

NONAME|welcome|unwelcome

NONAME|wired|bound

NONAME|wireless|wired

adequacy|inadequate|adequate|poor|decent

age|stale|antique|old|recent|fresh|used|tired|new|retired|aged|young|ancient|preserved|aged

artificiality|inorganic|artificial|organic

attention|solicitous|attentive|dreamy|inattentive|heed|thoughtless|heedless|unheeding

be_casual|casual|formal|informal|nominal

be_frivolous|frivolous|light|real|serious

be_generic|generic|popular|special|plain|broad|specific|general

be_open|open|close

149

beauty|ugly|gorgeous|unnatural|beautiful|lovely

boldness|amazing|spectacular|awful|unimpressive|dramatic|stunning|impressive|outstanding

calmness|peaceful|stormy|calm|serene|unpeaceful

centrality|central|peripheral

clarity|clear|unclear|intuitive|understandable

cleanliness|spotless|clean|soiled|dirty|unclean|dusty|greasy|impeccable

coarseness|coarse|indecent|decent

color_property|bright|colorless|colourless|drab|colorful|uncoloured|uncolored

color|white|blue|red|orange|green|purple|black|yellow|pink|brown

comfortableness|rich|comfortable|affluent||poor

comfort|comfy|painful|comfortable|uncomfortable|cozy

commonness|coarse|common

completeness|broken|full|incomplete|hearty|uncomplete|complete

complexity|complex|simple|compound

convenience|inconvenient|convenient

correctness|straight|correct|wrong|incorrect|false|misguided|appropriate|inappropriate

credibility|credible|incredible|believable

curliness|straight|curly

damage|broken|busted|torn|undamaged|damaged

depth|shallow|deep

discreetness|discreet|indiscreet

distance|close|immediate|adjacent|deep|near|distant|far|nearby

ease|painless|painful|tough|hard|easy|difficult

elegance|inelegant|elegant|deluxe

evil|malevolent|evil|wicked

excitement|exciting|unexciting|thrilling

expectedness|unexpected|expected

falseness|hollow|false

fear|fearless|unafraid(p)|unafraid|afraid

fight|competitive|noncompetitive

foreignness|native|foreign|domestic|strange

formality|elegant|formal

fortune|fortunate|unfortunate

frequency|frequent|infrequent

freshness|stale|moldy|fresh

friendliness|unfriendly|friendly|warm

functionality|functional

fun|playful|serious

generosity|generous|ungenerous|stingy

handiness|available|unavailable|

handiness|free|unfree|available|bound|available|unavailable

happiness|pleased|displeased|delighted|happy|unhappy|dysphoric|distressed

helpfulness|unhelpful|unaccommodating|accommodating|helpful

historicalness|synchronic|descriptive|historical

idleness|busy|idle|responsible|irresponsible

immediacy|mediate|immediate

importance|important|unimportant|significant|insignificant|crucial|noncrucial|minor|major

inertness|neutral|indifferent

intelligence|bright|smart|stupid

intensity|intensive|extensive

interest|dull|uninteresting|interesting

intimacy|public|close|private

irreality|uncolored|natural|unreal|artificial|near|false

irregularity|irregular|atypical

kindness|generous|ungenerous|kind|meanspirited|malevolent|malicious

level|low|high

light|dark|bright|light|dim|depressing

150

likeness|like|similar|same|different

luck|unlucky|lucky|luckless

lusciousness|delightful|delicious

narrow-mindedness|broad-minded

naturalness|unnatural|natural|forced|artificial

necessity|unneeded|necessary|extra|unnecessary|needed

noise|quiet|dreamy|noisy|loud|dull|deafening|silent

pitch|low-pitched

pleasantness|enjoyable|painful|unhappy|pleasant|unpleasant|gracious|weird|charming|nasty|awful|lousy

politeness|polite|gracious|courteous|rude|impolite|discourteous|ungracious

popularity|popular|hot|unpopular|favorite

possibility|possible|impossible

power|not_able|unable|able|strong|impotent|weak

price|overpriced|cheap|bargain|expensive|free|complimentary|uncomplimentary

purity|dirty|impure|pure

quality|great|tough|satisfactory|lousy|poor|mediocre|bad|negative|good|solid|superb|unsatisfactory

|finest|good|best|worst|rich|fine|off|fabulous|fantastic|marvelous|outstanding|special

|average|phenomenal|terrific|uncommon|common|extraordinary|ordinary|perfect|imperfect

|worsened|better|worse|coarse|disgusting|wicked|nice

quantity|abundant|rich|scarce|extensive

readiness|unready|ready

reality|abstract|concrete|ideal|real|unreal

reasonableness|reasonable|unreasonable

recency|modern|nonmodern|recent|antique|trendy|unfashionable|fashionable|quaint|old-fashioned|dated

|stylish|cool|original|fresh|unoriginal|tired

regularity|frequent|regular|infrequent

responsiveness|responsive|unresponsive

richness|plush|sumptuous|deluxe|luxurious

roominess|spacious|roomy|incommodious|cramped|tiny

safety|secure|safe|unsafe|insecure|protected|unprotected

separateness|public|separate|idiosyncratic|individual|common

separation|joint|separate

sharpness|sharp|dull

sign|electroneutral|neutral|positive|negative|electronegative

size|spacious|wide|large|little|extensive|deep|small|super|gigantic|big|broad|huge|microscopic|tiny

smartness|smart|fresh

softness|soft|hard

solidity|broken|unbroken|solid|hollow

speciousness|in_poor_taste(p)|tasteless|cheap|tasteful|flashy

speed|high-speed|quick|immediate|fast|slow|sluggish

state|concrete|solid|gaseous|liquid

substantiality|insubstantial|airy|unreal|real|unsubstantial

surprisingness|unexpected|forced

temperature|warm|hot|cold|cool|chilly|balmy

thinness|thin|thick

timing|past|historic|future|historical

traditionalism|traditional|untraditional|nontraditional

truth|true|wrong|real|false

typicality|untypical|typical|true|atypical

usualness|ordinary|popular|unusual|special|average|general|common|uncommon

|quaint|familiar|strange|crazy|weird|unfamiliar|unique

warmth|warm|tender

wetness|dry|damp|wet|rainy

width|narrow|wide|broad

willingness|unwilling|willing

151

Appendix D

ASSESSING AND MINING COMMONSENSE KNOWLEDGE FROM

THE WEB

D.1 Examples of Mined and Assessed Commonsense Information

Chapter 6 describes our efforts to assess and mine commonsense facts from the Web. The

data used in the state recognition experiments described in Chapter 6 will soon be available

on the Web, as discussed below.

• The assessed version of existent OMICS knowledge will soon be available at

http://www.cs.washington.edu/homes/amp/omics/.

The OMICS relations of interest are: ContextActionObject, Cause, Desire, People,

Response and StateChange.

• The OMICS-type knowledge mined from the Web will soon be available at

http://www.cs.washington.edu:/homes/amp/omics/minedData/.

152

VITA

Ana-Maria Popescu was born in Bucharest, Romania and currently resides in Seattle,

Washington. She earned a Bachelor of Science degree in Mathematics & Computer Science

at Brown University (1999) and a Masters degree in Computer Science at University of

Washington (2001). In February 2007 she earned a Doctor of Philosophy at the University

of Washington in Computer Science.

