
Structure Learning in Markov Logic Networks

Stanley Kok

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Washington

2010

Program Authorized to Offer Degree: Computer Science & Engineering





University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Stanley Kok

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of the Supervisory Committee:

Pedro Domingos

Reading Committee:

Pedro Domingos

Oren Etzioni

Daniel S. Weld

Date:





In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at
the University of Washington, I agree that the Library shall make its copies freely available for
inspection. I further agree that extensive copying of this dissertation is allowable only for scholarly
purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying
or reproduction of this dissertation may be referred to Proquest Information and Learning, 300
North Zeeb Road, Ann Arbor, MI 48106-1346, 1-800-521-0600, to whom the author has granted
“the right to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed copies
of the manuscript made from microform.”

Signature

Date





University of Washington

Abstract

Structure Learning in Markov Logic Networks

Stanley Kok

Chair of the Supervisory Committee:
Professor Pedro Domingos

Computer Science & Engineering

Markov logic networks (MLNs) [86, 24] are a powerful representation combining first-order logic

and probability. An MLN attaches weights to first-order formulas and views these as templates for

features of Markov networks. Learning MLN structure consists of learning both formulas and their

weights. This is a challenging problem because of its super-exponential search space of formulas,

and the need to repeatedly learn the weights of formulas in order to evaluate them, a process that

requires computationally expensive statistical inference. This thesis presents a series of algorithms

that efficiently and accurately learn MLN structure.

We begin by combining ideas from inductive logic programming (ILP) and feature induction

in Markov networks in our MSL system. Previous approaches learn MLN structure in a disjoint

manner by first learning formulas using off-the-shelf ILP systems and then learning formula weights

that optimize some measure of the data’s likelihood. We present an integrated approach that learns

both formulas and weights that jointly optimize likelihood.

Next we present the MRC system that learns latent MLN structure by discovering unary pred-

icates in the form of clusters. MRC forms multiple clusterings of constants and relations, with

each cluster corresponding to an invented predicate. We empirically show that by creating multiple

clusterings, MRC outperforms previous systems.

Then we apply a variant of MRC to the long-standing AI problem of extracting knowledge

from text. Our system extracts simple semantic networks in an unsupervised, domain-independent

manner from Web text, and introduces several techniques to scale up to the Web.





After that, we incorporate the discovery of latent unary predicates into the learning of MLN

clauses in the LHL system. LHL first compresses the data into a compact form by clustering the

constants into high-level concepts, and then searches for clauses in the compact representation. We

empirically show that LHL is more efficient and finds better formulas than previous systems.

Finally, we present the LSM system that makes use of random walks to find repeated patterns in

data. By restricting its search to within such patterns, LSM is able to accurately and efficiently find

good formulas, improving efficiency by 2-5 orders of magnitude compared to previous systems.





TABLE OF CONTENTS

Page

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2: Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Markov Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Markov Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 3: Markov Logic Structure Learner . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Evaluation Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Clause Construction Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Search Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Speedup Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 4: Statistical Predicate Invention . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Multiple Relational Clusterings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Chapter 5: Extracting Semantic Networks from Text via Relational Clustering . . . . . 50

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

i



5.2 Semantic Network Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Chapter 6: Learning Markov Logic Network Structure via Hypergraph Lifting . . . . . 70
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2 Learning via Hypergraph Lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Chapter 7: Learning Markov Logic Networks using Structural Motifs . . . . . . . . . 87
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Random Walks and Hitting Times . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.3 Learning via Structural Motifs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter 8: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.1 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Appendix A: Declarative Biases for Cora Domain . . . . . . . . . . . . . . . . . . . . . 116

Appendix B: Markov Logic Structure Learner (MSL) Experimental Settings . . . . . . . 117

Appendix C: Derivation of SNE’s Log-Posterior . . . . . . . . . . . . . . . . . . . . . . 118

Appendix D: Derivation of LiftGraph’s Log-Posterior . . . . . . . . . . . . . . . . . . . 121

Appendix E: Proofs of LSM’s Propositions . . . . . . . . . . . . . . . . . . . . . . . . 125

ii



LIST OF FIGURES

Figure Number Page

1.1 Input and output of MLN structure learner. . . . . . . . . . . . . . . . . . . . . . . 2

4.1 Example of multiple clusterings. Friends are clustered together in horizontal ovals,
and co-workers are clustered in vertical ovals. . . . . . . . . . . . . . . . . . . . . 36

4.2 Illustration of MRC algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Comparison of MRC, IRM and MSL using ten-fold cross-validation: average condi-

tional log-likelihood of test atoms (CLL) and average area under the precision-recall
curve (AUC). Init is the initial clustering formed by MRC. Error bars are one stan-
dard deviation in each direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 In the above figure, the organisms are clustered in three different ways according to:
what are found in them (red), their pathologic properties (blue), and whether they
are animals/vertebrates (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 In the above figure, there are two clusterings of “Injury or Poisoning” and the Ab-
normalities according to what they are manifestations of (blue) and what they are
associated with (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 In the above figure, the relations “diagnoses”, “prevents” and “treats” are clustered
in three ways. “Antibiotic” and “Pharmacologic Substance” diagnose, prevent and
treat diseases (red). “Diagnostic Procedure” and “Laboratory Procedure” only di-
agnose but do not prevent or treat diseases (blue). “Drug Delivery Device” and
“Medical Device” prevent and treat diseases but do not diagnose them (green). . . . 48

5.1 Fragments of a semantic network learned by SNE. Nodes are concept clusters, and
the labels of links are relation clusters. . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 Lifting a hypergraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.1 Motifs extracted from a ground hypergraph. . . . . . . . . . . . . . . . . . . . . . 91

iii



LIST OF TABLES

Table Number Page

3.1 MSL algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Beam search for the best clause. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Shortest-first search for the best clauses. . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Parameter description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Experimental results on the UW-CSE database. . . . . . . . . . . . . . . . . . . . 24

3.6 Experimental results on the Cora database. . . . . . . . . . . . . . . . . . . . . . . 25

4.1 MRC algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 SNE algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Comparison of SNE and MRC1 performances on gold standard. Object 1 and Ob-
ject 2 respectively refer to the object symbols that appear as the first and second
arguments of relations. The best F1s are shown in bold. . . . . . . . . . . . . . . 61

5.3 Comparison of SNE performance when it clusters relation and object symbols jointly
and separately. SNE-Sep clusters relation and object symbols separately. Object 1
and Object 2 respectively refer to the object symbols that appear as the first and
second arguments of relations. The best F1s are shown in bold. . . . . . . . . . . . 61

5.4 Comparison of SNE, IRM-CC-0.25, ITC-CC and ITC-C performances on gold stan-
dard. Object 1 and Object 2 respectively refer to the object symbols that appear as
the first and second arguments of relations. The best F1s are shown in bold. . . . . 63

5.5 Evaluation of semantic statements learned by SNE, IRM-CC-0.25, and ITC-CC. . . 63

5.6 Comparison of SNE object clusters with WordNet. . . . . . . . . . . . . . . . . . 66

6.1 LHL algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 LiftGraph algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 FindPaths algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4 CreateMLN algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.5 Information on datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.6 Experimental results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.1 LSM algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 DFS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

iv



7.3 Area under precision-recall curve (AUC) and conditional log-likelihood (CLL) of
test atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.4 System runtimes. The times for Cora (One Predicate) and Cora (Four Predicates)
are the same. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

v



ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Pedro Domingos, for your guidance and mentor-

ship. Without you, this thesis would not have been possible. You taught me what it takes to be a

good researcher.

Thanks also go to Oren Etzioni. I appreciate your advice and encouragement during my early

research work as a graduate student. Your interest in creating useful and intelligent AI applications

has definitely rubbed off on me.

Finally, I would like to thank Dan Weld for the advice you provided as my first-year temporary

advisor. It is because of your encouragement that I signed up for numerous AI-related courses,

thereby expanding my view of the field.

vi



DEDICATION

To my parents and maternal grandparents

vii





1

Chapter 1

INTRODUCTION

Statistical learning handles uncertainty in a robust and principled way. Relational learning (also

known as inductive logic programming (ILP)) models domains involving multiple relations. Re-

cent years have seen a surge of interest in the statistical relational learning (SRL) community in

combining the two, driven by the realization that many (if not most) applications require both [36].

Markov logic networks (MLNs) [86, 24] are a type of statistical relational model that has gained

traction within the AI community in recent years because of its robustness to noise and its ability to

model complex domains. MLNs combine probability and logic by attaching weights to first-order

formulas [35], and viewing these as templates for features of Markov networks [75]. Learning the

structure of an MLN consists of learning both formulas and their weights.

Learning MLN structure from data is an important task because it allows us to discover novel

knowledge. The need for it becomes especially acute when the data is too large for human perusal,

and we lack expert knowledge about it. For example, from a large database describing a university,

we would want a system to automatically discover probabilistic rules capturing the relationships

among professors, students, courses, etc. These rules could then be used for tasks such as predicting

future student enrollment in courses.

MLN structure learning is an extremely challenging task because of its super-exponential search

space of formulas, and its need to repeatedly learn the weights of formulas in order to evaluate them,

a process that requires computationally expensive statistical inference.

This thesis addresses the question of how to efficiently and accurately learn MLN strucure from

relational data (Figure 1.1). We begin by describing the Markov logic Structure Learner (MSL) [45]

that combines ideas from ILP and feature induction in Markov networks. We show that by combin-

ing the strengths of both relational and statistical approaches, MSL outperforms systems that use

only one of the two approaches.

Next we propose statistical predicate invention (SPI) as a key problem for statistical relational



2

Figure 1.1: Input and output of MLN structure learner.

learning. SPI is the problem of discovering new concepts, properties and relations in structured

data, and generalizes hidden variable discovery in statistical models and predicate invention in ILP.

We present an approach for learning latent MLN structure as an initial model for SPI. Our al-

gorithm, Multiple Relational Clusterings (MRC) [46], is based on second-order Markov logic, in

which predicates as well as arguments can be variables, and the domain of discourse is not fully

known in advance. Our approach iteratively refines clusters of symbols based on the clusters of

symbols they appear in atoms with (e.g., it clusters relations by the clusters of the objects they re-

late). Since different clusterings are better for predicting different subsets of the atoms, we allow

multiple cross-cutting clusterings. We demonstrate that by discovering new concepts and relations,

MRC outperforms MSL and other comparison systems on a number of relational datasets.

After that, we apply the learning of latent MLN structure to the long-standing AI problem of

extracting knowledge from text. We create the Semantic Network Extractor (SNE) system [47] that

learns semantic networks from Web data in an unsupervised, domain-independent manner. SNE

simultaneously clusters phrases into high-level concepts and relations, and discovers interactions

among them in the form of a semantic network. To scale to the Web, SNE incorporates several

techniques to find the clusters efficiently. Our empirical evaluation shows that SNE is able to extract

meaningful semantic networks from a large Web corpus.

Next we incorporate the discovery of latent structure into the learning of MLN formulas in the

Learning via Hypergraph Lifting (LHL) system [48]. LHL views a relational database as a hyper-



3

graph with constants as nodes and relations as hyperedges. It finds paths of true ground atoms in the

hypergraph that are connected via their arguments. To make this tractable (there are exponentially

many paths in the hypergraph), LHL lifts the hypergraph by jointly clustering the constants to form

higher-level concepts and finds paths in it. The paths are then converted into weighted formulas. We

empirically show that LHL learns more accurate rules than previous systems.

Finally, we address the problem of learning long MLN formulas. Learning long formulas is

important for two reasons. First, long formulas can capture more complex dependencies in data

than short ones. Second, when we lack domain knowledge, we typically want to set the maximum

formula length to a large value so as not to a priori preclude any good rule. State-of-the-art MLN

structure learners are only able to learn short formulas (4-5 literals) due to the extreme computational

cost of learning. We create the Learning via Structural Motifs (LSM) system [49] that efficiently

and accurately learns long formulas by constraining its search to within frequently occurring patterns

called structural motifs. Our experiments demonstrate that LSM is 2-5 orders of magnitude faster

than previous systems, while achieving the same or better predictive performance.

1.1 Thesis Overview

The next chapter reviews the necessary background on first-order logic, Markov networks and

Markov logic. Chapter 3 describes how ideas from ILP and feature induction in Markov networks

are combined in the MSL system. Chapter 4 and Chapter 5 respectively present latent structure

discovery in the MRC and SNE systems. Chapter 6 shows how the LHL system ‘lifts’ hypergraphs

to find good rules. Chapter 7 describes the motif discovery algorithm of the LSM system, and how

motifs are used to find long formulas. Each chapter discusses related work. Finally, the thesis

concludes with a summary of its contributions and directions for future work.



4

Chapter 2

BACKGROUND

In this chapter, we provide background on first-order logic and Markov networks, and then

describe how Markov logic unifies the two concepts.

2.1 First-Order Logic

In first-order logic [35], formulas are constructed using the following four types of symbols.

• Constants represent objects in a domain of discourse (e.g., people: Anna, Bob, Charles).

• Variables (e.g., x, y, z) range over the objects in the domain.

• Functions (e.g., FatherOf, GreatestCommonDivisorOf) represent mappings from tuples

of objects to objects.

• Predicates represent relations among objects (e.g., Friends, Advises), or attributes of ob-

jects (e.g., Tall, IsSmoker).

An interpretation specifies which objects, functions and relations in the domain are represented by

which symbols. Variables and constants may be typed, in which case variables range only over

objects of the corresponding type, and constants can only represent objects of the corresponding

type.

A term is an expression representing an object in the domain, and can be a constant, a variable,

or a function applied to a tuple of terms (e.g., Anna, x and FatherOf(x)). An atom is a predicate

symbol applied to a tuple of terms (e.g., Friends(x, Anna), FatherOf(Anna)). A positive literal

is an atom; a negative literal is a negated atom. A ground term is a term containing no variables. A

ground atom or ground predicate is an atom all of whose arguments are ground terms.

Formulas F and F ′ are recursively constructed from atoms using logical connectives and quan-

tifiers in the following manner.



5

• Conjunction. F ∧ F ′ , which is true iff both F and F ′ are true.

• Disjunction. F ∨ F ′, which is true iff F or F ′ is true.

• Negation. ¬F , which is true iff F is false.

• Implication. F ⇒ F ′, which is true iff F is false or F ′ is true.

• Equivalence. F ⇔ F ′, which is true iff F and F ′ have the same truth value.

• Existential Quantification. ∃x F , which is true iff F is true for at least one object x in the

domain.

• Universal Quantification. ∀x F , which is true iff F is true for every object x in the domain.

A clause is a disjunction of positive/negative literals. A definite clause is a clause with exactly one

positive literal (the head, with negative literals constituting the body). Every first-order formula can

be converted into an equivalent formula in conjunctive normal form, Qx1 . . . Qxn C(x1, . . . , xn),

where each Q is a quantifier, each xi is a quantified variable, and C(. . .) is a conjunction of clauses.

A first-order knowledge base (KB) is a set of formulas in first-order logic. The formulas in a KB

are implicitly conjoined, and thus a KB can be viewed as a single large formula. A KB in clausal

form is a conjunction of clauses.

A world is an assignment of truth values to all possible ground atoms, and thus to every formula

in the KB. A database is a partial specification of a world; each atom in it is true, false or (implicitly)

unknown. In this thesis, unless stated otherwise, we make the closed-world assumption, i.e., all

ground atoms not in the database are assumed false.

The main inference problem in first-order logic is to determine whether a KB entails a formula

F , i.e., if F is true in all worlds where the KB is true. This problem is semidecidable.

First-order logic has limited practical applicability to modeling real-world domains for two rea-

sons. First, if a KB contains a contradiction (common in real-world domains where a formula and its

negation can be true under different circumstances), all formulas are trivially entailed by it. Thus, a

first-order KB requires painstaking knowledge engineering. This problem becomes even more pro-

nounced when different KBs are merged to capture a wider range of knowledge. Second, in most

domains it is difficult to specify non-trivial formulas that are always true, and such formulas only



6

represent a small portion of the relevant knowledge. We shall show in Section 2.3 how Markov logic

overcomes these limitations.

Inductive logic programming (ILP) systems learn clausal KBs from relational databases, or re-

fine existing KBs [54]. In the learning from entailment setting, the system searches for clauses that

entail all positive examples of some relation (e.g., Friends) and no negative ones. For example,

FOIL [80] learns each clause by starting with the target relation as the head and greedily adding

literals to the body, using an information-theoretic measure to choose among candidate literals. In

the learning from interpretations setting, the examples are databases, and the system searches for

clauses that are true in them. For example, CLAUDIEN [18], starting with a trivially false clause

(true⇒ false), repeatedly forms all possible refinements of the current clauses by adding literals

to the head and body, and adds to the KB the ones that satisfy a minimum accuracy and coverage

criterion.

2.2 Markov Networks

A Markov network or Markov random field [75] is a model for the joint distribution of a set of

variables X = (X1, X2, . . . , Xn) ∈ X . It is composed of an undirected graph G and a set of

potential functions φk. The graph has a node for each variable, and the model has a potential

function for each clique in the graph. A potential function is a non-negative real-valued function

of the state of the corresponding clique. The joint distribution represented by a Markov network is

given by

P (X=x) =
1
Z

∏
k

φk(x{k}) (2.1)

where x{k} is the state of the kth clique (i.e., the state of the variables that appear in that clique). Z,

known as the partition function, is given by Z =
∑

x∈X
∏
k φk(x{k}). Markov networks are often

conveniently represented as log-linear models, with each clique potential replaced by an exponenti-

ated weighted sum of features of the state, leading to

P (X=x) =
1
Z

exp

∑
j

wjfj(x)

 . (2.2)



7

A feature may be any real-valued function of the state. This thesis will focus on binary features

(fj(x) ∈ {0, 1}). In the most direct translation from the potential-function form, there is one

feature corresponding to each possible state x{k} of each clique, with its weight being log φk(x{k}).

This representation is exponential in the size of the cliques. However, we are free to specify a much

smaller number of features (e.g., logical functions of the state of the clique), allowing for a more

compact representation than the potential-function form, particularly when large cliques are present.

As we shall show in the next section, Markov logic takes advantage of this.

Approximate inference is widely used in place of exact inference in Markov networks because

the latter is #P-complete [88]. The most commonly used approximate method is Markov chain

Monte Carlo (MCMC) [37], in particular Gibbs sampling. Gibbs sampling works by sampling each

variable x in turn given its Markov blanket, which is defined as the minimal set of variables that

makes x independent of all other variables. (In a Markov network, x’s Markov blanket simply

contains its neighbors in the graph.) Marginal probabilities are computed by counting over these

samples, and conditional probabilities are computed by sampling with the conditioning variables

fixed to their given values. A drawback of MCMC is that it can be very slow to converge. Another

widely used method for inference is belief propagation [108]. It operates by first constructing a

bipartite graph of the nodes and the potentials. Then it passes approximations to node marginals as

messages from variable nodes to their corresponding factor nodes and vice versa. A disadvantage

of such a message-passing scheme is that it does not provide any guarantee of convergence or of

giving correct marginals when it converges.

Maximum-likelihood estimates of Markov network weights cannot be computed in closed form,

but they can be found using standard gradient-based or quasi-Newton optimization methods like

L-BFGS [73] (because the log-likelihood is a concave function of the weights). Since such methods

require inference as subroutines, they inherit their subroutines’ computational costs and drawbacks.

The standard approach to learning the structure (i.e., the features) of Markov networks is intro-

duced by Della Pietra et al. (1997). They induce conjunctive features by starting with a set of atomic

features (the original variables), conjoining each current feature with each atomic feature, adding

to the network the conjunction that most increases likelihood, and repeating. McCallum (2003) ex-

tends this to the case of conditional random fields, which are Markov networks trained to maximize

the conditional likelihood of a set of outputs given a set of inputs.



8

More recently, Lee et al. (2007) and Ravikumar et al. (2009) learn Markov network structure

via weight learning with L1 priors. An L1 prior has the property of forcing weights to zero by

penalizing small weights severely. These approaches consider the space of all possible features and

find their L1-regularized weights that optimize the log-likelihood of data. Features with non-zero

weights are retained in the Markov network, and the rest are discarded. Even though, conceptually,

these models can work over all possible features, they have only been used in practice for features

containing at most two variables for tractability reasons.

2.3 Markov Logic

A first-order KB can be seen as a set of hard constraints on the set of possible worlds: if a world

violates even one formula, it has zero probability. The basic idea in Markov logic [86, 24] is to

soften these constraints: when a world violates one formula in the KB it is less probable, but not

impossible. The fewer formulas a world violates, the more probable it is. Each formula has an

associated weight that reflects how strong a constraint it is: the higher the weight, the greater the

difference in log probability between a world that satisfies the formula and one that does not, other

things being equal.

Definition 1. [86, 24] A Markov logic network L is a set of pairs (Fi, wi), where Fi is a for-

mula in first-order logic and wi is a real number. Together with a finite set of constants C =

{c1, c2, . . . , c|C|}, it defines a Markov network ML,C (Equations 2.1 and 2.2) as follows:

1. ML,C contains one binary node for each possible grounding of each predicate appearing in

L. The value of the node is 1 if the ground predicate is true, and 0 otherwise.

2. ML,C contains one feature for each possible grounding of each formula Fi in L. The value

of this feature is 1 if the ground formula is true, and 0 otherwise. The weight of the feature is

the wi associated with Fi in L.

Thus there is an edge between two nodes of ML,C iff the corresponding ground predicates appear

together in at least one grounding of one formula in L.



9

A Markov logic network (MLN) can be viewed as a template for constructing Markov networks.

For different sets of constants, an MLN can construct Markov networks of varying sizes, all of

which share regularities in structure and parameters as given by an MLN. From Definition 1 and

Equation 2.2, the probability distribution over possible worlds x specified by the Markov network

ML,C is given by

P (X=x) =
1
Z

exp

∑
i∈F

∑
j∈Gi

wigj(x)

 (2.3)

where Z is a normalization constant, F is the set of all first-order formulas in the MLN L, Gi and

wi are respectively the set of groundings and weight of the ith first-order formula, and gj(x) = 1

if the jth ground formula is true and gj(x) = 0 otherwise. As formula weights increase, an MLN

increasingly resembles a purely logical KB, becoming equivalent to one in the limit of all infinite

weights. Markov logic allows contradictions between formulas simply by weighting the formulas

and weighing evidence on both sides. Markov logic can also represent complex non-i.i.d. models

(which do not assume that data points are independent and identically distributed) by allowing a

predicate to appear more than once in a formula. This permits information to propagate among the

different occurrences of the predicate.

Markov logic has as special cases all discrete probabilistic models that are expressible as prod-

ucts of potentials (including Markov networks and Bayesian networks). For details on how Markov

logic is related to other statistical relational models, we refer the reader to Richardson and Domingos

(2006).

In this thesis, we focus on MLNs whose formulas are function-free clauses, and assume domain

closure (i.e., the only objects in the domain are those representable using the constant symbols in

C), thereby ensuring that the Markov networks generated are finite.

MLN weights can in principle be learned using standard gradient-based or quasi-Newton opti-

mization methods [73] because the log-likelihood (i.e., log of Equation 2.3) is a concave function of

the weights. The derivative of the log-likelihood with respect to the weight of the ith formula is

∂

∂wi
logPw(X=x) = ni(x)−

∑
x′

Pw(X=x′) ni(x′) (2.4)



10

where the sum is over all possible databases x′, ni(x) is the number of true groundings of the

ith formula in the data x, and Pw(X = x′) is P (X = x′) computed using the weight vector

w = (w1, . . . , wi, . . .). In other words, the ith component of the gradient is simply the difference

between the number of true groundings of the ith formula in the data and its expectation according

to the current model. Unfortunately, computing the expectation requires summing over all possible

databases, which is intractable. Furthermore, quasi-Newton optimization methods require comput-

ing the log-likelihood and thus its partition function Z, which is also intractable. Even though

Markov chain Monte Carlo techniques can be used to approximate the expectation and partition

function, they are computationally expensive.

A more efficient, widely used alternative is to optimize pseudo-log-likelihood [5].

logP ∗w,F (X=x) =
n∑
g=1

logPw,F (Xg=xg|MBx(Xg)) (2.5)

where F is the set of all first-order formulas in an MLN, MBx(Xg) is the state of the Markov

blanket of Xg in the data (i.e., the truth values of the ground atoms it appears in some ground

formula with), and

Pw,F (Xg=xg|MBx(Xg)) =
exp

(∑F
i=1wini(x)

)
exp

(∑F
i=1wini(x[Xg=0]

)
+ exp

(∑F
i=1wini(x[Xg=1]

) (2.6)

where ni(x) is the number of true groundings of the ith formula in x, ni(x[Xg=0]) is the number of

true groundings of the ith formula when we force Xg = 0 and leave the remaining data unchanged,

and similarly for ni(x[Xg=1]).

Pseudo-log-likelihood and its gradient (given below) do not require inference over the model.

∂

∂wi
logP ∗w,F (X=x) =

n∑
g=1

[ ni(x)− Pw,F (Xg=0|MBx(Xg)) ni(x[Xg=0])

−Pw,F (Xg=1|MBx(Xg)) ni(x[Xg=1]) ]. (2.7)

Richardson and Domingos (2006) used an off-the-shelf ILP system (CLAUDIEN [18]) to learn

MLN clauses. However, since an MLN represents a probability distribution, a sounder approach



11

would be to use a likelihood-based evaluation function, rather than typical ILP ones like accuracy

and coverage, to guide the creation of MLN clauses. In Chapter 3, we present a such an approach.



12

Chapter 3

MARKOV LOGIC STRUCTURE LEARNER

3.1 Introduction

In this chapter, we develop an algorithm for learning the structure of MLNs from relational databases,

combining ideas from inductive logic programming (ILP; Section 2.1) and feature induction in

Markov networks (Section 2.2).

The previous MLN structure learning approach, proposed by Richardson and Domingos (2006),

used an off-the-shelf ILP system (CLAUDIEN [18]) to induce first-order clauses, and then learned

maximum pseudo-likelihood weights for them. This is unlikely to give the best results, because

CLAUDIEN (like other ILP systems) is designed to simply find clauses that hold with some accuracy

and frequency in the data, not to maximize the data’s likelihood (and hence the quality of the MLN’s

probabilistic predictions).

We develop the Markov logic Structure Learner (MSL) system for learning the structure of

MLNs by directly optimizing a likelihood-type measure, and show experimentally that it outper-

forms the approach of Richardson and Domingos. The algorithm performs a beam or shortest-first

search of the space of clauses, guided by a weighted pseudo-likelihood measure. This requires

computing the optimal weights for each candidate structure, but we show how this can be done effi-

ciently. The algorithm can be used to learn an MLN from scratch, or to refine an existing knowledge

base. Either way, like Richardson and Domingos (2006), we have found it useful to start by adding

all unit clauses (single predicates) to the MLN. The weights of these capture (roughly speaking) the

marginal distributions of the predicates, allowing the longer clauses to focus on modeling predicate

dependencies.

The design space for MLN structure learning algorithms includes the choice of evaluation mea-

sure, clause construction operators, search strategy and speedup methods. We discuss each of these

in turn in the next four sections. In Section 3.6, we report our experiments on two real-world do-

mains, which show that MSL outperforms using off-the-shelf ILP systems to learn MLN structure,



13

as well as purely ILP, purely probabilistic and purely knowledge-based approaches. We discuss

related work in Section 3.7.

3.2 Evaluation Measures

We initially used the same pseudo-likelihood measure as Richardson and Domingos (Equation 2.5).

However, we found this to give undue weight to the predicate with the largest number of groundings

(typically the largest-arity predicate), resulting in poor modeling of the rest. We thus defined the

weighted pseudo-log-likelihood (WPLL) as

logP •w,F,D(X=x) =
∑
r∈R

cr
∑
g∈GDr

logPw,F (Xg=xg|MBx(Xg)) (3.1)

where F is a set of clauses, w is a set of clause weights, R is the set of first-order predicates, GDr is

a set of ground atoms of predicate r in database D, and xg is the truth value (0 or 1) of ground atom

g inD, and Pw,F (Xg=xg|MBx(Xg)) is given by Equation 2.6. The choice of predicate weights cr

depends on the user’s goals. In our experiments, we simply set cr = 1/|GDr | which has the effect of

weighting all first-order predicates equally. If modeling a predicate is not important (e.g., because

it will always be part of the evidence), we set its weight to zero. We used WPLL in all versions of

MLN learning in our experiments. To combat overfitting, we penalize the WPLL with a structure

prior of e−π
PF
i=1 di , where di is the number of predicates that differ between the current version of

the clause and the original one (if the clause is new, this is simply its length), and π is the penalty

per predicate. This is similar to the approach used in learning Bayesian networks [40]. Following

Richardson and Domingos, we also penalize each weight with a Gaussian prior.

A potentially serious problem that arises when evaluating candidate clauses using WPLL is that

the optimal (maximum WPLL) weights need to be computed for each candidate. Given that this

involves numerical optimization, and may need to be done thousands or millions of times, it could

easily make the algorithm too slow to be practical. Indeed, in the UW-CSE domain (see Section 3.6),

we found that learning the weights using L-BFGS took 3 minutes on average, which is fast enough

if only done once, but infeasible to do for every candidate clause.

Della Pietra et al. (1997) and McCallum (2003) address this problem by assuming that the

weights of previous features do not change when testing a new one. Surprisingly, we found this to



14

be unnecessary if we use the very simple approach of initializing L-BFGS with the current weights

(and zero weight for a new clause). Although in principle all weights could change as the result

of introducing or modifying a clause, in practice this seldom happens. Second-order, quadratic-

convergence methods like L-BFGS are known to be very fast if started near the optimum. This is

what happens in our case; L-BFGS typically converges in just a few iterations, sometimes one. The

time required to evaluate a clause is in fact dominated by the time required to compute the number

of its true groundings in the data, and this is a problem we focus on in Section 3.5.

3.3 Clause Construction Operators

When learning an MLN from scratch (i.e., from a set of unit clauses), the natural operator to use is

the addition of a literal to a clause. When refining a hand-coded KB, the goal is to correct the errors

made by the human experts. These errors include omitting conditions from rules and including

spurious ones, and can be corrected by operators that add and remove literals from a clause. These

are the basic operators that we use. In addition, we have found that many common errors (e.g., wrong

direction of implication) can be corrected at the clause level by flipping the signs of predicates, and

we also allow this. When adding a literal to a clause, we consider all possible ways in which the

literal’s variables can be shared with existing ones, subject to the constraint that the new literal must

contain at least one variable that appears in an existing one. To control the size of the search space,

we set a limit on the number of distinct variables in a clause. We only try removing literals from

the original hand-coded clauses or their descendants, and we only consider removing a literal if it

leaves at least one path of shared variables between each pair of remaining literals.

3.4 Search Strategies

We have implemented two search strategies, one faster and one more complete. The first approach

adds clauses to the MLN one at a time, using beam search to find the best clause to add: starting

with the unit clauses and the expert-supplied ones, we apply each legal literal addition and deletion

to each clause, keep the b best ones, apply the operators to those, and repeat until no new clause

improves the WPLL. The chosen clause is the one with highest WPLL found in any iteration of the

search. If the new clause is a refinement of a hand-coded one, it replaces it. (Notice that, even though



15

we both add and delete literals, no loops can occur because each change must improve WPLL to be

accepted.)

The second approach adds k clauses at a time to the MLN, and is similar to that of McCallum

(2003). In contrast to beam search, which adds the best clause of any length found, this approach

adds all “good” clauses of length l before attempting any of length l + 1. We call it shortest-first

search.

Table 3.1 shows the structure learning algorithm in pseudo-code, Table 3.2 shows beam search,

and Table 3.3 shows shortest-first search for the case where the initial MLN contains only unit

clauses.

3.5 Speedup Techniques

The algorithms described in the previous section may be very slow, particularly in large domains.

However, they can be greatly sped up using a combination of techniques that we now describe.

• Richardson and Domingos (2006) list several ways of speeding up the computation of the

pseudo-log-likelihood and its gradient, and we apply them to the WPLL (Equation 3.1). In

addition, in Equation 2.6 we ignore all clauses that the predicate does not appear in.

• When learning MLN weights to evaluate candidate clauses, we use a looser convergence

threshold and lower maximum number of iterations for L-BFGS than when updating the MLN

with the chosen clause(s).

• We compute the contribution of a predicate to the WPLL approximately by uniformly sam-

pling a fraction of its groundings (true and false ones separately), computing the conditional

likelihood of each one (Equation 2.6), and extrapolating the average. The number of samples

can be chosen to guarantee that, with high confidence, the chosen clause(s) are the same that

would be obtained if we computed the WPLL exactly. At the end of the algorithm we do a

final round of weight learning without subsampling.

• We use a similar strategy to compute the number of true groundings of a clause, required for

the WPLL and its gradient. In particular, we use the algorithm of Karp and Luby (1983). In



16

Table 3.1: MSL algorithm.

function StructLearn(R, MLN , DB)

inputs: R, a set of predicates

MLN , a clausal Markov logic network

DB, a relational database

output: Modified MLN

Add all unit clauses from R to MLN

for each non-unit clause c in MLN (optionally)

Try all combinations of sign flips of literals in c, and keep the one that gives the highest

WPLL(MLN , DB)

Clauses0← {All clauses in MLN}

LearnWeights(MLN , DB)

Score← WPLL(MLN , DB)

repeat

Clauses← FindBestClauses(R, MLN , Score, Clauses0, DB)

if Clauses 6= ∅

Add Clauses to MLN

LearnWeights(MLN , DB)

Score← WPLL(MLN , DB)

until Clauses = ∅

for each non-unit clause c in MLN

Prune c from MLN unless this decreases WPLL(MLN , DB)

return MLN



17

Table 3.2: Beam search for the best clause.

function FindBestClauses(R, MLN , Score, Clauses0, DB)

inputs: R, a set of predicates

MLN , a clausal Markov logic network

Score, WPLL of MLN

Clauses0, a set of clauses

DB, a relational database

output: BestClause, a clause to be added to MLN

BestClause← ∅

BestGain← 0

Beam← Clauses0

Save the weights of the clauses in MLN

repeat

Candidates← CreateCandidateClauses(Beam, R)

for each clause c ∈ Candidates

Add c to MLN

LearnWeights(MLN , DB)

Gain(c)← WPLL(MLN , DB) − Score

Remove c from MLN

Restore the weights of the clauses in MLN

Beam← {The b clauses c∈Candidates with highest Gain(c)>0 & Weight(c)>ε>0 }

if Gain(Best clause c∗ in Beam) > BestGain

BestClause← c∗

BestGain← Gain(c∗)

until Beam = ∅ or BestGain has not changed in two iterations

return {BestClause}



18

Table 3.3: Shortest-first search for the best clauses.

function FindBestClauses(R,MLN,Score, Clauses0, DB)

inputs: R, a set of predicates

MLN , a clausal Markov logic network

Score, WPLL of MLN

Clauses0, a set of clauses

DB, a relational database

output: BestClauses, a set of clauses to be added to MLN

Save the weights of the clauses in MLN

if this is the first time FindBestClauses is called

Candidates← ∅

l← 1

repeat

if l = 1 or this is not the first iteration of the repeat loop

if there is no clause in Candidates of length < l that was not previously extended

l← l + 1

Clauses← {Clauses of length l−1 in MLN not previously extended } ∪

{s best clauses of length l−1 in Candidates not previously extended }

Candidates← Candidates ∪ CreateCandidateClauses(Clauses, R)

for each clause c ∈ Candidates not previously evaluated

Add c to MLN

LearnWeights(MLN , DB)

Gain(c)← WPLL(MLN , DB) − Score

Remove c from MLN and restore the weights of the clauses in MLN

Candidates← {m best clauses in Candidates}

until l = lmax or there is a clause c∈Candidates with Gain(c)>0 & Weight(c)>ε>0

BestClauses← {The k clauses c∈Candidates with highest Gain(c)>0 & Weight(c)>ε>0 }

Candidates← Candidates \BestClauses

return BestClauses



19

practice, we found that the estimates converge much faster than the algorithm specifies, so

we run the convergence test of Degroot and Schervish (2002, p. 707) after every 100 samples

and terminate if it succeeds. In addition, we use looser convergence criteria during candidate

clause evaluation than during update with the chosen clause.

• When most clause weights do not change significantly with each run of L-BFGS, neither do

most conditional log-likelihoods (CLLs) of ground predicates (log of Equation 2.6). We take

advantage of this by storing the CLL of each sampled ground predicate and only recomputing

it if a clause weight affecting it changes by more than some threshold δ. When a CLL changes,

we subtract its old value from the total WPLL and add the new one. The computation of the

gradient of the WPLL is similarly optimized.

• We use a lexicographic ordering on clauses to avoid redundant computations for clauses that

are syntactically identical. (However, we do not detect clauses that are semantically equivalent

but syntactically different; this is an NP-complete problem.) We also cache the new clauses

created during each search and their counts, avoiding the need to recompute them in later

searches.

3.6 Experiments

3.6.1 Datasets

We carried out experiments on two databases: the UW-CSE database used by Richardson and

Domingos (2004), and McCallum’s Cora database of computer science citations as segmented by

Bilenko and Mooney (2003) (available at http://www.cs.utexas.edu/users/ml/riddle/data/cora.tar.gz).

The UW-CSE domain consists of 22 predicates and 1158 constants divided into 10 types. Types

include: publication, person, course, etc. Predicates include: Professor(person),

AdvisedBy(person1, person2), etc. Using typed variables, the total number of possible ground

predicates is 4,055,575. The database contains a total of 3212 true ground atoms. We used the hand-

coded knowledge base provided with it, which includes 94 formulas stating regularities like: each

student has at most one advisor; if a student is an author of a paper, so is her advisor; etc. Notice

that these statements are not always true, but are typically true.



20

The Cora dataset is a collection of 1295 different citations to 112 computer science research

papers. We used the author, venue, title and year fields. The goal is to determine which pairs of cita-

tions refer to the same paper (i.e., to infer the truth values of all groundings of SameCitation(c1, c2)).

These values are available in the data. Additionally, we attempted to deduplicate the author, title and

venue strings, and we labeled these manually. We defined predicates for each field that discretize the

percentage of words that two strings have in common. For example,

CommonWordsInTitles0−20%(title1, title2) is true iff the two titles have 0-20% of their

words in common. These predicates were always given as evidence, and we did not attempt to pre-

dict them. Using typed variables, the total number of possible ground predicates is 5,225,411. The

database contained a total of 378,589 true ground atoms. A hand-crafted KB for this domain was

provided by a colleague; it contains 26 clauses stating regularities like: if two citations are the same,

their authors, venues, etc., are the same, and vice-versa; if two fields of the same type have many

words in common, they are the same; etc.

3.6.2 Systems

We compared nine versions of MLN learning:

• MLN(KB). Weight learning applied to the hand-coded KB.

• MLN(CL). Structure learning using CLAUDIEN [18], followed by weight learning.

• MLN(FO). Structure learning using FOIL [80], followed by weight learning.

• MLN(AL). Structure learning using Aleph [98], followed by weight learning.

• MLN(KB+CL). Structure learning using CLAUDIEN with the KB providing the language

bias as in Richardson and Domingos (2006), followed by weight learning on the output of

CLAUDIEN merged with the KB (MLN(KB+CL)).

• MSL B. Structure learning using our MSL algorithm with beam search, starting from an

empty MLN.



21

• KB+MSL B. Structure learning using our MSL algorithm with beam search, starting from

the hand-coded KB.

• MSL B+KB. Structure learning using our MSL algorithm with beam search, starting from an

empty MLN, but allowing hand-coded clauses to be added during the first search step.

• MSL S. Structure learning using our MSL algorithm with shortest-first search, starting from

an empty MLN.

We added unit clauses to all nine systems. In addition, we compared MLN learning with three pure

ILP approaches (CLAUDIEN (CL), FOIL (FO), and Aleph (AL)), a pure knowledge-based approach

(the hand-coded KB (KB)), the combination of CLAUDIEN and the hand-coded KB as described

above (KB+CL), and two pure probabilistic approaches (naive Bayes (NB) [25] and Bayesian net-

works (BN) [40]). Notice that ILP learners like FOIL and Aleph are not directly comparable with

MSL (or CLAUDIEN), because they only learn to predict designated target predicates, as opposed

to finding arbitrary regularities over all predicates. For an approximate comparison, we used FOIL

and Aleph to learn rules with each predicate as the target in turn.

We used the algorithm of Richardson and Domingos (2006) to construct order-1 and order-2

attributes for the naive Bayes and Bayesian network learners. Order-1 attributes capture characteris-

tics of individual constants in a predicate, and order-2 attributes model the relationships among the

constants in the predicate. Since our goal is to measure predictive performance over all predicates,

not just the AdvisedBy(x, y) predicate that Domingos and Richardson focused on, we learned a

naive Bayes classifier and a Bayesian network for each predicate.

We used the same settings for CLAUDIEN as Richardson and Domingos, and let CLAUDIEN

run for 24 hours on a Sun Blade 1000 workstation (CLAUDIEN only runs on Solaris machines). We

used the default FOIL parameter settings except for the maximum number of variables per clause,

which we set to 5 (UW-CSE) and 6 (Cora), and the minimum clause accuracy, which we set to

50%. For Aleph, we used all of the default settings except for the maximum clause length, which

we set to 4 (UW-CSE) and 7 (Cora). The parameters used for our structure learning algorithms

were as follows: π = 0.01 (UW-CSE) and 0.001 (Cora); maximum variables per clause = 5 (UW-



22

CSE) and 6 (Cora);1 ε = 1 (UW-CSE) and 0.01 (Cora); δ = 10−4; s = 200; m = 100, 000;

lmax = 3 (UW-CSE) and 7 (Cora); and k = 10 (UW-CSE) and 1 (Cora). L-BFGS was run with the

following parameters: maximum iterations = 10,000 (tight) and 10 (loose); convergence threshold

= 10−5 (tight) and 10−4 (loose). The mean and variance of the Gaussian prior were set to 0 and

100, respectively, in all runs. A description of the parameters is given in Table 3.4. The parameters

were set in an ad hoc manner, and per-fold optimization using a validation set could conceivably

yield better results.

Table 3.4: Parameter description.

Parameter Description

π penalty per predicate of structure prior

δ min. fractional clause weight change for CLL of ground predicate to be

recomputed (Section 3.5)

ε min. weight of candidate clauses (Tables 3.2 and 3.3)

s max. number of candidate clauses extended in shortest-first search (Table 3.3)

m max. number of candidate clauses retained in each iteration of shortest-first search

lmax max. length of clauses returned by shortest-first search (Table 3.3)

k max. number of clauses returned by shortest-first search (Table 3.3)

3.6.3 Methodology

In the UW-CSE domain, we used the same leave-one-area-out methodology as Richardson and

Domingos (2006). In the Cora domain, we performed five runs with train-test splits of approxi-

mately equal size, ensuring that no true set of matching records was split between train and test

sets to avoid contamination. We performed inference over each test ground atom to compute its

probability of being true, using all other ground atoms as evidence (the log of this probability is

the conditional log-likelihood (CLL) of the test ground atom). To evaluate the performance of each

1In the Cora domain, we further sped up learning by using syntactic restrictions on clauses similar to CLAUDIEN’s
declarative bias; details are in Appendix A.



23

system, we measured the average conditional log-likelihood (CLL) of the test atoms and area un-

der the precision-recall curve (AUC). The advantage of the CLL is that it directly measures the

quality of the probability estimates produced. The advantage of the AUC is that it is insensitive

to the large number of true negatives (i.e., ground atoms that are false and predicted to be false).

The precision-recall curve for a predicate is computed by varying the threshold CLL above which

a ground atom is predicted to be true. For both CLL and AUC, the values we report are averages

over all predicates (in the UW-CSE domain) or all non-evidence predicates (in the Cora domain),

with all predicates weighted equally. We computed the standard deviations of the AUCs using the

method of Richardson and Domingos (2006). To obtain probabilities from the ILP models and

hand-coded KBs (required to compute CLLs and AUCs), we treated them as MLNs with all equal

infinite weights.

3.6.4 Results

The results on the UW-CSE domain are shown in Table 3.5, and the results on Cora are shown in

Table 3.6.2 All versions of our MSL algorithm greatly outperformed using ILP systems to learn

MLN structure, in both CLL and AUC, in both domains. This is consistent with our hypothesis

that directly optimizing (pseudo-)likelihood when learning structure yields better models. In both

domains, shortest-first search starting from an empty network (MSL S) gave the best overall results,

but was much slower than beam search (MSL B) (see below).

The purely logical approaches (CL, FO, AL, KB and KB+CL) did quite poorly. This occurred

because they assigned very low probabilities to true ground atoms whenever they were not entailed

by the logical KB, and this occurred quite often. Learning weights for the hand-coded KBs was quite

helpful, confirming the utility of transforming KBs into MLNs. However, MSL gave the best overall

results. In the UW-CSE domain, refining the hand-coded KB (KB+MSL B)) did not improve on

learning from scratch. MSL was unable to break out of the local optimum represented by MLN(KB),

leading to poor performance. This problem was overcome if we started instead from an empty KB

but allowed hand-coded clauses to be added during the first step of beam search (MSL B+KB)).

MSL also greatly outperformed the purely probabilistic approaches (NB and BN). This was

2We tried Aleph with many different parameter settings on Cora, but it always crashed by running out of memory.



24

Table 3.5: Experimental results on the UW-CSE database.

System CLL AUC

MSL S −0.061±0.004 0.533±0.003

MSL B −0.088±0.005 0.472±0.004

KB+MSL B −0.140±0.005 0.430±0.003

MSL B+KB −0.071±0.005 0.551±0.003

MLN(KB+CL) −0.115±0.005 0.506±0.004

MLN(CL) −0.151±0.005 0.306±0.001

MLN(FO) −0.208±0.006 0.140±0.000

MLN(AL) −0.223±0.006 0.148±0.001

MLN(KB) −0.142±0.005 0.429±0.003

KB+CL −0.789±0.012 0.318±0.003

CL −0.574±0.010 0.170±0.004

FO −0.661±0.003 0.131±0.001

AL −0.579±0.006 0.117±0.000

KB −0.812±0.011 0.266±0.003

NB −0.370±0.005 0.390±0.003

BN −0.166±0.004 0.397±0.002



25

Table 3.6: Experimental results on the Cora database.

System CLL AUC

MSL S −0.054±0.000 0.813±0.001

MSL B −0.058±0.000 0.782±0.001

KB+MSL B −0.055±0.000 0.828±0.001

MSL B+KB −0.058±0.000 0.782±0.001

MLN(KB+CL) −0.069±0.000 0.799±0.001

MLN(CL) −0.158±0.001 0.148±0.000

MLN(FO) −0.213±0.000 0.529±0.001

MLN(KB) −0.066±0.000 0.809±0.001

KB+CL −0.191±0.001 0.658±0.001

CL −0.693±0.000 0.148±0.000

FO −0.717±0.001 0.583±0.001

KB −0.229±0.001 0.657±0.001

NB −0.411±0.001 0.096±0.001

BN −0.257±0.001 0.107±0.000



26

consistent with our expectation because the data contained little conventional attribute-value data

but much relational information.

In the UW-CSE domain, shortest-first search (MSL S) without the speedups described in Sec-

tion 3.5 did not finish running in 24 hours on a cluster of 15 dual-CPU 2.8 GHz Pentium 4 machines.

With the speedups, it took an average of 5.3 hours. For beam search (MSL B), the speedups reduced

average running time from 13.7 hours to 8.8 hours on a standard 2.8 GHz Pentium 4 CPU. To inves-

tigate the contribution of each speed-up technique, we reran shortest-first search on one fold of the

UW-CSE domain, leaving out one technique at a time. Clause and predicate sampling provide the

largest speedups (six-fold and five-fold, respectively), and weight thresholding the smallest (1.025).

None of the techniques adversely affect AUC, and predicate sampling is the only one that signif-

icantly reduces CLL (disabling it improves CLL from −0.059 to −0.038). Inference times were

relatively short, taking a maximum of 1 minute (UW-CSE) and 12 minutes (Cora) on a standard 2.8

GHz Pentium 4 CPU.

The following are examples of (weighted) rules learned by MSL.

• TempAdvisedBy(x, y)⇒ HasFacultyPosition(y, z). (If y advises someone, she is likely

to hold a faculty position z).

• ¬AdvisedBy(x, y) ∧ ¬TempAdvisedBy(x′, y)⇒ Student(y). (If y does not advise anyone,

she is likely to be a student).

• TitleOfCit(t, c) ∧ TitleOfCit(t′, c′) ∧ SameTitle(t, t′)⇒ SameCitation(c, c′). (If

two citations c and c′ respectively have titles t and t′ that refer to the same title, then c and

c′ refer to the same citation.)

• CommonWordsInVenues80−100%(v, v′)⇒ SameVenue(v, v′). (If two venues have 80–100%

of their words in common, then they are likely to refer to the same venue.)

In summary, both our algorithms are effective; we recommend using shortest-first search when

accuracy is paramount, and beam search when speed is a concern.



27

3.7 Related Work

3.7.1 MLN Structure Learners

Subsequent to the creation of our MSL system, a few other MLN structure learners were proposed.

We discuss each in turn.

Bottom-up Structure Learner (BUSL)

Despite what its name suggests, BUSL [66] is actually a hybrid bottom-up/top-down system with

a significant top-down component. Mihalkova and Mooney (2007) proposed BUSL to (partially)

circumvent the problems of top-down approaches to learning MLN formulas (e.g., MSL). Top-

down approaches follow a ’blind’ generate-and-test strategy in which formulas are systematically

generated independent of the training data, resulting in the creation of many formulas that are not

supported by data. Because the space of formulas is combinatorially large, it is computationally

wasteful to generate formulas with no empirical support. Further, the greedy nature of the top-down

approach makes it susceptible to converging to a local optimum and hence missing potentially useful

formulas.

The key insight in BUSL is to use the data as a guide for the creation of candidate formulas. To

do so, BUSL makes use of relational pathfinding [84]. Relational pathfinding finds paths of true

ground atoms that are linked via their arguments, and generalizes them into first-order rules. Since

each path is supported by a conjunction in the data, it focuses the search on promising regions of the

space of rules. However, relational pathfinding amounts to exhaustive search over an exponential

number of paths.

Hence, for tractability, BUSL restricts itself to finding very short paths (length 2) in training

data. BUSL variabilizes each ground atom in the path (i.e., it replaces the constants in the atom’s

arguments with variables) and constructs a Markov network whose nodes are the paths viewed as

Boolean variables (conjunctions of atoms).

After that, it uses the Grow-Shrink Markov network learning algorithm [12] to find the edges

between the nodes in a greedy top-down manner. For each node, BUSL finds nodes connected

to it by greedily adding and removing nodes from its Markov blanket using the χ2 measure of

dependence. From the maximal cliques thus created in the Markov network, BUSL creates clauses.



28

For each clique, it forms disjunctions of the atoms in the clique’s nodes and creates clauses with all

possible negation/non-negation combinations of the atoms.

BUSL computes the WPLL of the clauses and greedily adds them one at a time (in order of

decreasing WPLL) to an MLN initially containing only unit clauses. After adding a clause, the

weights of all clauses in the MLN are relearned to compute the new WPLL. The clause is retained

in the MLN only if it increases the overall WPLL.

In Chapter 6 and 7, we respectively present the LHL and LSM systems that use relational

pathfinding to a fuller extent than BUSL and outperform it.

Discriminative MLN Structure Learner

Huynh and Mooney (2008) proposed a discriminative structure learning algorithm for MLNs. It

learn clauses that predict a single target predicate, unlike the MLN structure learners we present in

this thesis, which model the full joint distribution of all predicates. In addition, they constrain the

form of their clauses (as described below), a restriction that our structure learners do not impose.

Huynh and Mooney recognize that the ideal approach to learning discriminative clauses is to

optimize the accuracy of a complete MLN. However, this would require evaluating a combinatori-

ally large number of potential clause refinements that can be made to an existing MLN, a process

that requires relearning the weights of all refined clauses and performing expensive probabilistic

inference. Thus, they adopt a heuristic approach of using an off-the-shelf ILP system (Aleph [98])

to learn candidate clauses. This heuristic allows each clause to be evaluated in isolation based on the

accuracy of its logical inferences. However, since the logical accuracy of a clause is only a rough

guide on its contribution to the final probability model of an MLN, they generate a large number of

candidate clauses and use weight learning to select among them.

All candidate clauses are added to an MLN. After that, they impose an L1 prior on the weight

of each candidate clause, and use a quasi-newton method (the Orthant-Wise limited-memory algo-

rithm [2]) to find the optimal weights maximizing the likelihood of training data. The key feature

of an L1 prior is its tendency to force parameters to zero by strongly penalizing small weights [55].

In this manner, many candidate clauses with zero-weights are discarded, and the non-zero-weight

clauses constitute the final MLN.



29

However, when the Orthant-Wise algorithm finds optimal weights, it has to compute the likeli-

hood of training data (Equation 2.3), and its gradient (Equation 2.4), both of which are intractable

(as described in Section 2.3). Hence, Huynh and Mooney restrict the clauses to be non-recursive

definite clauses (i.e., the target predicate must appear exactly once in each clause and as its head, and

all predicates in the body are evidence). This restriction causes each grounded target predicate to be

independent of each another because their Markov blankets consist only of ground evidence atoms.

Thus, With this restriction, the likelihood and its gradient becomes equal to the pseudo-likelihood

(Equation 2.5) and its gradient (Equation 2.7) which are computationally tractable.

Iterated Local Search (ILS)

Biba et al. (2008a, 2008b) proposed the top-down ILS system that uses a stochastic step to avoid

local optima. ILS begins by randomly selecting a clause in the current MLN to modify. (Contrast

this with MSL, which always selects the highest-scoring clauses to be modified in each iteration.)

Next ILS greedily modifies the clause with search operators (viz., add a literal, remove a literal, and

flip the sign of a literal), always choosing the one that best improves the MLN’s WPLL, until no

improvement can be made. When none of the operators gives an improvement at the first greedy

step, ILS chooses the one that gives the smallest WPLL decrease, so as to avoid reaching a local

optimum too early. The resulting clause is then added to the MLN. The algorithm iterates the process

described above until no clause is found to improve the MLN’s WPLL.

The randomness in ILS helps it to overcome one of the two drawbacks of top-down approaches,

i.e., local optima. However, it does not solve the other drawback of searching a large space of

clauses. In fact, it exacerbates this problem by its (partially) random exploration. In Chapter 6

and 7, we present solutions that address both problems.

3.7.2 Non-MLN Structure Learners

We now discuss non-MLN structure learners that combine probability and logic.

MACCENT [20] is an early example of a system that combines ILP with probability. It finds the

maximum entropy distribution over a set of classes consistent with a set of constraints expressed as

clauses. Like MSL, it builds upon ideas on feature induction in Markov networks; however, it only



30

performs classification, while our goal is to do general probability estimation (i.e., learn the joint

distribution of all predicates). Also, MACCENT only allows deterministic background knowledge,

while our MLN structure learners allow it to be uncertain; and MACCENT classifies each example

separately, while our learners allow for collective classification.

SAYU [16] combines an off-the-shelf ILP system (Aleph [98]) with tree-augmented naive Bayes

(TAN [33]). Aleph is used to learn definite clauses that predict a target predicate. Each time Aleph

creates a clause, SAYU adds it as a binary feature to the training data, and induces a TAN network

that incorporates the new feature. The feature is retained if the TAN network increases the area

under the precision-recall curve on a held-out set of data. Otherwise, SAYU reverts to the previous

network. SAYU iterates the process described above until no new clauses are generated by Aleph

or after a time bound. nFOIL [52] and TFOIL [53] are similar to SAYU except that they both use

FOIL [80] as the ILP system to generate rules rather than Aleph. In addition, nFOIL uses naive

Bayes as the statistical model rather than TAN. Note that all these systems learn clauses that predict

a single target predicate, unlike the MLN structure learners we present in this thesis, which model

the full joint distribution of all predicates.

3.8 Conclusion

In this chapter, we introduced the MSL algorithm for automatically learning MLN clauses and their

weights. MSL explores the space of clauses in a top-down, greedy manner, guided by a weighted

pseudo-likelihood measure. We showed that MSL outperformed the previous approach of Richard-

son and Domingos (2006), as well as purely probabilistic, purely ILP and purely knowledge-based

approaches. However, the greedy nature of MSL makes it susceptible to local optima, and its

generate-and-test approach of creating candidates explores a large space of clauses, many of which

are not supported by data. We present algorithms for overcoming these drawbacks in Chapter 6

and 7. Before that, we turn our attention to the problem of statistical predicate invention, which is

used as a component of our solution in Chapter 6.



31

Chapter 4

STATISTICAL PREDICATE INVENTION

4.1 Introduction

In the past few years, the statistical relational learning (SRL) community has recognized the impor-

tance of combining the strengths of statistical learning and relational learning, and developed several

novel representations, as well as algorithms to learn their parameters and structure [36]. However,

the problem of statistical predicate invention (SPI) has so far received little attention in the commu-

nity. SPI is the discovery of new concepts, properties and relations from data, expressed in terms of

the observable ones, using statistical techniques to guide the process and explicitly representing the

uncertainty in the discovered predicates. These can in turn be used as a basis for discovering new

predicates, which is potentially much more powerful than learning based on a fixed set of simple

primitives. Essentially all the concepts used by humans can be viewed as invented predicates, with

many levels of discovery between them and the sensory percepts they are ultimately based on.

In statistical learning, this problem is known as hidden or latent variable discovery, and in rela-

tional learning as predicate invention. Both hidden variable discovery and predicate invention are

considered quite important in their respective communities, but are also very difficult, with limited

progress to date.

One might question the need for SPI, arguing that structure learning is sufficient. Such a ques-

tion can also be directed at hidden variable discovery and predicate invention, and their benefits,

as articulated by their respective communities, also apply to SPI. SPI produces more compact and

comprehensible models than pure structure learning, and may also improve accuracy by represent-

ing unobserved aspects of the domain. Instead of directly modeling dependencies among observed

predicates, which potentially requires an exponential number of parameters, we can invent a pred-

icate and model the dependence between it and each of the observed predicates, requiring only a

linear number of parameters and reducing the risk of overfitting. In turn, invented predicates can be

used to learn new formulas, allowing larger search steps, and potentially enabling us to learn more



32

complex models accurately.

Among the prominent approaches in statistical learning is a series of algorithms developed by

Elidan, Friedman and coworkers for finding hidden variables in Bayesian networks. Elidan et al.

(2001) look for structural patterns in the network that suggest the presence of hidden variables.

Elidan and Friedman (2005) group observed variables by their mutual information, and create a

hidden variable for each group. Central to both approaches is some form of EM algorithm that

iteratively creates hidden variables, hypothesizes their values, and learns the parameters of the re-

sulting Bayesian network. A weakness of such statistical approaches is they assume that the data is

independently and identically distributed, which is not true in many real-world applications.

In relational learning, the problem is known as predicate invention (see Kramer (1995) for a

survey). Predicates are invented to compress a first-order theory, or to facilitate the learning of first-

order formulas. Relational learning employs several techniques for predicate invention. Predicates

can be invented by analyzing first-order formulas, and forming a predicate to represent either their

commonalities (interconstruction [102]) or their differences (intraconstruction [70]). A weakness of

inter/intraconstruction is that they are prone to over-generating predicates, many of which are not

useful. Predicates can also be invented by instantiating second-order templates [95], or to represent

exceptions to learned rules [99]. Relational predicate invention approaches suffer from a limited

ability to handle noisy data.

Only a few approaches to date combine elements of statistical and relational learning.

Popescul and Ungar (2004) apply k-means clustering to objects as a pre-processing step. Then

they create predicates to represent the clusters and find SQL rules that relate the predicates. Wolfe

and Jensen (2004) find overlapping clusters of a single type of objects. The Latent Group Model [72]

uses spectral clustering to partition a graph in which nodes represent objects and edges represent

relations between objects. Each partition of objects corresponds to an invented predicate. The

DERL system [106] uses multinomial mixtures within entity-relational models to create a clustering

structure for attributes. Long et al. [58] formulate the clustering of objects and attributes as a spectral

clustering problem involving arity-2 relations. Roy et al. [89] learn a single hierarchical clustering

of objects using information in relations and attributes. These previous approaches only cluster

objects or attributes (a cluster corresponds to an invented unary predicate), but not relations. We

would like an SPI system to automatically invent predicates that correspond to clusters of relations



33

as well as objects and attributes.

The FOIL-PILFS system [14] is a learning mechanism for hypertext domains. In FOIL-PILFS,

class predictions produced by a naive Bayes classifier [26] are added to an ILP system (FOIL [80])

as invented predicates. FOIL-PILFS starts with a clause containing only a target predicate in its

head. It then incrementally specializes the clause by adding literals to its body, so as to improve the

predictive accuracy of the clause. At each stage of growing the clause, it learns a naive Bayes (NB)

classifier for each variable x in the clause that can be grounded as a webpage. The positive examples

of x are webpages that appear as arguments in the positive examples of the target predicate. Features

of the NB classifier are the top K words with the highest mutual information with the examples of

x. Using the examples of x and the K features, FOIL-PILFS trains the NB classifier, and creates a

predicate that is true if the NB classifier outputs a value of 1, and is false otherwise. FOIL-PILFS

stores the new predicate and uses it to extend clauses like an ordinary predicate. In its experiments,

the invented predicate improves the predictive performance of FOIL-PILFS.

The SAYU-VISTA system [17] invents predicates which are added as binary features to a tree

augmented naive Bayes classifer (TAN) [33]. In a TAN network, each attribute of the class variable

can have at most one edge pointing to it from another attribute, in addition to the edge from the

class variable. A TAN model can be constructed in polynomial time (quadratic in the number of

attributes, and linear in the number of training examples). It is also guaranteed to maximize the

likelihood of the training data. In SAYU-VISTA, a user has to specify a target predicate, and the

types that are allowed to appear in an invented predicate. The user also has to create linkages, which

are rules specifying how the arguments in an invented predicate are to be linked to the arguments

in the target predicate. SAYU-VISTA begins by randomly selecting the arity and argument types

of an invented predicate (limited to a maximum value). After that, it creates a clause that has the

invented predicate as the head and an empty body. Next it performs breadth-first search to add

literals to the body. For the clause that is created in each step, SAYU-VISTA links the head (i.e.,

the invented predicate) to the target predicate with the linkages so as to establish the dependency

between the two. It then transforms the clause into a binary feature that is added to a TAN network.

The search terminates when any of the following three conditions occurs: it finds a clause that meets

some improvement threshold; it fully explores the search space; or it exceeds the maximum number

of candidate clauses that can be created. SAYU-VISTA then restarts to find another clause. Both



34

FOIL-PILF and SAYU-VISTA predict only a single target predicate. Ideally, we would like an SPI

system to find arbitrary regularities over all predicates.

The state-of-the-art is the infinite relational model (IRM) [43], which simultaneously clusters

objects, attributes and relations. The objects can be of more than one type, and the relations can take

on any number of arguments. The number of clusters for each type also need not be specified in

advance. The IRM defines a generative model for the predicates and cluster assignments. It assumes

that the predicates are conditionally independent given the cluster assignments, and the cluster as-

signments for each type are independent. IRM uses a Chinese restaurant process prior (CRP) [76]

on the cluster assignments. Under the CRP, each new object is assigned to an existing cluster with

probability proportional to the cluster size. Because the CRP has the property of exchangeability,

the order in which objects arrive does not affect the outcome. IRM assumes that the probability p of

an atom being true conditioned on cluster membership is generated according to a symmetric Beta

distribution, and that the truth values of atoms are then generated according to a Bernoulli distribu-

tion with parameter p. IRM uses a top-down greedy search to find the MAP cluster assignment. It

begins by assigning all object, attribute and relation symbols of the same type to a single cluster.

Its search operators are: merge two clusters, split a cluster, and move an object, attribute or relation

symbol from one cluster to another. Only a random subset of the possible splits is tried at each step.

When it reaches a local optimum, IRM restarts. The number of restarts is limited by some user-

specified maximum. As it searches for the MAP cluster assignment, it also searches for the optimal

values of its CRP and Beta parameters. (Xu et al. [105] propose a closely related model.) The IRM

only finds a single clustering of predicates, attributes and objects. We would like an SPI system to

find multiple clusterings of predicates, attributes and objects, rather than just a single clustering.

In this chapter, we present MRC, an algorithm based on Markov logic [86], as a first step towards

a general framework for SPI. MRC automatically invents predicates by clustering objects, attributes

and relations. The invented predicates capture arbitrary regularities over all relations, and are not

just used to predict a designated target relation. MRC also learns multiple clusterings, rather than

just one, to represent the complexities in relational data. MRC is short for Multiple Relational

Clusterings.

We describe our model in detail in the next section. In Section 4.3, we report our experiments

comparing our model with IRM and the Markov logic Structure Learner (MSL; Chapter 3).



35

4.2 Multiple Relational Clusterings

Predicate invention is the creation of new symbols, together with formulas that define them in terms

of the symbols in the data. (In a slight abuse of language, we use “predicate invention” to refer to

the creation of both new predicate symbols and new constant symbols.) In this section we propose

a statistical approach to predicate invention based on Markov logic. The simplest instance of sta-

tistical predicate invention is clustering, with each cluster being an invented unary predicate. More

generally, all latent variables in i.i.d. statistical models can be viewed as invented unary predicates.

Our goal in this paper is to extend this to relational domains, where predicates can have arbitrary

arity, objects can be of multiple types, and data is non-i.i.d.

We call our approach MRC, for Multiple Relational Clusterings. MRC is based on the observa-

tion that, in relational domains, multiple clusterings are necessary to fully capture the interactions

between objects. Consider the following simple example. People have coworkers, friends, technical

skills and hobbies. A person’s technical skills are best predicted by her coworkers’s skills, and her

hobbies by her friends’ hobbies. If we form a single clustering of people, coworkers and friends will

be mixed, and our ability to predict both skills and hobbies will be hurt. Instead, we should clus-

ter together people who work together, and simultaneously cluster people who are friends with each

other. Each person thus belongs to both a “work cluster” and a “friendship cluster.” (See Figure 4.1.)

Membership in a work cluster is highly predictive of technical skills, and membership in a friend-

ship cluster is highly predictive of hobbies. The remainder of this section presents a formalization

of this idea and an efficient algorithm to implement it.

Notice that multiple clusterings may also be useful in propositional domains, but the need for

them there is less acute, because objects tend to have many fewer properties than relations. (For

example, Friends(Anna, x) can have as many groundings as there are people in the world, and

different friendships may be best predicted by different clusters Anna belongs to.)

We define our model using finite second-order Markov logic, in which variables can range over

relations (predicates) as well as objects (constants). Extending Markov logic to second order in-

volves simply grounding atoms with all possible predicate symbols as well as all constant symbols,

and allows us to represent some models much more compactly than first-order Markov logic. We

use it to specify how predicate symbols are clustered.



36

Figure 4.1: Example of multiple clusterings. Friends are clustered together in horizontal ovals, and
co-workers are clustered in vertical ovals.

We use the variable r to range over predicate symbols, xi for the ith argument of a predicate,

γi for a cluster of ith arguments of a predicate (i.e., a set of symbols), and Γ for a clustering (i.e., a

set of clusters or, equivalently, a partitioning of a set of symbols). A cluster assignment {Γ} is an

assignment of truth values to all r ∈ γr and xi ∈ γi atoms.

Learning in MRC consists of finding the cluster assignment that maximizes the posterior prob-

ability P ({Γ}|R) ∝ P ({Γ}, R) = P ({Γ})P (R|{Γ}) where R is a the vector of truth assignments

to the observable ground atoms.

For simplicity, we present our rules in generic form for predicates of all arities and argument

types, with n representing the arity of r; in reality, if a rule involves quantification over predicate

variables, a separate version of the rule is required for each arity and argument type. We define one

MLN for the prior P ({Γ}) component and one MLN for the likelihood P (R|{Γ}) component of

the posterior probability with five simple rules.

The MLN for the prior component consists of four rules. The first rule states that each symbol

belongs to at least one cluster:

∀x ∃γ x ∈ γ

This rule is hard, i.e., it has infinite weight and cannot be violated.



37

The second rule states that a symbol cannot belong to more than one cluster in the same cluster-

ing:

∀x, γ, γ′,Γ x ∈ γ ∧ γ ∈ Γ ∧ γ′ ∈ Γ ∧ γ 6= γ′ ⇒ x /∈ γ′

This rule is also hard.

If we say that r(x1, . . . , xn) is in the combination of clusters (γr, γ1, . . . , γn), then r is in cluster

γr and xi is in cluster γi. The third rule says that each atom appears in exactly one combination of

clusters and is also hard:

∀r, x1, . . . , xn ∃1(γr, γ1, . . . , γn) r(x1, . . . , xn) ∈ (γr, γ1, . . . , γn)

To combat the proliferation of clusters and consequent overfitting, we impose an exponential

prior on the number of clusters, represented by the fourth rule

∀γ∃x x ∈ γ

with negative weight −λ. The parameter λ is fixed during learning, and is the penalty in log-

posterior incurred by adding a cluster to the model. Thus larger λs lead to fewer clusterings being

formed.1 Note that P ({Γ}) = 0 for any {Γ} that violates any of the above hard rules. For the

remainder, P ({Γ}) reduces to the exponential prior.

The MLN for the likelihood component contains the key rule in the model, which states that the

truth value of an atom is determined by the cluster combination it belongs to:

∀r, x1, . . . , xn,+γr,+γ1, . . . ,+γn r ∈ γr ∧ x1 ∈ γ1 ∧ . . . ∧ xn ∈ γn ⇒ r(x1, . . . , xn)

This rule is soft. The “+” notation is syntactic sugar that signifies the MLN contains an instance of

this rule with a separate weight for each tuple of clusters (γr, γ1, . . . , γn). As we will see below,

this weight is the log-odds that a random atom in this cluster combination is true. Thus, this is the

rule that allows us to predict the probability of query atoms given the cluster memberships of the

symbols in them. We call this the atom prediction rule.

It is easily seen that, given a cluster assignment, the likelihood MLN decomposes into a separate

MLN for each combination of clusters, and the weight of the corresponding atom prediction rule

1We have also experimented with using a Chinese restaurant process prior (CRP, Pitman (2002) ), and the results were
similar. We thus use the simpler exponential prior.



38

is the log odds of an atom in that combination of clusters being true. (Recall that, by design, each

atom appears in exactly one combination of clusters.) Further, given a cluster assignment, atoms

with unknown truth values do not affect the estimation of weights, because they are graph-separated

from all other atoms by the cluster assignment. If tk is the empirical number of true atoms in cluster

combination k, and fk the number of false atoms, we estimate wk as log((tk +β)/(fk +β)), where

β is a smoothing parameter.

Conversely, given the model weights, we can use inference to assign probabilities of membership

in combinations of clusters to all atoms. Thus the learning problem can in principle be solved using

an EM algorithm, with cluster assignment as the E step, and MAP estimation of weights as the

M step. However, while the M step in this algorithm is trivial, the E step is extremely complex.

We begin by simplifying the problem by performing hard assignment of symbols to clusters (i.e.,

instead of computing probabilities of cluster membership, a symbol is simply assigned to its most

likely cluster). Since performing an exhaustive search over cluster assignments is infeasible, the key

is to develop an intelligent tractable approach. Since, given a cluster assignment, the MAP weights

and thus the posterior probability can be computed in closed form, a better alternative to EM is

simply to search over cluster assignments, evaluating each assignment by its posterior probability.

This can be viewed as a form of structure learning, where a structure is a cluster assignment.

Table 4.1 shows the pseudocode for our MRC learning algorithm. The basic idea is the fol-

lowing: when clustering sets of symbols related by atoms, each refinement of one set of symbols

potentially forms a basis for the further refinement of the related clusters. MRC is thus composed

of two levels of search: the top level finds clusterings, and the bottom level finds clusters. At the

top level, MRC is a recursive procedure whose inputs are a cluster of predicates γr per arity and

argument type, and a cluster of symbols γi per type. In the initial call to MRC, each γr is the set of

all predicate symbols with the same number and type of arguments, and γi is the set of all constant

symbols of the ith type. At each step, MRC creates a cluster symbol for each cluster of predicate

and constant symbols it receives as input. Next it clusters the predicate and constant symbols, cre-

ating and deleting cluster symbols as it creates and destroys clusters. It then calls itself recursively

with each possible combination of the clusters it formed. For example, suppose the data consists of

binary predicates r(x1, x2), where x1 and x2 are of different type. If r is clustered into γ1
r and γ2

r ,

x1 into x1
1 and x2

1, and x2 into x1
2 and x2

2, MRC calls itself recursively with the cluster combinations



39

(γ1
r , γ

1
1 , γ

1
2), (γ1

r , γ
1
1 , γ

2
2), (γ1

r , γ
2
1 , γ

1
2), (γ1

r , γ
2
1 , γ

2
2), (γ2

r , γ
1
1 , γ

1
2), etc.

Within each recursive call, MRC uses greedy search with restarts to find the MAP clustering of

the subset of predicate and constant symbols it received. It begins by assigning all constant symbols

of the same type to a single cluster, and similarly for predicate symbols of the same arity and

argument type. The search operators used are: move a symbol between clusters, merge two clusters,

and split a cluster. (If clusters are large, only a random subset of the splits is tried at each step.) A

greedy search ends when no operator increases posterior probability. Restarts are performed, and

they give different results because of the random split operator used.

Figure 4.2: Illustration of MRC algorithm.

Figure 4.2 provides an illustration of the MRC algorithm. At the top of the figure, MRC is

initially provided with a cluster of predicate symbols (P-W) and constant symbols (a-h). It then

finds a clustering of the predicate symbols ({P,Q,R,S},{T,U,V,W}) and constant symbols ({a,b,c,d},

{e,f,g,h}). After that, it recurse by using each combination of predicate cluster and constant cluster

as input. Since each initial set of symbols is split into two clusters, MRC is called recursively four



40

times at the second level of the figure, each time with a different combination of predicate cluster

and constant cluster. MRC continues to call itself recursively until the posterior probability does

not improve by further refining its input clusters. This occurs at the bottom level of the figure.

The figure shows an atom prediction rule with weight w that corresponds to a cluster combination at

which MRC bottoms out. γr in the rule corresponds to the blue cluster {Q,P}, and γx corresponds to

the pink cluster {b,c,d}. Note that the blue and pink clusters do not exist a priori in the domain and

are created by MRC, i.e., MRC discovers their latent structure in the data. Thus, we can interpret

MRC as finding latent atom prediction rules. Also note that symbol P belongs to different clusters

in the leftmost and rightmost cluster combinations at the bottom of the figure

Notice that in each call of MRC, it forms a clustering for each of its input clusters, thereby

always satisfying the first two hard rules in the MLN. MRC also always satisfies the third hard rule

because it only passes the atoms in the current combination to each recursive call.

MRC terminates when no further refinement increases posterior probability and returns the finest

clusterings produced. In other words, if we view MRC as growing a tree of clusterings, it returns

the leaves. Conceivably, it might be useful to retain the whole tree, and perform shrinkage [63]

over it. This is an item for future work. Notice that the clusters created at a higher level of recursion

constrain the clusters that can be created at lower levels, e.g., if two symbols are assigned to different

clusters at a higher level, they cannot be assigned to the same cluster in subsequent levels. Notice

also that predicate symbols of different arities and argument types are never clustered together. This

is a limitation that we plan to overcome in the future.

4.3 Experiments

In our experiments, we compare MRC with the Infinite Relational Model (IRM; described in Sec-

tion 4.1) and the Markov logic Structure Learner (MSL; Chapter 3). We use the beam search version

of MSL that is implemented in the open-source Alchemy package [50].

4.3.1 Datasets

We compared MRC to IRM and MSL on all four datasets used by Kemp et al. (2006) .2

2The IRM code and datasets are publicly available at http://www.psy.cmu.edu/~ckemp/code/irm.html.



41

Table 4.1: MRC algorithm.

function MRC(C,R)

inputs: C = (γr1 , . . . , γrm , γ1, . . . , γn), a combination of clusters, where γri is a cluster of

relation symbols with the same number and type of arguments, and γj is a cluster of

constant symbols of the same type

R, ground atoms formed from the symbols in C

output: D = {(γ′r1 , . . . , γ
′
rm , γ

′
1, . . . , γ

′
n)}, a set of cluster combinations where γ′i ⊆ γi

note: Γi is a clustering of the symbols in γi, i.e., Γi = {γ1
i , . . . , γ

k
i }, γ

j
i ⊆ γi,

⋃k
j=1 γ

j
i = γi, and

γji ∩ γki = ∅, j 6= k. {Γi} is a set of clusterings.

Γi ← {γi} for all γi in C

{ΓBesti } ← {Γi}

for s← 0 to MaxSteps do

{ΓTmpi } ← best change to any clustering in {Γi}

if P ({ΓTmpi }|R) > P ({Γi}|R)

{Γi} ← {ΓTmpi }

if P ({Γi}|R) > P ({ΓBesti }|R)

{ΓBesti } ← {Γi}

else if for the last MaxBad consecutive iterations

P ({ΓTmpi }|R) ≤ P ({Γi}|R)

reset Γi ← {γi} for all γi in C

if ΓBesti = {γi} for all γi in C

return C

D ← ∅

for each C ′ ∈ ΓBestr1 × . . .× ΓBestrm × ΓBest1 × . . .× ΓBestn

R′ ← ground atoms formed from the symbols in C ′

D ← D ∪ MRC(C ′,R′)

return D



42

Animals. This dataset contains a set of animals and their features [74]. It consists exclusively of

unary predicates of the form f(a), where f is a feature and a is an animal (e.g., Swims(Dolphin)).

There are 50 animals, 85 features, and thus a total of 4250 ground atoms, of which 1562 are true.

This is a simple propositional dataset with no relational structure, but it is useful as a “base case”

for comparison. Notice that, unlike traditional clustering algorithms, which only cluster objects

by features, MRC and IRM also cluster features by objects. This is known as bi-clustering or co-

clustering, and has received considerable attention in the recent literature (e.g., [23]).

UMLS. UMLS contains data from the Unified Medical Language System, a biomedical ontol-

ogy [64]. It consists of binary predicates of the form r(c, c′), where c and c′ are biomedical concepts

(e.g., Antibiotic, Disease), and r is a relation between them (e.g., Treats, Diagnoses). There

are 49 relations and 135 concepts, for a total of 893,025 ground atoms, of which 6529 are true.

Kinship. This dataset contains kinship relationships among members of the Alyawarra tribe from

Central Australia [22]. Predicates are of the form k(p, p′), where k is a kinship relation and p, p′ are

persons. There are 26 kinship terms and 104 persons, for a total of 281,216 ground atoms, of which

10,686 are true.

Nations. This dataset contains a set of relations among nations and their features [90]. It consists of

binary and unary predicates. The binary predicates are of the form r(n, n′), where n, n′ are nations,

and r is a relation between them (e.g., ExportsTo, GivesEconomicAidTo). The unary predicates

are of the form f(n), where n is a nation and f is a feature (e.g., Communist, Monarchy). There

are 14 nations, 56 relations and 111 features, for a total of 12,530 ground atoms, of which 2565 are

true.

4.3.2 Methodology

Experimental evaluation of statistical relational learners is complicated by the fact that in many

cases the data cannot be separated into independent training and test sets. While developing a long-

term solution for this remains an open problem, we used an approach that is general and robust:

performing cross-validation by atom. For each dataset, we performed ten-fold cross-validation by

randomly dividing the atoms into ten folds, training on nine folds at a time, and testing on the

remaining one. This can be seen as evaluating the learners in a transductive setting, because an



43

object (e.g., Leopard) that appears in the test set (e.g., in MeatEater(Leopard)) may also appear

in the training set (e.g., in Quadrapedal(Leopard)). In the training data, the truth values of the

test atoms are set to unknown, and their actual values (true/false) are not available. Thus learners

must perform generalization in order to be able to infer the test atoms, but the generalization is aided

by the dependencies between test atoms and training ones.

Notice that MSL is not directly comparable to MRC and IRM because it makes the closed-world

assumption, i.e., all atoms not in its input database are assumed to be false. Our experiments require

the test atoms to be open-world. For an approximate comparison, we set all test atoms to false when

running MSL. Since in each run these are only 10% of the training set, setting them to false does

not greatly change the sufficient statistics (true clause counts) learning is based on. We then ran

MC-SAT [77] on the MLNs learned by MSL to infer the probabilities of the test atoms. (The MSL

parameters are specified in Appendix B.)

To evaluate the performance of MRC, IRM and MSL, we measured the average conditional

log-likelihood of the test atoms given the observed training ones (CLL), and the area under the

precision-recall curve (AUC). The advantage of the CLL is that it directly measures the quality of

the probability estimates produced. The advantage of the AUC is that it is insensitive to the large

number of true negatives (i.e., atoms that are false and predicted to be false). The precision-recall

curve for a predicate is computed by varying the threshold CLL above which an atom is predicted

to be true.

For IRM, we used all of the default settings in its publicly available software package (except

that we terminated runs after a fixed time rather than a fixed number of iterations). For our model,

we set both parameters λ and β to 1 (without any tuning). We ran IRM for ten hours on each fold of

each dataset. We also ran MRC for ten hours per fold, on identically configured machines, for the

first level of clustering. Subsequent levels of clustering were permitted 100 steps. MRC took a total

of 3-10 minutes for the subsequent levels of clustering, negligible compared to the time required for

the first level and by IRM. We allowed a much longer time for the first level of clustering because

this is where the sets of objects, attributes and relations to be clustered are by far the largest, and

finding a good initial clustering is important for the subsequent learning.



44

Figure 4.3: Comparison of MRC, IRM and MSL using ten-fold cross-validation: average condi-
tional log-likelihood of test atoms (CLL) and average area under the precision-recall curve (AUC).
Init is the initial clustering formed by MRC. Error bars are one standard deviation in each direction.



45

4.3.3 Results

Figure 4.3 reports the CLL and AUC for MRC, IRM and MSL, averaged over the ten folds of each

dataset. We also report the results obtained using just the initial clustering formed by MRC (Init),

in order to evaluate the usefulness of learning multiple clusterings.

MSL does worse than MRC and IRM on all datasets except Nations. On Nations, it does worse

than MRC and IRM in terms of CLL, but approximately ties them in terms of AUC. Many of the

relations in Nations are symmetric, e.g., if country A has a military conflict with B, then the reverse

is usually true. MSL learns a rule to capture the symmetry and consequently does well in terms of

AUC.

MRC outperforms IRM on UMLS and Kinship, and ties it on Animals and Nations. The dif-

ference on UMLS and Kinship is quite large. Animals is the smallest and least structured of the

datasets, and it is conceivable that it has little room for improvement beyond a single clustering.

The difference in performance between MRC and IRM correlates strongly with dataset size. (No-

tice that UMLS and Kinship are at least an order of magnitude larger than Animals and Nations.)

This suggests that sophisticated algorithms for statistical predicate invention may be of most use in

even larger datasets, which we plan to experiment with in the future.

MRC outperforms Init on all domains except Animals. The differences on Nations are not

significant, but on UMLS and Kinship they are very large. These results show that forming multiple

clusterings is key to the good performance of MRC. In fact, Init does considerably worse than IRM

on UMLS and Kinship; we attribute this to the fact that IRM performs a search for optimal parameter

values, while in MRC these parameters were simply set to default values without any tuning on data.

This suggests that optimizing parameters in MRC could lead to further performance gains.

In the Animals dataset, MRC performs at most three levels of cluster refinement. On the other

datasets, it performs about five. The average total numbers of clusters generated are: Animals, 202;

UMLS, 405; Kinship, 1044; Nations, 586. The average numbers of atom prediction rules learned

are: Animals, 305; UMLS, 1935; Kinship, 3568; Nations, 12,169. We provide examples of multiple

clusterings that MRC learned for the UMLS dataset in Figures 4.4- 4.6.



46

Figure 4.4: In the above figure, the organisms are clustered in three different ways according
to: what are found in them (red), their pathologic properties (blue), and whether they are ani-
mals/vertebrates (green).



47

Figure 4.5: In the above figure, there are two clusterings of “Injury or Poisoning” and the Abnor-
malities according to what they are manifestations of (blue) and what they are associated with (red).



48

Figure 4.6: In the above figure, the relations “diagnoses”, “prevents” and “treats” are clustered
in three ways. “Antibiotic” and “Pharmacologic Substance” diagnose, prevent and treat diseases
(red). “Diagnostic Procedure” and “Laboratory Procedure” only diagnose but do not prevent or
treat diseases (blue). “Drug Delivery Device” and “Medical Device” prevent and treat diseases but
do not diagnose them (green).



49

4.4 Conclusion

In this chapter, we proposed statistical predicate invention (i.e., the discovery of new concepts, prop-

erties and relations in structured data) as a key problem for statistical relational learning. We then

introduced MRC, an approach to SPI based on second-order Markov logic. MRC forms multiple

relational clusterings of the symbols in the data and iteratively refines them. Empirical comparisons

with a Markov logic structure learning system and a state-of-the-art relational clustering system on

four datasets show the efficacy of our model. In the next chapter, we apply SPI to the problem of

extracting knowledge in the form of semantic networks from text.



50

Chapter 5

EXTRACTING SEMANTIC NETWORKS FROM TEXT
VIA RELATIONAL CLUSTERING

5.1 Introduction

A long-standing goal of AI is to build an autonomous agent that can read and understand text. The

natural language processing (NLP) community attempted to achieve this goal in the 1970’s and

1980’s by building systems for understanding and answering questions about simple stories [13, 56,

92, 27]. These systems parsed text into a network of predefined concepts and created a knowledge

base from which inferences can be made. However, they required a large amount of manual engi-

neering, only worked on small text sizes and were not robust enough to perform well on unrestricted

naturally occurring text. Gradually, research in this direction petered out.

Interest in the goal has been recently rekindled [67, 31] by the abundance of easily accessible

Web text and by the substantial progress over the last few years in machine learning and NLP.

The confluence of these three developments led to efforts to extract facts and knowledge bases

from the Web [15]. Two recent steps in this direction are a system by Pasca et. al (2006) and

TextRunner [3]. Both systems extract facts on a large scale from Web corpora in an unsupervised

manner. Pasca et. al’s system derives relation-specific extraction patterns from a starting set of seed

facts, acquires candidate facts using the patterns, adds high-scoring facts to the seeds, and iterates

until some convergence criterion. TextRunner uses a domain-independent approach to extract a

large set of relational tuples of the form r(x, y) where x and y are strings denoting objects, and

r is a string denoting a relation between the objects. It uses a lightweight noun phrase chunker

to identify objects, and heuristically determines the text between objects as relations. These are

good first steps, but they still fall short of the goal. While they can quickly acquire a large database

of ground facts in an unsupervised manner, they are not able to learn general knowledge that is

embedded in the facts.

Another line of recent research takes the opposite approach. Semantic parsing [110, 104, 68] is



51

the task of mapping a natural language sentence into logical form. The logical statements constitute

a knowledge base that can be used to perform some task like answering questions. Semantic parsing

systems require a training corpus of sentences annotated with their associated logical forms (i.e.,

they are supervised). These systems are then trained to induce a parser that can convert novel

sentences to their logical forms. Even though these systems can create knowledge bases directly,

their need for annotated training data prevents them from scaling to large corpora like the Web.

In this chapter, we present SNE, a scalable, unsupervised and domain-independent system that

simultaneously extracts high-level relations and concepts, and learns a semantic network [79] from

text. It first uses TextRunner to extract ground facts as triples from text, and then extract knowledge

from the triples. TextRunner’s triples are noisy, sparse and contain many co-referent objects and

relations. Our system has to overcome these challenges in order to extract meaningful high-level

relations and concepts from the triples in an unsupervised manner. It does so with a probabilistic

model that clusters objects by the objects that they are related to, and that clusters relations by the

objects they relate. This allows information to propagate between clusters of relations and clusters

of objects as they are created. Each cluster represents a high-level relation or concept. A concept

cluster can be viewed as a node in a graph, and a relation cluster can be viewed as a link between the

concept clusters that it relates. Together the concept clusters and relation clusters define a simple

semantic network. Figure 5.1 illustrates part of a semantic network that our approach learns. SNE

is short for Semantic Network Extractor.

SNE is based on Markov logic [86], and is related to the Multiple Relational Clusterings (MRC)

model [46] described in Chapter 4. SNE is our first step towards creating a system that can extract

an arbitrary semantic network directly from text. Ultimately, we want to tightly integrate the infor-

mation extraction TextRunner component and the knowledge learning SNE component to form a

self-contained knowledge extraction system. This tight integration will enable information to flow

between both tasks, allowing them to be solved jointly for better performance [61].

In the next section, we describe our model in detail. After that, we report our experiments

comparing our model with three alternative approaches in Section 5.3 and discuss related work in

Section 5.4.



52

5.2 Semantic Network Extraction

SNE simultaneously clusters objects and relations in an unsupervised manner, without requiring the

number of clusters to be specified in advance. The object clusters and relation clusters respectively

form the nodes and links of a semantic network. A link exists between two nodes if and only if a

true ground fact can be formed from the symbols in the corresponding relation and object clusters.

When faced with the task of extracting knowledge from noisy and sparse data like that used in

our experiments, we have to glean every bit of useful information from the data to form coherent

clusters. SNE does this by jointly clustering objects and relations. In its algorithm, SNE allows

information from object clusters it has created at each step to be used in forming relation clusters,

and vice versa. As we shall see later in our experimental results, this joint clustering approach does

better than clustering objects and relations separately.

SNE is defined using a form of finite second-order Markov logic in which variables can range

over relations (predicates) as well as objects (constants). Extending Markov logic to second order

involves simply grounding atoms with all possible predicate symbols as well as all constant symbols,

and allows us to represent some models much more compactly than first-order Markov logic.

For simplicity, we assume that relations are binary in our definition of SNE, i.e., relations are

of the form r(x, y) where r is a relation symbol, and x and y are object symbols. We use γi and

Γi to respectively denote a cluster and clustering (i.e., a partitioning) of symbols of type i. If r, x

and y are respectively in cluster γr, γx, and γy, we say that r(x, y) is in the cluster combination

(γr, γx, γy).

The learning problem in SNE consists of finding the cluster assignment Γ = (Γr,Γx,Γy) that

maximizes the posterior probability P (Γ|R) ∝ P (Γ, R) = P (Γ)P (R|Γ), where R is a vector of

truth assignments to the observable r(x, y) ground atoms.

We define one MLN for the likelihood P (R|Γ) component and one MLN for the prior P (Γ)

component of the posterior probability with just four simple rules.

The MLN for the likelihood component only contains one rule stating that the truth value of an

atom is determined by the cluster combination it belongs to:

∀r, x, y,+γr,+γx,+γy r ∈ γr ∧ x ∈ γx ∧ y ∈ γy ⇒ r(x, y)



53

This rule is soft. The “+” notation is syntactic sugar that signifies that there is an instance of

this rule with a separate weight for each cluster combination (γr, γx, γy). This rule predicts the

probability of query atoms given the cluster memberships of the symbols in them. This is known as

the atom prediction rule. Given a cluster assignment, the MAP weight wk of an instance of the atom

prediction rule is given by log(tk/fk), where tk is the empirical number of true atoms in cluster

combination k, and fk is the number of false atoms. Adding smoothing parameters α and β, we

estimate the MAP weight as log((tk + α)/(fk + β)).

Three rules are defined in the MLN for the prior component. The first rule states that each

symbol belongs to exactly one cluster:

∀x ∃1γ x ∈ γ

This rule is hard, i.e., it has infinite weight and cannot be violated.

The second rule imposes an exponential prior on the number of cluster combinations. This rule

combats the proliferation of cluster combinations and consequent overfitting, and is represented by

the formula

∀γr, γx, γy ∃r, x, y r ∈ γr ∧ x ∈ γx ∧ y ∈ γy

with negative weight−λ. The parameter λ is fixed during learning and is the penalty in log-posterior

incurred by adding a cluster combination to the model. Thus larger λs lead to fewer cluster combi-

nations being formed. This rule represents the complexity of the model in terms of the number of

instances of the atom prediction rule (which is equal to the number of cluster combinations).

The last rule encodes the belief that most symbols tend to be in different clusters. It is represented

by the formula

∀x, x′, γx, γx′ x ∈ γx ∧ x′ ∈ γx′ ∧ x 6= x′ ⇒ γx 6= γx′

with positive weight µ. The parameter µ is also fixed during learning. We expect there to be many

concepts and high-level relations in a large heterogenous body of text. The tuple extraction process

samples instances of these concepts and relations sparsely, and we expect each concept or relation to

have only a few instances sampled, in many cases only one. Thus we expect most pairs of symbols

to be in different concept and relation clusters.



54

The equation for the log-posterior, as defined by the two MLNs, can be written in closed form

as follows (see Appendix C for derivation):

logP (Γ|R) =∑
k∈K

[
tk log

(
tk + α

tk + fk + α+ β

)
+ fk log

(
fk + β

tk + fk + α+ β

)]
− λmcc + µd+ C (5.1)

where K is the set of cluster combinations, mcc is the number of cluster combinations, d is the

number of pairs of symbols that belong to different clusters, and C is a constant.

Rewriting the equation, the log-posterior can be expressed as

logP (Γ|R) =
∑
k∈K+

[
tk log

(
tk + α

tk + fk + α+ β

)
+ fk log

(
fk + β

tk + fk + α+ β

)]
+
∑
k∈K−

[
fk log

(
fk + β

tk + fk + α+ β

)]
− λmcc + µd+ C (5.2)

where K+ is the set of cluster combinations that contains at least one true ground atom, and K− is

the set of cluster combinations that does not contain any true ground atoms. Observe that |K+| +

|K−| = |Γr||Γx||Γy|. Even though it is tractable to compute the first summation over |K+| (which

is at most the number of true ground atoms), it may not be feasible to compute the second summation

over |K−| for large |Γi|s. Hence, for tractability, we assume that all tuples in K− belong to a single

‘default’ cluster combination with the same probability pfalse of being false. The log-posterior is

simplified as

logP (Γ|R) =
∑
k∈K+

[
tk log

(
tk + α

tk + fk + α+ β

)
+ fk log

(
fk + β

tk + fk + α+ β

)]

+

|Sr||Sx||Sy| − ∑
k∈K+

(tk + fk)

 log(pfalse)− λm+
cc + µd+ C′ (5.3)

where Si is the set of symbols of type i, (|Sr||Sx||Sy| −
∑

k∈K+(tk + fk)) is the number of (false)

tuples in K−, m+
cc is the number of cluster combinations containing at least one true ground atom,

and C′ = C − λ.

SNE simplifies the learning problem by performing hard assignment of symbols to clusters (i.e.,

instead of computing probabilities of cluster membership, a symbol is simply assigned to its most

likely cluster). Since, given a cluster assignment, the MAP weights can be computed in closed



55

form, SNE simply searches over cluster assignments, evaluating each assignment by its posterior

probability.

SNE uses a bottom-up agglomerative clustering algorithm to find the MAP clustering (Ta-

ble 5.1). The algorithm begins by assigning each symbol to its own unit cluster. Next we try to

merge pairs of clusters of each type. We create candidate pairs of clusters, and for each of them,

we evaluate the change in log posterior probability (Equation 5.3) if the pair is merged. If the can-

didate pair improves log posterior probability, we store it in a sorted list. We then iterate through

the list, performing the best merges first and ignoring those containing clusters that have already

been merged. In this manner, we incrementally merge clusters until no merges can be performed to

improve log posterior probability.

To avoid creating all possible candidate pairs of clusters of each type (which is quadratic in

the number of clusters), we make use of canopies [62]. A canopy for relation symbols is a set

of clusters such that there exist object clusters γx and γy, and for all clusters γr in the canopy,

the cluster combination (γr, γx, γy) contains at least one true ground atom r(x, y). We say that the

clusters in the canopy share the property (γx, γy). Canopies for object symbols x and y are similarly

defined. We only try to merge clusters in a canopy that is no larger than a parameter CanopyMax.

This parameter limits the number of candidate cluster pairs we consider for merges, making our

algorithm more tractable. Furthermore, by using canopies, we only try ‘good’ merges, because

symbols in clusters that share a property are more likely to belong to the same cluster than those in

clusters with no property in common.

Note that we can efficiently compute the change in log posterior probability (∆P in Table 5.1) by

only considering the cluster combinations with true ground atoms that contain the merged clusters

γ and γ′. Below we give the equation for computing ∆P when we merge relation clusters γr and

γ′r to form γ′′r . The equations for merging object clusters are similar. Let TFk be a shorthand for



56

Table 5.1: SNE algorithm.

function SNE(Sr, Sx, Sy, R)

inputs: Sr, set of relation symbols

Sx, set of object symbols that appear as first arguments

Sy, set of object symbols that appear as second arguments

R, ground r(x, y) atoms formed from the symbols in Sr, Sx, and Sy

output: a semantic network, {(γr, γx, γy) ∈ Γr × Γx × Γy : (γr, γx, γy) contains at least

one true ground atom}

for each i ∈ {r, x, y}

Γi ← unitClusters(Si)

mergeOccurred← true

while mergeOccurred

mergeOccurred← false

for each i ∈ {r, x, y}

CandidateMerges← ∅

for each (γ, γ′) ∈ Γi × Γi

∆P ← change in logP ({Γr,Γx,Γy}|R) if γ, γ′ are merged

if ∆P > 0, CandidateMerges← CandidateMerges ∪ {(γ, γ′)}

sort CandidateMerges in descending order of ∆P

MergedClusters← ∅

for each (γ, γ′) ∈ CandidateMerges

if γ 6∈MergedClusters and γ′ 6∈MergedClusters

Γi ← (Γi \ {γ, γ′}) ∪ {γ ∪ γ′}

MergedClusters←MergedClusters ∪ {γ} ∪ {γ′}

mergedOccurred← true

return {(γr, γx, γy) ∈ Γr × Γx × Γy : (γr, γx, γy) contains at least one true ground atom}



57

tk log( tk+α
tk+fk+α+β ) + fk log( fk+β

tk+fk+α+β ).

∆P =
∑

(γ′′r ,γ1,γ2)∈K+

γ
′′
r γ
′
rγr

[
TF(γ′′r ,γ1,γ2) − TF(γ′r,γ1,γ2) − TF(γr,γ1,γ2) + λ

]

+
∑

(γ′′r ,γ1,γ2)∈K+

γ
′′
r ·γr

[
TF(γ′′r ,γ1,γ2) − f(γ′r,γ1,γ2) log(pfalse)− TF(γr,γ1,γ2)

]

+
∑

(γ′′r ,γ1,γ2)∈K+

γ
′′
r γ
′
r ·

[
TF(γ′′r ,γ1,γ2) − TF(γ′r,γ1,γ2) − f(γr,γ1,γ2) log(pfalse)

]
−µ|γr ′||γr| (5.4)

where K+
γ′′r γ

′
rγr

is the set of cluster combinations with true ground atoms such that each cluster

combination (γ
′′
r , γ1, γ2) in the set has the property that (γ

′
r, γ1, γ2) and (γr, γ1, γ2) also contains

true atoms. K+
γ′′r ·γr

is the set of cluster combinations with true ground atoms such that each cluster

combination (γ
′′
r , γ1, γ2) in the set has the property that (γr, γ1, γ2), but not (γ

′
r, γ1, γ2), contains

true ground atoms. K+
γ′′r γ

′
r·

is similarly defined. Observe that we only sum over cluster combinations

with true ground atoms that contains the affected clusters γr, γ
′
r and γ

′′
r , rather than over all cluster

combinations with true ground atoms.

SNE and the Multiple Relational Clustering (MRC) system (described in the previous chapter)

are both able to simultaneously cluster objects and relations without requiring the number of clusters

to be specified in advance. However, unlike SNE, MRC is able to find multiple clusterings, rather

than just one. MRC also differs from SNE in having an exponential prior on the number of clusters

rather than on the number of cluster combinations with true ground atoms. The main difference

between SNE and MRC is in the search algorithm used. MRC calls itself recursively to find multiple

clusterings. We can view MRC as growing a tree of clusterings, and it returns the finest clusterings

at the leaves. In each recursive call, MRC uses a top-down generate-and-test greedy algorithm with

restarts to find the MAP clustering of the subset of relation and constant symbols it received. While

this ‘blind’ generate-and-test approach may work well for small datasets, it will not be feasible for

large Web-scale datasets like the one used in our experiments. For such large datasets, the search

space will be so enormous that the top-down algorithm will generate too many candidate moves

to be tractable. In our experiments, we replaced MRC’s search algorithm with the algorithm in

Table 5.1.



58

5.3 Experiments

Our goal is to create a system that is capable of extracting semantic networks from what is arguably

the largest and most accessible text resource — the Web. Thus in our experiments, we use a large

Web corpus to evaluate the effectiveness of SNE’s relational clustering approach in extracting a

simple semantic network from it. Since to date, no other system could do the same, we had to

modify three other relational clustering approaches so that they could run on our large Web-scale

dataset, and compared SNE to them. The three approaches are Multiple Relational Clusterings

(MRC; Chapter 4), Infinite Relational Model (IRM; Section 4.1) [43] and Information-Theoretic

Co-clustering (ITC) [23].

We use MRC1 to denote an MRC model that is restricted to finding a single clustering. As

mentioned earlier, MRC’s top-down search is not feasible for large Web-scale data, so we replace

its search algorithm with the one in Table 5.1. Likewise, we replace IRM’s search algorithm, which

is similar to MRC’s, with the algorithm in Table 5.1. We also fixed the values IRM’s CRP and Beta

parameters. As in SNE, we assumed that the atoms in cluster combinations with only false atoms

belonged to a default cluster combination, and they had the same probability pfalse of being false.

We also experimented with a CRP prior on cluster combinations. We use IRM-C and IRM-CC to

respectively denote the IRM with a CRP prior on clusters, and the IRM with a CRP prior on cluster

combinations.

The ITC model clusters discrete data in a two-dimensional matrix along both dimensions simul-

taneously. It greedily searches for the hard clusterings that optimize the mutual information between

the row and column clusters. The model has been shown to perform well on noisy and sparse data.

ITC’s top-down search algorithm has the flavor of K-means and requires the number of row and

column clusters to be specified in advance. At every step, ITC finds the best cluster for each row or

column by iterating through all clusters. This will not be tractable for large datasets like our Web

dataset, which can contain many clusters. Thus, we instead use the algorithm in Table 5.1 (∆P in

Table 5.1 is set to the change in mutual information rather than the change in log posterior proba-

bility). Notice that, even if ITC’s search algorithm were tractable, we would not be able to apply

it to our problem because it only works on two-dimensional data. We extend ITC to three dimen-

sions by optimizing the mutual information among the clusters of three dimensions. Furthermore,



59

since we do not know the exact number of clusters in our Web dataset a priori, we follow [23]’s

suggestion of using an information-theoretic prior (BIC [93]) to select the appropriate number of

clusters. We use ITC-C and ITC-CC to respectively denote the model with a BIC prior on clusters

and the model with a BIC prior on cluster combinations. Note that, unlike SNE, ITC does not give

a probability distribution over possible worlds, which we need in order to do inference and answer

queries (although that is not the focus of this paper).

5.3.1 Dataset

We compared the various models on a dataset of about 2.1 million triples1 extracted in a Web

crawl by TextRunner [3]. Each triple takes the form r(x, y) where r is a relation symbol, and x

and y are object symbols. Some example triples are: named after(Jupiter, Roman god) and

upheld(Court, ruling). There are 15,872 distinct r symbols, 700,781 distinct x symbols, and

665,378 distinct y symbols. Two characteristics of TextRunner’s extractions are that they are sparse

and noisy. To reduce the noise in the dataset, our search algorithm (Table 5.1) only considered

symbols that appeared at least 25 times. This leaves 10,214 r symbols, 8942 x symbols, and 7995 y

symbols. There are 2,065,045 triples that contain at least one symbol that appears at least 25 times.

In all experiments, we set the CanopyMax parameter to 50. We make the closed-world assumption

for all models (i.e., all triples not in the dataset are assumed false).

5.3.2 SNE vs. MRC

We compared the performances of SNE and MRC1 in learning a single clustering of symbols. We

set the λ, µ and pfalse parameters in SNE to 100, 100 and 0.9999 respectively based on preliminary

experiments. We set SNE’s α and β parameters to 2.81× 10−9 and 10− α so that α
α+β is equal to

the fraction of true triples in the dataset. (A priori, we should predict the probability that a ground

atom is true to be this value.) We evaluated the clusterings learned by each model against a gold

standard manually created by the first author. The gold standard assigns 2688 r symbols, 2568 x

symbols and 3058 y symbols to 874, 511 and 700 non-unit clusters respectively. We measured the

pairwise precision, recall and F1 of each model against the gold standard. Pairwise precision is the

1Publicly available at http://knight.cis.temple.edu/~yates/data/resolver data.tar.gz



60

fraction of symbol pairs in learned clusters that appear in the same gold clusters. Pairwise recall

is the fraction of symbol pairs in gold clusters that appear in the same learned clusters. F1 is the

harmonic mean of precision and recall. For the weight of MRC1’s exponential prior on clusters, we

tried the following values and pick the best: 0, 1, 10–100 (in increments of 10), and 110–1000 (in

increments of 100). We report the precision, recall and F1 scores that are obtained with the best

value of 80. From Table 5.2, we see that SNE performs significantly better than MRC1.

We also ran MRC to find multiple clusterings. Since the gold standard only defines a single

clustering, we cannot use it to evaluate the multiple clusterings. We provide a qualitative evaluation

instead. MRC returns 23,151 leaves that contain non-unit clusters, and 99.8% of these only contain 3

or fewer clusters of size 2. In contrast, SNE finds many clusters of varying sizes (see Table 5.6). The

poor performance of MRC in finding multiple clusterings is due to data sparsity. In each recursive

call to MRC, it only receives a small subset of the relation and object symbols. Thus with each call

the data becomes sparser, and there is not enough signal to cluster the symbols.

5.3.3 Joint vs. Separate Clustering of Relations and Objects

We investigated the effect of having SNE only cluster relation symbols, first-argument object sym-

bols, or second-argument object symbols, e.g., if SNE cluster relation symbols, then it does not

cluster both kinds of object symbols. From Table 5.3, we see that SNE obtains a significantly higher

F1 when it clusters relations and objects jointly than when it clusters them separately.

5.3.4 SNE vs. IRM and ITC

We compared IRM-C and IRM-CC with respect to the gold standard. We set IRM’s Beta parameters

to the values of SNE’s α and β, and set pfalse to the same value as SNE’s. We tried the following

values for the parameter of the CRP priors: 0.25, 0.5, 0.75, 1–10 (in increments of 1), 20–100 (in

increments of 10). We found that the graphs showing how precision, recall, and F1 vary with the

CRP value are essentially flat for both IRM-C and IRM-CC. Both system perform about the same.

The slightly higher precision, recall, and F1 scores occur at the low end of the values we tried, and

we use the best one of 0.25 for the slightly better-performing IRM-CC system. Henceforth, we

denote this IRM as IRM-CC-0.25 and use it for other comparisons.



61

Table 5.2: Comparison of SNE and MRC1 performances on gold standard. Object 1 and Object 2
respectively refer to the object symbols that appear as the first and second arguments of relations.
The best F1s are shown in bold.

Relation Object 1 Object 2

Model Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

SNE 0.452 0.187 0.265 0.460 0.061 0.108 0.558 0.062 0.112

MRC1 0.054 0.044 0.049 0.031 0.007 0.012 0.059 0.011 0.018

Table 5.3: Comparison of SNE performance when it clusters relation and object symbols jointly
and separately. SNE-Sep clusters relation and object symbols separately. Object 1 and Object 2
respectively refer to the object symbols that appear as the first and second arguments of relations.
The best F1s are shown in bold.

Relation Object 1 Object 2

Model Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

SNE 0.452 0.187 0.265 0.460 0.061 0.108 0.558 0.062 0.112

SNE-Sep 0.597 0.116 0.194 0.519 0.045 0.083 0.551 0.047 0.086



62

We also compared SNE, IRM-CC-0.25, ITC-C and ITC-CC. From Table 5.4, we see that ITC

performs better with a BIC prior on cluster combinations than a BIC prior on clusters. We also see

that SNE performs the best in terms of F1.

We then evaluated SNE, IRM-CC-0.25 and ITC-CC in terms of the semantic statements that

they learned. A cluster combination that contains a true ground atom corresponds to a semantic

statement. SNE, IRM-CC-0.25 and ITC-CC respectively learned 1,464,965, 1,254,995 and 82,609

semantic statements. We manually inspected semantic statements containing 5 or more true ground

atoms and counted the number that were correct. Table 5.5 shows the results. Even though SNE’s

accuracy is smaller than IRM-CC-0.25’s and ITC-CC’s by 11% and 7% respectively, SNE more

than compensates for the lower accuracy by learning 127% and 273% more correct statements re-

spectively. Figure 5.1 shows examples of correct semantic statements learned by SNE.

SNE, IRM-CC-0.25 and ITC-CC respectively ran for about 5.5 hours, 9.5 hours, and 3 days on

identically configured machines. ITC-CC spent most of its time computing the mutual information

among three clusters. To compute the mutual information, given any two clusters, we have to

retrieve the number of cluster combinations that contain the two clusters. Because of the large

number of cluster pairs, we choose to use a data structure (red-black tree) that is space-efficient, but

pays a time penalty when looking up the required values.

5.3.5 Comparison of SNE with WordNet

We also compared the object clusters that SNE learned with WordNet [32], a hand-built seman-

tic lexicon for the English language. WordNet organizes 117,798 distinct nouns into a taxonomy

of 82,115 concepts. There are respectively 4883 first-argument and 5076 second-argument object

symbols that appear at least 25 times in our dataset and also in WordNet. We converted each node

(synset) in WordNet’s taxonomy into a cluster containing its original concepts and all its children

concepts. We then matched each SNE cluster to the WordNet cluster that gave the best F1 score.

We measured F1 as the harmonic mean of precision and recall. Precision is the fraction of symbols

in an SNE cluster that is also in the matched WordNet cluster. Recall is the fraction of symbols in

a WordNet cluster that is also in the corresponding SNE cluster. Table 5.6 shows how precision,

recall and F1 vary with cluster sizes. (The scores are averaged over all object clusters of the same



63

Table 5.4: Comparison of SNE, IRM-CC-0.25, ITC-CC and ITC-C performances on gold standard.
Object 1 and Object 2 respectively refer to the object symbols that appear as the first and second
arguments of relations. The best F1s are shown in bold.

Relation Object 1 Object 2

Model Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

SNE 0.452 0.187 0.265 0.461 0.061 0.108 0.558 0.062 0.112

IRM-CC-0.25 0.201 0.089 0.124 0.252 0.043 0.073 0.307 0.041 0.072

ITC-CC 0.773 0.003 0.006 0.470 0.047 0.085 0.764 0.002 0.004

ITC-C 0.000 0.000 0.000 0.571 0.000 0.000 0.333 0.000 0.000

Table 5.5: Evaluation of semantic statements learned by SNE, IRM-CC-0.25, and ITC-CC.

Total Num. Fract.

Model Statements Correct Correct

SNE 1241 965 0.778

IRM-CC-0.25 487 426 0.874

ITC-CC 310 259 0.835



64

Figure 5.1: Fragments of a semantic network learned by SNE. Nodes are concept clusters, and the
labels of links are relation clusters.



65

size). We see that the F1s are fairly good for object clusters of size 7 or less. The table also shows

how the level of the matched cluster in WordNet’s taxonomy vary with cluster size. The higher

the level, the more specifc the concept represented by the matched WordNet cluster. For example,

clusters at level 7 correspond to specific concepts like ‘country’, ‘state’, ‘dwelling’, and ‘home’,

while the single cluster at level 0 (i.e., at the root of the taxonomy) corresponds to ‘all entities’. We

see that the object clusters correspond to fairly specifc concepts in WordNet. We did not compare

the relation clusters to WordNet’s verbs because the overlap between the relation symbols and the

verbs are too small.

5.4 Related Work

Rajaraman and Tan [81] propose a system that learns a semantic network by clustering objects but

not relations. While it anecdotally shows a snippet of its semantic network, an empirical evaluation

of the network is not reported. Hasegawa et al. [39] propose an unsupervised approach to discover

relations from text. They treat the short text segment between each pair of objects as a relation and

cluster pairs of objects using the similarity between their relation strings. Each cluster corresponds

to a relation, and a pair of objects can appear in at most one cluster (relation). In contrast, SNE

allows a pair of objects to participate in multiple relations (semantic statements). Shinyama and

Sekine [94] form (possibly overlapping) clusters of tuples of objects (rather than just pairs of ob-

jects). They use the words surrounding the objects in the same sentence to form a pattern. Objects

in sentences with the same pattern are deemed to be related in the same way and are clustered to-

gether. All three previous systems are not domain-independent because they rely on name entity

(NE) taggers to identify objects in text. The concepts and relations that they learn are restricted

by the object types that can be identified with the NE taggers. All three systems also use ad-hoc

techniques that do not give a probability distribution over possible worlds, which we need in order

to perform inference and answer queries. By only forming clusters of (tuples of) objects and not

relations, they do not explicitly learn high-level relations like SNE.

ALICE [4] is a system for lifelong knowledge extraction from a Web corpus. Like SNE, it uses

TextRunner’s triples as input. However, unlike SNE, it requires background knowledge in the form

of an existing domain-specific concept taxonomy and does not cluster relations into higher level



66

Table 5.6: Comparison of SNE object clusters with WordNet.

Cluster Num.

Size Clusters Level Prec. Recall F1

47 1 7.0±0.0 0.8±0.0 0.2±0.0 0.4±0.0

36 1 8.0±0.0 0.3±0.0 0.3±0.0 0.3±0.0

24 1 6.0±0.0 0.2±0.0 0.3±0.0 0.2±0.0

19 1 7.0±0.0 0.2±0.0 0.3±0.0 0.2±0.0

16 1 7.0±0.0 0.3±0.0 0.3±0.0 0.3±0.0

12 3 7.0±0.7 0.5±0.1 0.7±0.1 0.5±0.2

11 1 6.0±0.0 0.9±0.0 0.7±0.0 0.8±0.0

10 2 5.5±0.7 0.6±0.1 0.9±0.1 0.5±0.1

8 5 7.0±0.9 0.4±0.2 0.7±0.4 0.3±0.1

7 4 6.0±1.4 0.7±0.3 0.8±0.2 0.9±0.1

6 12 6.6±1.7 0.4±0.2 0.6±0.2 0.6±0.2

5 12 7.2±1.6 0.4±0.2 0.5±0.3 0.7±0.1

4 84 7.2±1.7 0.4±0.1 0.7±0.2 0.6±0.2

3 185 7.3±1.8 0.5±0.2 0.7±0.2 0.7±0.2

2 1419 7.2±1.8 0.6±0.1 0.7±0.1 0.8±0.1



67

ones.

RESOLVER [107] is a system that takes TextRunner’s triples as input and resolves references

to the same object and relations by clustering the references together (e.g., Red Planet and Mars

are clustered together). In contrast, SNE learns abstract concepts and relations (e.g., Mars, Venus,

Earth, etc. are clustered together to form the concept of ‘planet’). Further, SNE learns a semantic

network but RESOLVER does not. Unlike SNE, RESOLVER’s probabilistic model clusters objects

and relations separately rather than jointly. To allow information to propagate between object clus-

ters and relation clusters, RESOLVER uses an ad-hoc approach. In its experiments, RESOLVER

gives similar results with or without the ad-hoc approach. In contrast, we show in our experiments

that SNE gives better performance with joint rather than separate clustering (see Table 5.3). In a

preliminary experiment where we adapt SNE to only use string similarities between objects (and

relations), we find that SNE performs better than RESOLVER on an entity resolution task on the

dataset described in Section 5.3.

LDA-SP [87] is a system that uses the LinkLDA model [30] to cluster the arguments of Tex-

tRunner’s r(x, y) triples. LinkLDA defines a generative model for the triples by endowing each

relation r with a T -dimensional multinomial θr over topics. Each θr is drawn from a Dirichlet with

parameter α. For each triple, two topics cx and cy are sampled according to θr, and then the ob-

served arguments x and y are chosen according to multinomials βx and βy. In LinkLDA, a topic can

be interpreted as a (soft) cluster of arguments. (LinkLDA is an extension of the LDA model [10],

which draws one topic from θr rather than two.)

The differences between LDA-SP and SNE can be seen by comparing their joint probabilites.

In LDA-SP, the joint probability is given by

P (R,Θ, C|α, βx, βy) =
M∏
r=1

p(θr)
Nr∏
i=1

p(cir,x|θr)p(cir,y|θr)p(xir|cir,x, βx)p(yir|cir,y, βy) (5.5)

where R is a set of triples, Θ = {θr}, C = {(cix, ciy)}, M is the number of relations, Nr is the

number of triples with r as their relation, cir,x and cir,y are respectively the topics chosen for the x

and y arguments of the ith triple of relation r, and xir and yir are respectively the x and y arguments of

the ith triple of relation r. The prior term is
∏M
r=1 p(θr)

∏Nr
i=1 p(c

i
r,x|θr)p(cir,y|θr) and the likelihood

term is
∏M
r=1

∏Nr
i=1 p(x

i
r|cir,x, βx)p(yir|cir,y, βy).



68

In SNE, the joint probability is given by

P (R,Γ) =

(∏
k∈K

[(
tk

tk + fk

)tk ( fk
tk + fk

)fk])
exp(−λmcc + µd) (5.6)

where R is a set of triples, Γ is the assignment of relation and argument symbols to clusters, K

is the set of cluster combinations, tk and fk are respectively the number of true and false triples

in cluster combination k, λ and µ are user-specified weights of the rules in the prior MLN (see

Section 5.2), mcc is the number of cluster combinations, and d is the number of pairs of symbols

that belong to different clusters. The prior term is exp(−λmcc + µd) and the likelihood term is∏
k∈K

[(
tk

tk+fk

)tk ( fk
tk+fk

)fk]
.

First, we compare the prior terms of the two joint likelihoods. In LDA-SP, the topics (clus-

ters) have a multinomial prior, whereas in SNE, the clusters have a simple exponential prior. In

LDA-SP, the topics for the two arguments are assumed to be drawn from the same T -dimensional

multinomial. Consequently, both arguments have the same number T of topics. Such a modelling

assumption may be appropriate for data extracted from the Web (e.g., TextRunner’s triples) be-

cause they frequently contain a relation together with its inverse (e.g., BornIn(Peter, USA) and

LocationOfBirth(USA, Peter)). Hence the topics for the two arguments are likely to be symmet-

ric. However, for data that do not generally contain both relations and their inverses, SNE could

potentially perform better because it allows the arguments to have different numbers of clusters to

better model the data.

Next, we compare the likelihood terms. In LDA-SP, each argument is drawn from a multinomial.

From the form of SNE’s likelihood term, we can see that each triple r(x, y) is drawn from a binomial

(which corresponds to a cluster combination).

The choice of whether LDA-SP’s multinomial-likelihood-cum-Dirichlet-prior model or SNE’s

binomial-likelihood-cum-exponential-prior model is the better representation for a dataset can be

determined by their relative empirical performances on held-out data. Also note that SNE is able to

cluster relation symbols but LDA-SP cannot.

SNE and LDA-SP also differ in how they learn their model parameters and cluster assignments.

SNE uses MAP estimation to learn the most likely parameters and assignment of symbols to clusters

(thus a symbol can belong to exactly one cluster). By using MAP estimation, SNE’s joint proba-



69

bility (and posterior probability) can be computed efficiently in closed-form, thus permitting SNE

to tractably search for the MAP cluster assignment. In contrast, LDA-SP addresses the task of full

Bayesian learning by using MCMC methods to find a distribution over parameters (including a dis-

tribution of cluster membership). However, MCMC methods are computationally expensive and are

unlikely to scale well to large datasets. In our empirical experiments, SNE took only 5.5 hours on a

dataset with 2.1 million triples. However, LDA-SP took 11 days on another dataset of comparable

size2.

Hierarchical LDA (hLDA) [9, 83] is an extension of LDA that is able to learn a hierarchy of

topics. hLDA directly models a topic hierarchy by including it as a variable in its joint likelihood.

In the joint likelihood, hLDA uses a variant of LDA for its likelihood component, and the nested

Chinese Restaurant Process as a prior on the structure of the topic hierarchy. In contrast, SNE and

MRC do not model a hierarchy of clusters. (Even though MRC’s search process creates a hierarchy

of cluster combinations, MRC does not define a probability model of the hierarchy.) Extending SNE

and MRC to model a cluster hierarchy is an item of future work.

5.5 Conclusion

In this chapter, we presented SNE, a scalable, unsupervised, domain-independent system for extract-

ing knowledge in the form of simple semantic networks from text. SNE is based on second-order

Markov logic. It uses a bottom-up agglomerative clustering algorithm to jointly cluster relation

symbols and object symbols into high-level relations and concepts, and allows information to prop-

agate between the clusters as they are formed. Empirical comparisons with three systems on a large

real-world Web dataset show the promise of our approach.

In the next chapter, we adapt the ideas developed in SNE to the problem of learning good MLN

formulas.

2Personal communication with Alan Ritter.



70

Chapter 6

LEARNING MARKOV LOGIC NETWORK STRUCTURE
VIA HYPERGRAPH LIFTING

6.1 Introduction

In Chapter 3, we proposed an approach for learning MLN structure that systematically enumerates

candidate clauses by starting from an empty clause, greedily adding literals to it, and testing the

resulting clause’s empirical fit to training data. Such a strategy has two shortcomings: searching the

large space of clauses is computationally expensive; and it is susceptible to converging to a local

optimum, missing potentially useful clauses. These shortcomings can be ameliorated by using the

data to a priori constrain the space of candidates. This is the basic idea in relational pathfinding [84],

which finds paths of true ground atoms that are linked via their arguments and then generalizes them

into first-order rules. Each path corresponds to a conjunction that is true at least once in the data.

Since most conjunctions are false, this helps to concentrate the search on regions with promising

rules. However, pathfinding potentially amounts to exhaustive search over an exponential number

of paths. Hence, systems using relational pathfinding (e.g., BUSL [66]) typically restrict themselves

to very short paths, creating short clauses from them and greedily joining them into longer ones.

In this chapter, we present LHL, an approach that uses relational pathfinding to a fuller extent

than previous ones. It mitigates the exponential search problem by first inducing a more compact

representation of data, in the form of a hypergraph over clusters of constants, using the techniques

introduced in Chapters 4 and 5. Pathfinding on this ‘lifted’ hypergraph is typically at least an order

of magnitude faster than on the ground training data and produces MLNs that are more accurate

than previous state-of-the-art approaches. LHL is short for Learning via Hypergraph Lifting.

In the next section, we present LHL in more detail. After that we report our experiments (Sec-

tion 6.3) and discuss related work (Section 6.4).



71

Figure 6.1: Lifting a hypergraph.

6.2 Learning via Hypergraph Lifting

In LHL, we make use of hypergraphs. A hypergraph is a straightforward generalization of a graph

in which an edge can link any number of nodes, rather than just two. More formally, we define a

hypergraph as a pair (V,E) where V is a set of nodes, and E is a set of labeled non-empty subsets

of V called hyperedges. In LHL, we find paths in a hypergraph. A path is defined as a set of

hyperedges such that for any two hyperedges e0 and en in the set, there exists an ordering of (a

subset of) hyperedges in the set e0, e1, . . . , en−1, en such that ei and ei+1 share at least one node.

A database can be viewed as a hypergraph with constants as nodes and true ground atoms as

hyperedges. Each hyperedge is labeled with a predicate symbol. Nodes (constants) are linked by a

hyperedge (true ground atom) if and only if they appear as arguments in the hyperedge. (Henceforth

we use node and constant interchangeably, and likewise for hyperedge and true ground atom.) A

path of hyperedges can be generalized into a first-order clause by variabilizing their arguments.

To avoid tracing the exponential number of paths in the hypergraph, LHL first jointly clusters the

nodes into higher-level concepts, and by doing so it also clusters the hyperedges (i.e., the ground

atoms containing the clustered nodes). The ‘lifted’ hypergraph has fewer nodes and hyperedges,

and therefore fewer paths, reducing the cost of finding them.

Figure 6.1 provides an example. We have a database describing an academic department where



72

professors tend to have students whom they are advising as teaching assistants (TAs) in the classes

the professors are teaching. The left graph is created from the database, and after lifting, results in

the right graph. Observe that the lifted graph is simpler and the clustered constants correspond to

the high-level concepts of Professor, Student and Course.

Table 6.1 gives the pseudocode for LHL. LHL begins by lifting a hypergraph (Table 6.2). Then

it finds paths in the lifted hypergraph (Table 6.3). Finally it creates candidate clauses from the paths

and learns their weights to create an MLN (Table 6.4). We describe each component of LHL in turn.

6.2.1 Hypergraph Lifting

We call our hypergraph lifting algorithm LiftGraph. LiftGraph is similar to the MRC and SNE al-

gorithms [46, 47] (described in Chapter 4 and 5 respectively). It differs from them in the following

ways. LiftGraph can handle relations of arbitrary arity, whereas SNE can only handle binary re-

lations. Unlike MRC, LiftGraph finds a single clustering of constant symbols rather than multiple

clusterings. While both SNE and MRC can cluster predicate symbols, in this paper, for simplicity,

we do not cluster predicates. (However, it is straightforward to extend LiftGraph to do so.) Most

domains contain many fewer predicates than objects, and structure learning alone suffices to capture

the dependencies among them, which is what LHL does. (Because SNE and MRC do not have

a structure learning component, it is essential for them to cluster predicates in order to learn the

dependencies among them.)

LiftGraph works by jointly clustering the constants in a hypergraph in a bottom-up agglomer-

ative manner, allowing information to propagate from one cluster to another as they are formed.

The number of clusters need not be pre-specified. As a consequence of clustering the constants,

the ground atoms in which the constants appear are also clustered. In Figure 6.1, the hyper-

edge Teach(Professor,Course) in the lifted hypergraph contains the ground atoms Teach(P1, C1),

Teach(P1, C2), Teach(P2, C1), etc. Each hyperedge in the lifted hypergraph contains at least one

true ground atom.

LiftGraph is defined using Markov logic. We use the variable r to represent a predicate, xi

for the ith argument of a predicate, γi for a cluster of ith arguments of a predicate (i.e., a set of

constant symbols), and Γt for a clustering of constant symbols of type t (i.e., a set of clusters



73

Table 6.1: LHL algorithm.

function LHL(D,T, ω, µ, ν, π, θatoms)

input: D, a relational database

T , a set of types, where a type is a set of constants

ω, maximum number of hyperedges in a path

µ, minimum number of ground atoms per hyperedge in a path in order for it to be selected

ν, maximum number of ground atoms to sample in a path

π, length penalty on clauses

θatoms, fraction of atoms to sample from D

output: (Clauses,Weights), an MLN containing a set of learned clauses and their weights

note: Index H maps from each node γi to the set of hyperedges r(γ1, . . . , γi, . . . , γn) containing γi

E is a set of hyperedges in a lifted hypergraph

Paths is a set of paths, each path being a set of hyperedges

(H,E)← LiftGraph(D,T )

Paths← ∅

for each r(γ1, . . . , γn) ∈ E

Paths← Paths ∪ FindPaths({r(γ1, . . . , γn)}, {γ1, . . . , γn}, ω,H)

(Clauses,Weights)← CreateMLN(Paths,D, µ, ν, π, θatoms)

return (Clauses,Weights)



74

Table 6.2: LiftGraph algorithm.

function LiftGraph(D,T )

note: The inputs and output are as described in Table 6.1

for each t ∈ T

Γt ← ∅

for each x ∈ t

Γt ← Γt ∪ {γx} (γx is a unit cluster containing x)

H[γx]← ∅ (H maps from nodes to hyperedges)

E ← ∅ (E contains hyperedges)

for each true ground atom r(x1, . . . , xn) ∈ D

E ← E ∪ {r(γx1 , . . . , γxn)}

for each xi ∈ {x1, . . . , xn}

H[γxi ]← H[γxi ] ∪ {r(γx1 , . . . , γxn)}

repeat

for each t ∈ T

(γbest, γ′best)← ClusterPairWithBestGain(Γt)

if {(γbest, γ′best)} 6= ∅

γnew ← γbest ∪ γ′best
Γt ← (Γt \ {γbest, γ′best}) ∪ γnew

H[γnew]← ∅

for each γ ∈ {γbest, γ′best}

for each r(γ1, . . . , γ, . . . , γn) ∈ H[γ]

H[γnew]← H[γnew] ∪ {r(γ1, . . . , γnew, . . . , γn)}

E ← E \ {r(γ1, . . . , γ, . . . , γn)}

E ← E ∪ {r(γ1, . . . , γnew, . . . , γn)}

H[γ]← ∅

until no clusters are merged for all t

return (H,E)



75

Table 6.3: FindPaths algorithm.

function FindPaths(CurPath, V, ω,H)

input: CurPath, set of connected hyperedges

V , set of nodes in CurPath

note: The other inputs & output are as described in Table 6.1

if |CurPath| = ω

return ∅

Paths← ∅

for each γi ∈ V

for each r(γ1, . . . , γn) ∈ H[γi]

if r(γ1, . . . , γn) 6∈ CurPath

CurPath← CurPath ∪ {r(γ1, . . . , γn)}

Paths← Paths ∪ {CurPath}

V ′ ← ∅

for each γj ∈ {γ1, . . . , γn}

if γj 6∈ V

V ← V ∪ {γj}

V ′ ← V ′ ∪ {γj}

Paths← Paths ∪ FindPath(CurPath, V, ω,H)

CurPath← CurPath \ {r(γ1, . . . , γn)}

V ← V \ V ′

return Paths



76

Table 6.4: CreateMLN algorithm.

function CreateMLN(Paths,D, µ, ν, π, θatoms)

calls: V ariabilizePaths(Paths), replaces the nodes in each path in Paths with variables

MakeClauses(Path), creates clauses from hyperedges in Path

Sample(Path, ν), uniformly samples ν ground atoms from Path

SampleDB(D, θatoms), uniformly samples a fraction θatoms of atoms from database D

NumTrueGroundAtoms(Path), counts the number of true ground atoms in Path

note: The inputs and output are as described in Table 6.1

(only select paths with enough true ground atoms (heuristic 1))

Paths← V ariabilizePaths(Paths)

SelectedPaths← ∅

for each p ∈ Paths

if (NumTrueGroundAtoms(p) >= PathLength(p) ∗ µ)

SelectedPaths← SelectedPaths ∪ {p}

(evaluate candidates with ground atoms in Path (heuristic 2))

CandidateClauses← ∅

for each p ∈ SelectedPaths

D′ ← Sample(p, ν)

for each c ∈MakeClauses(p)

if Score(c,D′) > Score(∅, D′)

CandidateClauses← CandidateClauses ∪ {c}

CandidateClauses← SortByLength(CandidateClauses)

(Evaluate candidates with ground atoms in database D)

D′ ← SampleDB(D, θatoms)

SelectedClauses← ∅

for each c ∈ CandidateClauses

BetterThanSubClauses← True

for each c′ ∈ (SubClauses(c) ∩ SelectedClauses)

if Score(c,D′) < Score(c′, D′)

BetterThanSubClauses← False

break

if (BetterThanSubClauses)

SelectedClauses← SelectedClauses ∪ {c}

AddClausesToMLN(SelectedClauses)

Weights← LearnWeights(SelectedClauses)

return (SelectedClauses,Weights)



77

or, equivalently, a partitioning of a set of symbols). If xi is in γi, we say that (x1, . . . , xn) is

in the cluster combination (γ1, . . . , γn), and that (γ1, . . . , γn) contains the atom r(x1, . . . , xn).

r(γ1, . . . , γn) denotes a hyperedge connecting nodes γ1, . . . , γn. A hypergraph representing the

true ground atoms r(x1, . . . , xn) in a database is simply (V = {{xi}}, E= { r({x1}, . . . , {xn}) })

with each constant xi in its own cluster, and a hyperedge for each true ground atom.

The learning problem in LiftGraph consists of finding the cluster assignment {Γ} that maxi-

mizes the posterior probability P ({Γ}|D) ∝ P ({Γ})P (D|{Γ}), where D is a database of truth

assignments to the observable r(x1, . . . , xn) ground atoms. The prior P ({Γ}) is simply an MLN

containing two rules. The first rule states that each symbol belongs to exactly one cluster. This rule

is hard, i.e., it has infinite weight and cannot be violated.

∀x ∃1γ x ∈ γ

The second rule is

∀γ1, . . . , γn ∃x1, . . . , xn x1 ∈ γ1 ∧ . . . ∧ xn ∈ γn

with negative weight −∞ < −λ < 0, which imposes an exponential prior on the number of cluster

combinations to prevent overfitting. The parameter λ is fixed during learning, and is the penalty in

log-posterior incurred by adding a cluster combination.

The MLN for the likelihood P (D|{Γ}) contains the following rules. For each predicate r and

each cluster combination (γ1, . . . , γn) that contains a true ground atom of r, the MLN contains the

rule:

∀x1, . . . , xn x1 ∈ γ1 ∧ . . . ∧ xn ∈ γn ⇒ r(x1, . . . , xn)

We call these atom prediction rules because they state that the truth value of an atom is determined

by the cluster combination it belongs to. These rules are soft. At most there can be one such rule

for each true ground atom (i.e., when each constant is in its own cluster).

For each predicate r, we create a rule

∀x1, . . . , xn
(∧m

i=1 ¬(x1 ∈ γi1 ∧ . . . ∧ xn ∈ γin)
)
⇒ r(x1, . . . , xn)

where (γ1
1 , . . . , γ

1
n), . . . , (γm1 , . . . , γ

m
n ) are cluster combinations containing true ground atoms of r.

This rule accounts for all atoms (all false) that are not in any cluster combination with true ground



78

atoms of r. We call such a rule a default atom prediction rule because its antecedent is analogous to

a default cluster combination that contains all atoms that are not in the cluster combinations of any

atom prediction rule.

LiftGraph simplifies the learning problem by performing hard assignments of constant symbols

to clusters (i.e., instead of computing probabilities of cluster membership, a symbol is simply as-

signed to its most likely cluster). The weights and the log-posterior can now be computed in closed

form. The derivation of the log-posterior is given in Appendix D. LiftGraph thus simply searches

over cluster assignments, evaluating each one by its posterior probability. It begins by assigning

each constant symbol xi to its own cluster {xi} and creating a hyperedge r({x1}, . . . , {xn}) for

each true ground atom r(x1, . . . , xn). Next it creates candidate pairs of clusters of each type, and

for each pair, it evaluates the gain in posterior probability if its clusters are merged. It then chooses

the pair that gives the largest gain to be merged. When clusters γi and γ′i are merged to form

γnewi , each hyperedge r(γ1, . . . , γi, . . . , γn) is replaced with r(γ1, . . . , γ
new
i , . . . , γn) (and simi-

larly for hyperedges containing γ′i). Since r(γ1, . . . , γi, . . . , γn) contains at least one true ground

atom, r(γ1, . . . , γ
new
i , . . . , γn) must do too. To avoid trying all possible candidate pairs of clus-

ters, LiftGraph only tries to merge γi and γ′i if they appear in hyperedges r(γ1, . . . , γi, . . . , γn) and

r(γ1, . . . , γ
′
i, . . . , γn). In this manner, it incrementally merges clusters until no merges can be per-

formed to improve posterior probability. It then returns a lifted hypergraph whose hyperedges all

contain at least one true ground atom.

6.2.2 Path Finding

FindPaths constructs paths by starting from each hyperedge in a hypergraph. It begins by adding a

hyperedge to an empty path, and then recursively adds hyperedges linked to nodes already present

in the path (hyperedges already in the path are not re-added). Its search terminates when the path

reaches a maximum length or when no new hyperedge can be added. Each time a hyperedge is

added to the path, FindPaths stores the resulting path as a new one. All the paths are passed on to

the next step to create clauses.

Any search algorithm can be used to find paths in the hypergraph (depth-first search, breadth-

first search, iterative deepening, etc.) Our search algorithm FindPaths (Table 6.3) has the flavor of



79

depth-first search because it is memory efficient.

6.2.3 Clause Creation and Pruning

A path in the hypergraph corresponds to a conjunction of r(γ1, . . . , γn) hyperedges. We replace

each γi in a path with a variable, thereby creating a variabilized atom for each hyperedge. We

convert the conjunction of positive literals to a clause because that is the form that is typically used

by ILP (inductive logic programming) and MLN structure learning and inference algorithms. (In

Markov logic, a conjunction of positive literals with weight w is equivalent to a clause of negative

literals with weight−w). In addition, we add clauses with the signs of up to n literals flipped (where

n is a user-defined parameter), since the resulting clauses may also be useful.

We evaluate each clause using weighted pseudo-log-likelihood (WPLL) given in Equation 3.1.

Following the MSL experiments in Section 3.6, we weight all first-order predicates equally, penal-

ize the WPLL with a length penalty −πl (l is the number of literals in a clause), and penalize each

clause weight with a zero-mean Gaussian prior. Summing over all ground atoms in WPLL is com-

putationally expensive, so we only sum over a randomly-sampled fraction θatoms of them. We define

the score of a clause c as Score(c,D) = logP •w′,F ′,D(X = x) − πl, where logP •w′,F ′,D(X = x) is

the WPLL, F ′ is a set containing c and one first-order unit clause for each predicate appearing in

database D, and w′ is a set of optimal weights for the clauses in F ′.

We iterate over the clauses from shortest to longest. For each clause, we compare its scores

against those of its sub-clauses (considered separately) that have already been retained. If the clause

scores higher than all of these sub-clauses, it is retained; otherwise, it is discarded. In this man-

ner, we discard clauses which are unlikely to be useful. Note that this process is efficient because

the score of a clause only needs to be computed once and can be cached for future comparisons.

(Alternatively, we could evaluate a clause against every combination of its sub-clauses, but this is

computationally expensive because there could be many such combinations for long clauses.)

Finally we add the retained clauses to an MLN. We have the option of doing this in several

ways. We could greedily add the clauses one at a time in order of decreasing score. After adding

each clause, we relearn the weights and keep the clause in the MLN if it improves the overall WPLL.

Alternatively, we could add all the clauses to the MLN, and learn weights using L1-regularization to



80

prune away ‘bad’ clauses by giving them zero weights [41]. Lastly, we could use L2-regularization

instead if the number of clauses is not too large and rely on the regularization to give ‘bad’ clauses

low weight. Optionally, to reduce the space of clauses considered, we discard clauses containing

‘dangling’ variables (i.e., variables which only appear once in a clause), since these are unlikely to

be useful.

We use two heuristics to speed up clause evaluation. First we discard a path at the outset if it

contains fewer than µ true ground atoms per hyperedge. This cuts the time we spend evaluating

clauses that are not well supported by data. Second, before evaluating a clause’s WPLL with respect

to a database, we evaluate it with respect to the smaller number of ground atoms contained in the

paths that gave rise to it. (Note that a clause can be created from different paths.) We limit the

number of such ground atoms to a maximum of ν.

6.3 Experiments

6.3.1 Datasets

We carried out experiments to investigate whether LHL performs better than previous approaches

and to evaluate the contributions of its components. We used three datasets publicly available at

http://alchemy.cs.washington.edu. Their details are shown in Table 6.5.

Table 6.5: Information on datasets.

Dataset Types Constants Predicates True Atoms Total Atoms

IMDB 4 316 6 1224 17,793

UW-CSE 9 929 12 2112 260,254

Cora 5 3079 10 42,558 687,422

IMDB. This dataset, created by Mihalkova and Mooney (2007) from the IMDB.com database, de-

scribes a movie domain. It contains predicates describing movies, actors, directors and their rela-

tionships (e.g, Actor(person), WorkedIn(person, movie), etc.) It is divided into 5 independent



81

folds. We omitted 4 equality predicates (e.g., SameMovie(movie, movie)) because they are super-

seded by the equality operator in the systems we are comparing.

UW-CSE. This dataset, prepared by Richardson and Domingos (2006) , describes an academic de-

partment. Its predicates describe students, faculty and their relationships (e.g, Professor(person),

TaughtBy(course, person, quarter), etc.). The dataset is divided into 5 independent areas/folds

(AI, graphics, etc.). We omitted 9 equality predicates for the same reason as above. (This dataset is

different from that used for the MSL experiments in Section 3.6. Subsequent to those experiments,

several people declined to have their information included in the dataset, so ground atoms describing

them were removed.)

Cora. This dataset is a collection of citations to computer science papers, created by Andrew Mc-

Callum and later processed by Singla and Domingos (2006) into 5 folds for the task of deduplicating

the citations, and their title, author and venue fields. Predicates include: SameCitation(cit1, cit2),

TitleHasWord(title, word), etc. (This dataset is also different from that used for the MSL ex-

periments in Section 3.6. It does not contain predicates which describe the percentage of words two

fields have in common (e.g., CommonWordsInTitles80−100%(t, t′)). Such predicates are good

indicators of whether two fields are the same, and removing them makes the deduplication task more

challenging.)

6.3.2 Systems

We compared LHL to two state-of-the-art systems: BUSL [66] and Markov logic Structure Learner

(MSL) [45] (described in Section 3.7 and Chapter 3 respectively). Both systems are implemented

in the Alchemy software package [50].

To investigate the importance of hypergraph lifting, we removed the LiftGraph component from

LHL and let FindPaths run on the unlifted hypergraph. The rules it learned were pruned by Cre-

ateMLN as per normal. We call this system LHL-FindPaths. We also investigated the contribution

of hypergraph lifting alone by applying LiftGraph’s MLN on the test sets. We call this system

LHL-LiftGraph. We also investigated the effectiveness of the two heuristics in CreateMLN, by dis-

abling them and observing the performance of the MLN thus learned by LHL. We call this system

LHL-NoHeu. Altogether we compared six systems: LHL, LHL-NoHeu, LHL-FindPaths, LHL-



82

LiftGraph, BUSL and MSL. All systems are implemented in C++.

The following parameter values were used for the LHL systems on all datasets: λ= 1 (weight

of exponential prior rule), µ=50, ν=500, θatoms=0.5. The other parameters were set as follows:

ω =5 (IMDB, UW-CSE) and 4 (Cora); π= 0.01 (UW-CSE, Cora) and 0.1 (IMDB). (See Table 6.1

for parameter descriptions.) For BUSL and MSL, we set their parameters corresponding to π to

values we used for LHL. We also set their minWeight parameter to zero (empirically we found

that this value performed better than their defaults). All other BUSL and MSL parameters were set

to their default values. For all LHL systems, we used the following options:

• Created clauses with all combinations of negated/non-negated atoms in a variabilized path.

• Greedily added clauses one at a time in order of decreasing score to an initially empty MLN

(as is done in BUSL).

• Excluded clauses with dangling variables from the final MLN to reduce the space of clauses

considered. However, we did not impose this restriction on clauses with two or fewer literals

because the number of such clauses is small. (To ensure fairness, we also tried excluding

dangling clauses in BUSL and MSL, and report the best results for each.)

The parameters were set in an ad hoc manner, and per-fold optimization using a validation set

could conceivably yield better results. All systems were run on identically configured machines

(2.8GHz, 4GB RAM).

6.3.3 Methodology

For each dataset, we performed cross-validation using the five previously defined folds.

For IMDB and UW-CSE, we performed inference over the groundings of each predicate to com-

pute their probabilities of being true, using the groundings of all other predicates as evidence. For

Cora, we evaluated the systems’ performances on the tasks of deduplicating the citations, and the

title, author and venue fields. We ran inference over each of the four predicates SameCitation,

SameTitle, SameAuthor and SameVenue in turn, using the groundings of all other predicates as



83

evidence. We used Alchemy’s Gibbs sampling for all systems except LHL-LiftGraph. For LHL-

LiftGraph, we used Alchemy’s MC-SAT algorithm [77] because it has been shown to give better

results for MLNs containing deterministic rules, which LHL-LiftGraph does. Each run of the in-

ference algorithms drew 1 million samples, or ran for a maximum of 24 hours, whichever came

earlier.

To evaluate the performance of the systems, we measured the average conditional log-likelihood

of the test atoms (CLL) and the area under the precision-recall curve (AUC).

6.3.4 Results

Table 6.6 reports the AUCs, CLLs and runtimes. The AUC and CLL results are averages over all

atoms in the test sets and their standard deviations. Runtimes are averages over the five folds.

We first compare LHL to BUSL and MSL. In both AUC and CLL, LHL outperforms BUSL and

MSL on all datasets. The differences between LHL and BUSL/MSL on all datasets are statistically

significant according to one-tailed paired t-tests (p-values ≤ 0.02 for both AUC and CLL). LHL is

slower than BUSL and MSL on the smallest dataset (IMDB), mixed on the medium one (UW-CSE),

and faster on the largest one (Cora). This suggests that LHL scales better than BUSL and MSL.

Next we compare LHL to its components LHL-LiftGraph and LHL-FindPaths. Comparing the

runtimes of LHL and LHL-FindPaths, we see that LHL is much faster than LHL-FindPaths. LHL’s

AUC and CLL are similar to or better than LHL-FindPaths’s on IMDB and UW-CSE, but are worse

on Cora. These results suggest that: LHL is a lot faster than LHL-FindPaths without any loss in

accuracy on some datasets; and when LHL-FindPaths does better, it does so at a huge computational

cost (e.g., it took about 247 days to run on Cora1). LHL also outperforms LHL-LiftGraph on both

AUC and CLL on the IMDB and UW-CSE datasets.2 This suggests that LHL’s ability to learn

clauses that capture complex dependencies among predicates is an advantage over the simple rules

in LHL-LiftGraphs.

Comparing LHL and LHL-NoHeu, we see that the two speedup heuristics in CreateMLN are

effective in reducing LHL’s runtime. On all datasets, we see that the heuristics do not compromise

1For each test fold, we ran FindPaths in parallel on all training folds and added the runtimes.
2LHL-LiftGraph on Cora crashed by running out of memory. Alchemy automatically converts the default atom pre-

diction rules into clausal form and represents each clause separately, causing a blow-up in the number of clauses.



84

Table
6.6:E

xperim
entalresults.

IM
D

B
U

W
-C

SE
C

ora

System
A

U
C

C
L

L
Tim

e
(m

in)
A

U
C

C
L

L
Tim

e
(hr)

A
U

C
C

L
L

Tim
e

(hr)

L
H

L
0.69±

0.01
−

0.13±
0.00

15.63±
1.88

0.22±
0.01

−
0.04±

0.00
7.55±

1.53
0.87±

0.00
−

0.26±
0.00

14.82±
1.78

L
H

L
-N

oH
eu

0.69±
0.01

−
0.13±

0.00
39.00±

13.56
0.22±

0.01
−

0.04±
0.00

158.24±
46.70

0.87±
0.00

−
0.26±

0.00
33.99±

3.86

L
H

L
-FindPaths

0.69±
0.01

−
0.13±

0.00
242.41±

30.31
0.19±

0.01
−

0.04±
0.00

56.69±
19.98

0.91±
0.00

−
0.17±

0.00
5935.50±

39.21

L
H

L
-L

iftG
raph

0.45±
0.01

−
0.27±

0.01
0.18±

0.01
0.14±

0.01
−

0.06±
0.00

0.001±
0.000

-
-

0.01±
0.01

B
U

SL
0.47±

0.01
−

0.14±
0.00

4.69±
1.02

0.21±
0.01

−
0.05±

0.00
12.97±

9.80
0.17±

0.00
−

0.37±
0.00

18.65±
9.52

M
SL

0.41±
0.01

−
0.17±

0.00
2.79±

0.59
0.18±

0.01
−

0.57±
0.00

2.13±
0.38

0.17±
0.00

−
0.37±

0.00
65.60±

1.82



85

the quality of the MLNs that LHL learns because LHL and LHL-NoHeu have the same AUC and

CLL. Examining the runtime of LiftGraph, we found that it accounts for only a tiny fraction of LHL

runtime (less than 0.1%).

The results for MSL on UW-CSE and Cora are not directly comparable to those reported in

Section 3.6 for the following reasons. First, as described in Section 6.3.1, the datasets are not exactly

the same. Second, the experiments in Section 3.6 evaluated MSL by computing the probability that a

ground atom is true given all other ground atoms as evidence, a much easier task than the evaluation

used in this chapter. Third, we did not use any domain-specific declarative bias to guide clause

construction as was previously done. (Notice how LHL is able to overcome the myopia of greedy

search without the help of this bias.)

The results for BUSL on IMDB and UW-CSE are also different from those reported by Mi-

halkova and Mooney (2007) . Unlike them, we omitted evaluating the equality predicates (as

mentioned earlier) because they are superfluous. This reason also contributes to the difference in

MSL’s performance.

The following are examples of (weighted) rules learned by LHL.

• Director(d) ∧ Actor(a) ∧ InMovie(d, m) ∧ InMovie(a, m)⇒ WorkedUnder(a, d). (If a

director d and an actor a work in the same movie, then a is likely to work under d’s direction.)

• HasFacultyPosition(s, p)⇒ ¬Student(s). (If a person s has a faculty position p, then

she is not a student).

• TitleHasWord(t, w) ∧ TitleHasWord(t′, w) ∧ SameTitle(t, t′). (The actual rule learned

by LHL is the negation of the above rule (i.e., a clause) with negative weight −w. Under

Markov logic, it is equivalent to the above conjunction with positive weight w. The rule

models the condition that two titles t and t′ that contain the same word w actually refer to the

same title.)

• AuthorOfCit(a, c) ∧ AuthorOfCit(a′, c′) ∧ SameAuthor(a, a′)⇒ SameCitation(c, c′).

(If two citations c and c′ respectively have authors a and a′ that refer to the same author, then

c and c′ refer to the same citation.)



86

6.4 Related Work

Besides relational pathfinding [84], ILP approaches with bottom-up aspects include Muggleton &

Buntine (1988), Muggleton & Feng (1990), etc. These approaches are vulnerable to noise in the

data and only create clauses to predict a single target predicate.

Popescul and Ungar (2004) have also used clustering to improve probabilistic rule induction.

Their approach is limited to logistic regression and SQL rules, uses a very simple clustering method

(k-means), and requires pre-specifying the number of clusters. Craven and Slattery (2001) learn

first-order rules for hypertext classification using naive Bayes models as invented predicates.

The idea of lifting comes from theorem-proving in first-order logic. In recent years, it has been

extended to inference in MLNs and other probabilistic languages. In lifted belief propagation [96],

the algorithm forms clusters of ground atoms and clusters of ground clauses. It performs inference

over the more compact network of clusters, thereby improving efficiency. This is analogous to LHL’s

approach of forming clusters of ground atoms to create a lifted hypergraph in which the search for

clauses is more efficient.

6.5 Conclusion

In this chapter, we proposed LHL, a novel algorithm that uses the data to constrain the space of

candidate clauses to overcome the limitations of prior top-down systems such as MSL. LHL lifts the

training data into a compact hypergraph by clustering constants into high-level concepts and uses

relational pathfinding over the hypergraph to find clauses. Our empirical results show the efficacy

of LHL.

Even though LHL ameliorates the cost of relational pathfinding by lifting a ground hypergraph,

it still incurs a large computational cost when finding long paths (beyond 4-5 literals) over the entire

lifted hypergraph. In the next chapter, we present a solution to this problem that constrains the

search for long clauses to within recurring patterns in the ground hypergraph.



87

Chapter 7

LEARNING MARKOV LOGIC NETWORKS USING STRUCTURAL MOTIFS

7.1 Introduction

In Chapters 3 and 6, we described several MLN structure learners, all of which are only able to

learn short clauses (4-5 literals) due to the extreme computational cost of learning. In this chapter,

we address this problem with LSM [49], the first MLN structure learner capable of efficiently and

accurately learning long clauses. Its key insight is that relational data usually contains recurring

patterns, which we term structural motifs. These motifs confer three benefits. First, by confining its

search to within motifs, LSM need not waste time following spurious paths between motifs. Second,

LSM only searches in each unique motif once, rather than in all its occurrences in the data. Third,

by creating various motifs over a set of objects, LSM can capture different interactions among them.

A structural motif is frequently characterized by objects that are densely connected via many paths,

allowing us to identify motifs using the concept of truncated hitting time [91] in random walks [59].

This concept has been used in many applications, and we are the first to successfully apply it to

learning MLN formulas.

The remainder of this chapter is organized as follows. We begin by reviewing some background

on truncated hitting time and random walks in the next section. Then we describe LSM in detail

(Section 7.3), report our experiments (Section 7.4), and discuss related work (Section 7.5).

7.2 Random Walks and Hitting Times

Random walks and hitting times are defined in terms of hypergraphs. A hypergraph is a straightfor-

ward generalization of a graph in which an edge can link any number of nodes, rather than just two.

Formally, a hypergraph G is a pair (V,E) where V is a set of nodes, and E is a set of labeled non-

empty subsets of V called hyperedges. A path of length t between nodes u and u′ is an alternating

sequence of nodes and hyperedges (v0, e0, v1, e1, . . . , et−1, vt) such that u= v0, u′ = vt, ei ∈ E,

vi ∈ ei and vi+1 ∈ ei for i ∈ {0, . . . , t}. u is said to be reachable from u′ iff there is path from u to



88

u′. G is connected if all its nodes are reachable from each other. pvs denotes a path from s to v.

In a random walk [59], we travel from node to node via hyperedges. Suppose that at some time

step, we are at node i. In the next step, we move to one of its neighbors j by first randomly choosing

a hyperedge e from the set Ei of hyperedges that are incident to i, and then randomly choosing j

from among the nodes that are connected by e (excluding i). The probability of moving from i to

j is called the transition probability pij , and is given by pij =
∑

e∈Ei∩Ej
1
|Ei|

1
|e|−1 . Note that the

transition probabilities from a node to all its neighbors sum to 1.

The hitting time hij [1] from node i to j is defined as the average number of steps one takes

in a random walk starting from i to visit j for the first time. It is recursively defined as hij =

1 +
∑

k pikhkj if i 6=j and zero otherwise. The larger the number of paths between i and j, and the

shorter the paths, the smaller the hitting time. Thus, hitting time is useful for capturing the notion of

‘closeness’ between nodes. However, computing the hitting times between all pairs of nodes require

at least O(|V |2) time, and thus is intractable for large hypergraphs.

To circumvent this problem, Sarkar et al. (2008) introduced the notion of truncated hitting time.

The truncated hitting time hTij from node i to j is defined as the average number of steps one takes

to reach j for the first time starting from i in a random walk that is limited to at most T steps.

hTij = 0 if i = j or T = 0, and hTij = T if j is not reach in T steps. Thus, starting from a node i,

we only need to compute the time it takes to reach nodes in its vicinity, rather than all nodes. As

T →∞, hTij → hij . Sarkar et al. showed that truncated hitting time can be approximated accurately

with high probability by sampling. They runW independent length-T random walks from node i. In

w of these runs, node j is visited for the first time at time steps t1j , . . . , t
w
j . The estimated truncated

hitting time is given by

ĥTij =

∑w
k=1 t

k
j

W
+ (1− w

W
)T. (7.1)

They also showed that the number of samples of random walks W has to be at least 1
2ε2

log 2|V |
d in

order for the estimated truncated hitting time to be a good estimate of the actual truncated hitting

time with high probability, i.e., for P (|ĥTij−hTij | ≤ εT )≥ 1 − δ, where ε and δ are user-specified

parameters, and 0 ≤ ε, δ ≤ 1.



89

7.3 Learning via Structural Motifs

We call our algorithm Learning using Structural Motifs (LSM; Table 7.1). The crux of LSM is that

relational data frequently contains recurring patterns of densely connected objects, and by limiting

our search to within these patterns, we can find good rules quickly. We call such patterns structural

motifs.

A structural motif is a set of literals, which defines a set of clauses that can be created by forming

disjunctions over the negations/non-negations of one or more of the literals. Thus, it defines a sub-

space within the space of all clauses. LSM discovers subspaces where literals are densely connected

and groups them into a motif. To do so, LSM views a database as a hypergraph with constants as

nodes, and true ground atoms as hyperedges. Each hyperedge is labeled with a predicate symbol.

LSM groups nodes that are densely connected by many paths, and the hyperedges connecting them

into a motif. Then it compresses the motif by clustering nodes into high-level concepts, reducing

the search space of clauses in the motif. Next it quickly estimates whether the motif appears often

enough in the data to be retained. Finally, LSM runs relational pathfinding on each motif to find

candidate rules and retains the good ones in an MLN.

Figure 7.1 provides an example of a graph created from a university database describing two de-

partments. The bottom motifs are extracted from the top graph. Note that the motifs have gotten rid

of the spurious link between departments, preventing us from tracing paths straddling departments

that do not translate to good rules. Also note that by searching only once in each unique motif, we

avoid duplicating the search in all its occurrences in the graph. Observe that both motifs are created

from each department’s subgraph. In the left motif, individual students and books are respectively

clustered into high-level concepts Student and Book because they are indistinguishable with respect

to professor P1 (they have symmetrical paths from P1). In the right motif, the clustering is done

with respect to book B1. LSM’s ability to create different motifs over a set of objects allows it to

capture various interactions among the objects, and thus to potentially discover more good rules.

LSM differs from LHL (Chapter 6) in the following ways. First, LHL finds a single clustering of

nodes, but in LSM, a node can belong to different clusters. Second, in LHL, two nodes v and v′ are

clustered together if they are related to many common nodes. Thus, intuitively, LHL is making use

of length-2 paths to determine the similarity of nodes (e.g., vrwr′v′ where v and v′ are connected



90

Table 7.1: LSM algorithm.

Input: G = (V,E), a ground hypergraph representing a database

Output: MLN , a set of weighted clauses

1 Motifs← ∅

2 For each s∈V

3 Run Nwalks random walks of length T from s to estimate hTsv for all v∈V

4 Create Vs to contain nodes whose hTsv < θhit

5 Create Es to contain hyperedges that only connect to Vs

6 Partition Vs into {A1, . . . Al} where ∀v∈Aj ,∃v′∈Aj : |hTsv − hTsv′ | < θsym

7 Vs ← ∅

8 For each Ai∈{A1, . . . Al}

9 Partition Ai into H={H1, . . . ,Hm} so that symmetrical nodes in Ai belong to the same Hj∈H

10 Add H1, . . . ,Hm to Vs

11 Create Es={E1, . . . , Ek} where hyperedges in E with the same label, and that connect to the

same sets in Vs belong to the same Ej∈Es.

12 Let lifted hypergraph L=(Vs, Es)

13 Create Motif(L) using DFS, add it to Motifs

14 For each m ∈Motifs

15 Let nm be the number of unique true groundings returned by DFS for m

16 If nm < θmotif , remove m from Motifs

17 Paths← FindPaths(Motifs)

18 MLN ← CreateMLN(Paths)

19 Return MLN



91

Figure 7.1: Motifs extracted from a ground hypergraph.

to w via edges r and r′). In contrast, LSM uses longer paths, and thus more information, to find

various clusterings of nodes. Third, spurious edges present in LHL’s initial ground hypergraph are

retained in the lifted one, but these edges are ignored by LSM.

7.3.1 Preliminaries

We define some terms and state a proposition. (The proofs of all propositions are given in Ap-

pendix E.) A ground hypergraph G = (V,E) has constants as nodes, and true ground atoms as

hyperedges. An r-hyperedge is a hyperedge labeled with predicate symbol r. There cannot be two

or more r-hyperedges connected to a set of nodes because they correspond to the same ground atom.

σ(p) refers to the string that is created by replacing nodes in path p with integers indicating

the order in which the nodes are first visited, and replacing hyperedges with their predicate sym-

bols. Nodes which are visited simultaneously via a hyperedge have their order determined by their

argument positions in the hyperedge. Two paths p and p′ are symmetrical iff σ(p)=σ(p′).

Nodes v and v′ are symmetrical relative to s, denoted as Syms(v, v′), iff there is a bijective

mapping between the set of all paths from s to v and the set of all paths from s to v′ such that



92

each pair of mapped paths are symmetrical. Node sets V ={v1, . . . , vn} and V ′={v′1, . . . , v′n} are

symmetrical iff Syms(vi, v′i) for i=1, . . . , n. Note that Syms is reflexive, symmetric and transitive.

Note that symmetrical nodes v and v′ have identical truncated hitting times from s (since every

path of v is symmetrical to some path of v′ and vice versa). Also note that symmetrical paths pvs and

pv
′
s have the same probability of being sampled respectively from the set of all paths from s to v and

the set of all paths from s to v′.

LG,s is the ‘lifted’ hypergraph that is created as follows from a ground hypergraph G= (V,E)

whose nodes are all reachable from a node s. Partition V into disjoint subsets V = {V1, . . . , Vk}

(i.e., Vi 6= ∅, ∪ki=0Vi = V , and Vi ∩ Vj = ∅ for i 6= j) such that all nodes with symmetrical

paths from s are in the same Vi. Partition E into disjoint subsets E = {E1, . . . , El} such that all

r-hyperedges that connect nodes from the same Vi’s are grouped into the same Ej , which is also

labeled r. LG,s=(V, E) intuitively represents a high-level concept with each Vi, and an interaction

between the concepts with eachEj . Note that LG,s is connected since no hyperedge inE is removed

during its construction. Also note that s is in its own Vs ∈ V since no other node has the empty path

to it.

Proposition 1. Let v, v′ and s be nodes in a ground hypergraph whose nodes are all reachable from

s, and Syms(v, v′). If an r-hyperedge connects v to a node set W , then an r-hyperedge connects v′

to a node set W ′ that is symmetrical to W .

We create a structural motif Motif(LG,s) from LG,s = (V, E) as follows. We run depth-first

search (DFS) on LG,s but treat hyperedges as nodes and vice versa (a straightforward modification),

allowing DFS to visit each hyperedge in E exactly once. (The DFS pseudocode is given in Table 7.2.)

DFS starts from an Ej ∈ E . Whenever it visits a hyperedge Ej ∈ E , DFS selects an ej ∈ Ej that is

connected to a ground node vi ∈ V that is linked to the ei selected in the previous step (ej exists by

Proposition 1). When several ej’s are connected to vi, it selects the one connected to the smallest

number of unique nodes (so as to create the simplest motif with the smallest number of variables).

The selected ej’s are then variabilized (the same variable is used for the same node across ej’s),

and added as literals to the set Motif(LG,s). Let Conj(m) denote the conjunction formed by

conjoining the (positive) literals in motif m. Note that the selected ej’s are connected, and form a

true grounding of Conj(Motif(LG,s)). (The true grounding will be used later to estimate the total



93

number of true groundings of Conj(Motif(LG,s)) in the data.) Also note that since DFS visits

every Ej once (in particular the one connected to Vs), s is in the true grounding.

7.3.2 Motif Identification

LSM begins by creating a ground hypergraph from a database. Then it iterates over the nodes. For

each node i, LSM finds nodes that are symmetrical relative to i. To do so, it has to compare all paths

from i to all other nodes, which is intractable. Thus LSM uses an approximation. It runs Nwalks

random walks of length T from i (line 3 of Table 7.1). In each random walk, when a node is visited,

the node stores the path p to it as σ(p) (up to a maximum of Maxpaths paths), and records the

number of times σ(p) is seen. After running all random walks, LSM estimates the truncated hitting

time hTiv from i to each node v that is visited at least once using Equation 7.1. (Nodes not visited

have hTiv=T .) Nodes whose hTiv’s exceed a threshold θhit < T are discarded (these are ‘too loosely’

connected to i). The remaining nodes and the hyperedges that only connect to them constitute a

ground hypergraph G (lines 4-5). LSM groups together nodes in G whose hTiv’s are less than θsym

apart as potential symmetrical nodes (line 6). (In a group, a node only needs to have similar hTiv with

at least one other node.)

Within each group, LSM uses greedy agglomerative clustering to cluster symmetrical nodes

together (lines 8-11). Two nodes are approximated as symmetrical if their distributions of stored

paths are similar. Since the most frequently appearing paths are more representative of a distribution,

we only use the top Ntop paths in each node. Path similarity is measured using Jensen-Shannon

divergence (Fugledge & Topsoe, 2004; a symmetric version of the Kullback-Leibler divergence).

Each node starts in its own cluster. At each step, LSM merges the pair of clusters whose path

distributions are most similar. When there is more than one node in a cluster, its path distribution is

the average over those of its nodes. The clustering stops when no pair of clusters have divergence

less than θjs. Once the clusters of symmetrical nodes are identified, LSM creates lifted hypergraph

LG,s and motif Motif(LG,s) using DFS as described earlier (lines 12-13). Then LSM repeats the

process for the next node i+ 1.

After iterating over all nodes, LSM will have created a set of motifs. It then estimates how often

a motif m appears in the data by computing a lower bound nm on the number of true groundings



94

Table 7.2: DFS algorithm

Input: LG,s = (V, E), a lifted hypergraph

Output:Motif(LG,s), a motif

E′ ← ∅

V ′ ← ∅

For each edge set E ∈ E

Mark E as NotVisited

Pick an edge set Ei ∈ E

Pick an edge ei ∈ Ei

Enqueue {(Ei, ei)} into Queue

Mark Ei as Visited

While Queue 6= ∅

Dequeue (E, e) from head of Queue

E′ ← E′ ∪ {e}

For each node v connected by e

V ′ ← V ′ ∪ {v}

Let Vv ∈ V be the node set containing v

For each edge set Ej ∈ E incident to Vv

If Ej is NotVisited

Pick an edge ej ∈ Ej that is incident to v (an ej exists by Proposition 1)

Enqueue {(Ej , ej)} into Queue

Mark Ej as Visited

Add edges in E′ as literals to Motif(LG,s)

Return Motif(LG,s)



95

of Conj(m). It sets nm to the number of unique true groundings of m that are returned by the

DFS algorithm. If nm is less than a threshold θmotif , the motif is discarded (lines 14-16). Finally, a

retained motif that is a sub-conjunction of another is discarded because the larger motif contains all

rules that can be found in the smaller one.

Our algorithm can be viewed as a search for motifs that maximizes an upper bound on the log

posterior of the data, logP (W,C|X) ∝ logP (X|W,C) + logP (W |C) + logP (C) where X is

a database of ground atoms, C is the set of rules in an MLN, W is their corresponding weights,

and P (X|W,C) is given by Equation 2.3. We define the prior on C as P (C) = exp(−|C|). To

constrain our search space, we restrict C to be conjunctions of positive literals (without loss of

generality [101]). We also impose a zero-mean Gaussian prior on each weight, so logP (W |C) is

concave. Since both logP (X|W,C) and logP (W |C) are concave, their sum is also concave and

hence has a global maximum. Let LW,C(X)=logP (X|W,C)+logP (W |C).

Proposition 2. The maximum value of LW,C(X) is attained at W =W0 and C =C0 where C0 is

the set of all possible conjunctions of positive ground literals that are true in X , and W0 is the set

containing the globally optimal weights of the conjunctions.

Let C ′ be the set of ground conjunctions obtained by replacing the true groundings in C0 of a

first-order conjunction cwith c. LetW ′ be the optimal weights ofC ′. The difference in log posterior

for (W ′, C ′) and (W0, C0) is given by ∆=LW ′,C′(X)− LW0,C0(X) + (logP (C ′)− logP (C0)).

Using Proposition 2, we know that LW ′,C′(X) − LW0,C0(X) ≤ 0. Thus, ∆ ≤ logP (C ′) −

logP (C0)=nc − 1, where nc is the number of true groundings of c. Since ∆ is upper-bounded by

nc−1, we want to find motifs with large nc. We do so by requiring the motifs to have nc ≥ θmotif .

7.3.3 PathFinding and MLN Creation

LSM uses the FindPaths and CreateMLN components of the LHL system (Chapter 6).

LSM finds paths in each identified motif in the same manner as LHL’s FindPaths. The paths are

limited to a user-specified maximum length.

After that, LSM creates candidate clauses from each path in a similar way as LHL’s CreateMLN,

with some modifications. At the start of CreateMLN, LSM counts the true groundings of all possible

unit and binary clauses (i.e., clauses with one and two literals) to find those that are always true or



96

always false in the data. (Since the number of predicates is usually small, this is not a computational

burden.) It then removes every candidate clause that contains unit/binary sub-clauses that are always

true because it is always satisfied. If a candidate clause c contains unit/binary sub-clauses that always

false, and if the clause c′ formed by removing the unit/binary sub-clauses is also a candidate clause,

then c is removed because it is a duplicate of c′. LSM also detects whether a binary predicate R is

symmetric by evaluating whetherR(x, y)⇔ R(y, x) is always true. LSM then removes clauses that

are identical modulo the order of variables in symmetric binary predicates. These changes speed up

CreateMLN by reducing the number of candidates. At the end of CreateMLN, rather than adding

clauses greedily to an empty MLN (which is susceptible to local optima), LSM adds all clauses to

the MLN, finds their optimal weights, and removes those whose weights are less than θwt. (We use

a zero-mean Gaussian prior on each weight.) LSM also adds a heuristic to speed up CreateMLN.

Before evaluating the WPLLs of candidate clauses against the data, it evaluates them against the

ground hypergraphs that give rise to the motifs where the candidate clauses are found. Since such

ground hypergraphs contain fewer atoms, it is faster to evaluate against them to quickly prune bad

candidates.

In CreateMLN, LSM evaluates each candidate clause using WPLL (Equation 3.1) as in LHL.

Summing over all ground atoms in WPLL is computationally expensive, so we only sum over a

randomly-sampled fraction θatoms of them.

7.4 Experiments

Our experiments used the IMDB, UW-CSE and Cora datasets as described in Section 6.3.

7.4.1 Systems

We compared LSM to three state-of-the-art systems: LHL, BUSL and MSL. We implemented LHL

and used the BUSL and MSL implementations in the Alchemy software package [50]. In LHL,

we used the modified CreateMLN because it was faster. In BUSL, rather than adding clauses to

an MLN greedily (which was susceptible to local optima), we adopted LSM’s approach of adding

all clauses to the MLN, finding their optimal weights (using a zero-mean Gaussian prior on each

weight), and removing those whose weights were less than θwt.



97

We ran each system with two limits on clause length. The short limit was set to 5 (IMDB, UW-

CSE) and 4 (Cora) as in experiments with LHL (Section 6.3). The long limit was set to 10. Systems

with the short and long limits are respectively appended with ‘-S’ and ‘-L’. For the short limit, we

allowed LSM, LHL and BUSL to create more candidate clauses from a candidate containing only

negative literals by non-negating the literals in all possible ways. For the long limit, we permitted

a maximum of two non-negations to avoid generating too many candidates. As in Section 6.3, we

disallowed clauses with variables that only appeared once to reduce the space of clauses considered.

However, we did not impose this restriction on clauses with two or fewer literals because the number

of such clauses was small.

To investigate the individual contributions of our motif identification algorithm and the heuristic

in CreateMLN, we removed them to give the respective systems LSM-NoMot and LSM-NoHeu.

LSM-NoMot found paths directly on the ground hypergraph created from a database. Altogether,

we compared twelve systems.

The LSM parameter values were: Nwalks = 15, 000, ε = 0.1, δ = 0.05, T = 5, θhit = 4.9,

θsym = 0.1, θjs = 1, Ntop = 3, Maxpaths = 100, θmotif = 10, π= 0.1 (IMDB) and 0.01 (UW-CSE,

Cora), θatoms = 0.5, θwt = 0.01. (See Section 7.3.2 and 7.3.3 for parameter descriptions.) The

other systems had their corresponding parameters set to the same values, and their other parameters

set to default values.

The parameters were set in an ad-hoc manner, and per-fold optimization using a validation set

could conceivably yield better results. All systems were run on identically configured machines

(2.3GHz, 16GB RAM, 4096KB CPU cache) for a maximum of 28 days.

7.4.2 Methodology

For each dataset, we performed cross-validation using the five folds in each dataset. For IMDB and

UW-CSE, we performed inference over the groundings of each predicate to compute their probabil-

ities of being true, using the groundings of all other predicates as evidence. For Cora, we ran infer-

ence over each of the four predicates SameCitation, SameTitle, SameAuthor and SameVenue in

turn, using the groundings of all other predicates as evidence. We denote this task as “Cora (One

Predicate)” to differentiate it from the next task. We also ran inference over the groundings of all



98

four predicates together, which is a more challenging task than inferring the groundings of each

individually. We denote this task as “Cora (Four Predicates)”. For this task, we split each test fold

into 5 sets by randomly assigning each paper and its associated ground atoms to a set. We had to

run inference over each test set separately in order for the inference algorithm to work within the

available memory. To obtain the best possible results for an MLN, we relearned its clause weights

for each query predicate (or set of query predicates in the case of Cora) before performing infer-

ence. This accounts for the differences in our results from those reported for LHL’s experiments

(Section 6.3). We used Alchemy’s Gibbs sampling for all systems. Each run of the inference al-

gorithms drew 1 million samples, or ran for a maximum of 24 hours, whichever came earlier. To

evaluate the performance of the systems, we measured the average conditional log-likelihood of the

test atoms (CLL) and the area under the precision-recall curve (AUC).

7.4.3 Results

Tables 7.3 and 7.4 report AUCs, CLLs and runtimes. The AUC and CLL results are averages over

all atoms in the test sets and their standard deviations. Runtimes are averages over the five folds.

We first compare LSM to LHL. The results indicate that LSM scales better than LHL, and that

LSM equals LHL’s predictive performance on small simple domains, but surpasses LHL on large

complex ones. LSM-S is marginally slower than LHL-S on the smallest dataset, but is faster on the

two larger ones. The scalability of LSM becomes clear when the systems learn long clauses: LSM-L

is consistently 100-100,000 times faster than LHL-L on all datasets.1 Note that LSM-L performs

better than LSM-S on both AUC and CLL on Cora (Four Predicates), substantiating the importance

of learning long rules. LSM-S and LSM-L learned the same MLNs on IMDB and UW-CSE, and

thus have the same AUC and CLL. Even though learning longer rules did not improve peformance

on IMDB and UW-CSE, it is still useful to be able to efficiently explore their spaces of long rules to

ascertain a good rule length when we have no a priori knowledge about their domains.

We next compare LSM to MSL and BUSL. LSM consistently outperforms MSL on AUC and

CLL for both short and long rules; and draws with BUSL on UW-CSE, but does better on IMDB and

Cora. In terms of runtime, the results are mixed. Observe that BUSL and MSL have similar runtimes

1LHL-L on UW-CSE and Cora, and LSM-NoMot-L exceeded the time bound of 28 days. We estimated their runtimes
by extrapolating from the number of atoms they had initiated their search from.



99

Ta
bl

e
7.

3:
A

re
a

un
de

rp
re

ci
si

on
-r

ec
al

lc
ur

ve
(A

U
C

)a
nd

co
nd

iti
on

al
lo

g-
lik

el
ih

oo
d

(C
L

L
)o

ft
es

ta
to

m
s.

IM
D

B
U

W
-C

SE
C

or
a

(O
ne

Pr
ed

ic
at

e)
C

or
a

(F
ou

rP
re

di
ca

te
s)

Sy
st

em
A

U
C

C
L

L
A

U
C

C
L

L
A

U
C

C
L

L
A

U
C

C
L

L

L
SM

-S
0.

71
±

0.
01
−

0.
06
±

0.
00

0.
22
±

0.
01
−

0.
03
±

0.
00

0.
98
±

0.
00
−

0.
02
±

0.
00

0.
92
±

0.
00
−

0.
42
±

0.
00

L
SM

-L
0.

71
±

0.
01
−

0.
06
±

0.
00

0.
22
±

0.
01
−

0.
03
±

0.
00

0.
98
±

0.
00
−

0.
02
±

0.
00

0.
97
±

0.
00
−

0.
23
±

0.
00

L
SM

-N
oH

eu
-S

0.
71
±

0.
01
−

0.
06
±

0.
00

0.
22
±

0.
01
−

0.
03
±

0.
00

0.
98
±

0.
00
−

0.
02
±

0.
00

0.
93
±

0.
00
−

0.
39
±

0.
00

L
SM

-N
oH

eu
-L

0.
71
±

0.
01
−

0.
06
±

0.
00

0.
22
±

0.
01
−

0.
03
±

0.
00

0.
98
±

0.
00
−

0.
02
±

0.
00

0.
97
±

0.
00
−

0.
23
±

0.
00

L
SM

-N
oM

ot
-S

0.
71
±

0.
01
−

0.
06
±

0.
00

0.
23
±

0.
01
−

0.
03
±

0.
00

0.
98
±

0.
00
−

0.
02
±

0.
00

0.
93
±

0.
00
−

0.
38
±

0.
00

L
SM

-N
oM

ot
-L

0.
34
±

0.
01
−

0.
18
±

0.
00

0.
13
±

0.
01
−

0.
04
±

0.
00

0.
57
±

0.
00
−

0.
29
±

0.
00

0.
47
±

0.
00
−

0.
94
±

0.
00

L
H

L
-S

0.
71
±

0.
01
−

0.
06
±

0.
00

0.
21
±

0.
01
−

0.
03
±

0.
00

0.
95
±

0.
00
−

0.
04
±

0.
00

0.
76
±

0.
00
−

0.
88
±

0.
00

L
H

L
-L

0.
71
±

0.
01
−

0.
06
±

0.
00

0.
13
±

0.
01
−

0.
04
±

0.
00

0.
57
±

0.
00
−

0.
29
±

0.
00

0.
47
±

0.
00
−

0.
94
±

0.
00

B
U

SL
-S

0.
48
±

0.
01
−

0.
11
±

0.
00

0.
22
±

0.
01
−

0.
03
±

0.
00

0.
57
±

0.
00
−

0.
29
±

0.
00

0.
47
±

0.
00
−

0.
94
±

0.
00

B
U

SL
-L

0.
48
±

0.
01
−

0.
11
±

0.
00

0.
22
±

0.
01
−

0.
03
±

0.
00

0.
57
±

0.
00
−

0.
29
±

0.
00

0.
47
±

0.
00
−

0.
94
±

0.
00

M
SL

-S
0.

38
±

0.
01
−

0.
17
±

0.
00

0.
19
±

0.
01
−

0.
04
±

0.
00

0.
57
±

0.
00
−

0.
29
±

0.
00

0.
47
±

0.
00
−

0.
94
±

0.
00

M
SL

-L
0.

38
±

0.
01
−

0.
17
±

0.
00

0.
18
±

0.
01
−

0.
04
±

0.
00

0.
57
±

0.
00
−

0.
29
±

0.
00

0.
47
±

0.
00
−

0.
94
±

0.
00



100

Table 7.4: System runtimes. The times for Cora (One Predicate) and Cora (Four Predicates) are the
same.

System IMDB (hr) UW-CSE (hr) Cora (hr)

LSM-S 0.21±0.02 1.38±0.3 1.33±0.03

LSM-L 0.31±0.04 4.52±2.35 20.57±7.29

LSM-NoHeu-S 0.13±0.03 10.01±5.06 1.7±0.05

LSM-NoHeu-L 0.29±0.09 13.4±6.11 48.56±16.06

LSM-NoMot-S 1.09±0.22 50.83±18.33 332.82±60.54

LSM-NoMot-L 160,000±12,000 280,000±35,000 5,700,000±105

LHL-S 0.18±0.02 5.29±0.81 1.92±0.02

LHL-L 73.45±11.71 120,000±13,000 230,000±7000

BUSL-S 0.03±0.01 2.77±1.06 1.83±0.04

BUSL-L 0.03±0.01 2.77±1.06 1.83±0.04

MSL-S 0.02±0.01 1.07±0.21 9.96±1.59

MSL-L 0.02±0.01 26.22±26.14 9.81±1.50



101

when learning both short and long rules (with the exception of MSL-L on UW-CSE). Tracing the

steps taken by BUSL and MSL, we found that the systems took the same greedy search steps when

learning both short and long rules, thus resulting in the same locally optimal MLNs containing only

short rules. In contrast, LSM-L found longer rules than LSM-S for all datasets, even though these

were only retained by CreateMLN for Cora.

Comparing LSM to LSM-NoHeu, we see that LSM’s heuristic is effective in speeding it up. An

exception is LSM-NoHeu on IMDB. This is not surprising because the small size of IMDB allows

candidate clauses to be evaluated quickly against the database, obviating the need for heuristics.

This suggests that the heuristic should only be employed on large datasets. Note that even though

removing the heuristic improved LSM-S’s performance on Cora (Four Predicates) by 1% on AUC

and by 7% on CLL, the improvements are achieved at a great cost of 28% increase in runtime.

Comparing LSM to LSM-NoMot, we see the importance of motifs in making LSM tractable.

Our runtimes are faster than those reported in LHL’s experiments because of our modifications

to CreateMLN, and our machines are better configured (4 times more RAM, 8 times more CPU

cache).

The following are examples of long (weighted) rules learned by LSM on Cora

• AuthorOfCit(a, c) ∧ AuthorOfCit(a′, c′) ∧ SameAuthor(a, a′) ∧ TitleOfCit(t, c)

∧TitleOfCit(t′, c′) ∧ SameTitle(t, t′)⇒ SameCitation(c, c′). (If two citations c and

c′ have the same author and title, then they are likely to be the same citation.)

• VenueOfCit(v, c) ∧ VenueOfCit(v, c′) ∧ AuthorOfCit(a, c) ∧ AuthorOfCit(a′, c′)

∧SameAuthor(a, a′) ∧ TitleOfCit(t, c) ∧ TitleOfCit(t′, c′)⇒ SameTitle(t, t′). (If two

citations c and c′ have identical venues and the same author, then they are likely to have the

same title.)

• AuthorHasWord(a, w) ∧ AuthorHasWord(a′, w′) ∧ AuthorHasWord(a′′, w)

∧AuthorHasWord(a′′, w′)⇒ SameAuthor(a, a′). (If the names of authors a and a′ respec-

tively contain words w and w′, which appear together in the name of author a′′, then a and a′

are likely to refer to the same author.)



102

7.5 Related Work

Relational association rule mining systems (e.g., De Raedt & Dehaspe, 1997) differ from LSM in

that they learn clauses without first learning motifs and are not as robust to noise (since they do not

involve statistical models).

Random walks and hitting times have been successfully applied to a variety of applications, e.g.,

social network analysis [57], word dependency estimation [100], collaborative filtering [11], image

segmentation [38], search engine query expansion [65] and paraphrase learning [44].

7.6 Conclusion

In this chapter, we presented LSM, the first MLN structure learner that is able to learn long clauses.

LSM tractably learns long clauses by using random walks to find motifs of densely connected ob-

jects in data, and restricting its search for clauses to within the motifs. Our empirical comparisons

with three state-of-the-art systems on three datasets demonstrate the effectiveness of LSM.



103

Chapter 8

CONCLUSION

Markov logic networks (MLNs) are a powerful representation that combines first-order logic

and probability. MLNs attach weights to first-order clauses and view these as templates for features

of Markov networks. Central to MLNs is the task of inducing their structure, i.e., learning the

first-order clauses in them and their weights. In this thesis, we proposed several solutions to this

problem.

8.1 Contributions of this Thesis

The contributions of this thesis can be summarized as follows.

• We began by combining ideas from inductive logic programming (ILP) and feature induction

in Markov networks in our MSL system. MSL uses a generate-and-test approach of systemati-

cally creating candidate clauses and selecting those that directly optimize a likelihood measure

(weighted pseudo-loglikelihood (WPLL)). MSL explores a large space of candidate clauses,

each of which requires two computationally expensive steps: computing the clause’s number

of true groundings in a database and numerical optimization to find its optimal weight. We

presented techniques to make the steps tractable. In our empirical evaluations, MSL outper-

formed the previous approach [86] of using an off-the-shelf ILP system (CLAUDIEN [18])

to first induce all first-order clauses according to some coverage and accuracy criteria, and

then find their optimal WPLL weights. In addition, we also emprically showed that MSL

outperformed purely ILP, purely probabilistic and purely knowledge-based approaches.

• We motivated the importance of statistical predicate invention (SPI), i.e., the discovery of

new concepts, properties and relations in structured data. As a first step towards SPI, we

presented the MRC system for discovering latent MLN structure. MRC is based on second-

order Markov logic, in which predicates as well as arguments can be variables, and the domain



104

of discourse is not fully known in advance. MRC jointly clusters predicate and constant

symbols, with each cluster corresponding to an invented predicate. MRC also finds multiple

clusterings of the symbols, rather than just one. Our experiments showed that MRC performed

better than a state-of-the-art SPI system and MSL on four relational datasets.

• We applied SPI to the long-standing AI problem of extracting knowledge from text. We cre-

ated the SNE system to extract simple semantic networks from Web text in an unsupervised,

domain-independent manner. SNE simultaneously clusters phrases into high-level concepts

and relations, and discovers the interactions among them in the form of a semantic network.

We introduced several techniques to scale SNE up to the Web. In our experiments, SNE was

able to extract meaningful semantic networks from a large Web corpus and outperformed

three other systems.

• We incorporated the discovery of latent MLN structure into the learning of MLN clauses in

the LHL system. LHL uses data to guide its construction of candidate clauses, so as to avoid

generating many candidate clauses with poor empirical adequacy and to circumvent local

optima, two problems associated with top-down systems like MSL. LHL views a relational

database as a hypergraph with constants as nodes and relations as hyperedges. LHL finds

paths of true ground atoms in the hypergraph that are connected via their arguments. To

avoid tracing the exponentially many paths in the hypergrah, LHL lifts the hypergraph by

jointly clustering constants into high-level concepts and finding paths in the more compact

hypergraph. Each path is then converted to an MLN clause. Through our experiments on

three real-world datasets, we demonstrated that LHL was able to find better rules than two

other state-of-the-art systems.

• MLNs use first-order formulas to define features of Markov networks, allowing potentials

over very large cliques to be defined very compactly. However, this capacity is only fully

exploited when long formulas are present, and previous MLN structure learners are only able

to learn short clauses (4-5 literals) due to the extreme computational cost of learning. To ad-

dress this problem, we presented LSM, the first MLN structure learner capable of efficiently

and accurately learning long clauses. LSM is based on the observation that relational data



105

typically contains many patterns that are variations of the same structural motifs. By con-

straining the search for clauses to occur within motifs, LSM can greatly speed up the search

and thereby reduce the cost of finding long clauses. LSM views a relational database as a

hypergraph with constants as nodes and true ground atoms as hyperedges. LSM performs

random walks on the hypergraph, identifies densely connected objects using hitting times,

and groups them and their hyperedges into a motif. It then finds relational paths in the motif

and converts them into clauses. Our experiments on three real-world datasets showed that

LSM was 2-5 orders of magnitude faster than previous systems, while achieving the same or

better predictive performance.

8.2 Future Work

This thesis has only begun the study of structure learning in MLNs. Directions for future work

include the following.

An item of future work is to extend MRC and SNE to cluster predicates with different arities

and argument types, so as to model the dependencies among such predicates.

Rather than inducing flat clusterings, we would like MRC and SNE to learn a hierarchy of

clusterings and perform shrinkage over them. This allows information from larger top-level clusters

to propagate to smaller bottom-level clusters and inform their predictions.

We would like to extend LHL and LSM from only clustering constants to clustering predicates as

well. Since most domains contain many fewer predicates than constants (objects), vanilla structure

learning is likely to be sufficient to model the dependencies among them. Thus, to demonstrate the

usefulness of clustering predicates in LHL and LSM, we would have to apply them to rich domains

with many relations, e.g., the Web.

Currently, LHL and LSM only make a single pass through the process of first creating concept

clusters in a hypergraph, and then finding clauses in the hypergraph. We would like to iterate through

this process such that clauses learned in one iteration could be used to find other concept clusters in

the hypergraph, which can then be used to induce more clauses, and so on.

We would like to combine the top-down approach of MSL with the bottom-up approaches of

LHL and LSM. For example, LSM could first learn clauses in a bottom-up manner, using data



106

to guide its clause construction, and then use a top-down generate-and-test approach to refine its

clauses. Such a hybrid approach is in the spirit of Zelle et al. (1994) and Muggleton (1995).

In LSM, we plan to find ways to merge motifs which only differ slightly. This will help to reduce

the number of motifs and further speed up LSM.

Rather than using pseudo-likelihood, which only captures short-range dependencies between an

atom and its Markov blanket, we plan to tightly integrate lifted inference [97] and structure learning

to allow efficient use of likelihood.

Finally, we would like to apply our algorithms to larger, more complex domains (e.g., computa-

tional biology and the Web) to test their scalability and their ability to learn complex rules.



107

BIBLIOGRAPHY

[1] David Aldous and Jim Fill. Reversible Markov Chains and Random Walks on Graphs. 2001.
http://www.stat.berkeley.edu/~aldous/RWG/book.html.

[2] G. Andrew and J. Gao. Scalable training of L1-regularized log-linear models. In Proceedings
of the Twenty-Fourth International Conference on Machine Learning, pages 33–40, Corval-
lis, OR, 2007. ACM Press.

[3] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni. Open information
extraction from the web. In Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence, Hyderabad, India, 2007. AAAI Press.

[4] M. Banko and O. Etzioni. Strategies for lifelong knowledge extraction from the web. In
Proceedings of the Fourth International Conference on Knowledge Capture, pages 95–102,
British Columbia, Canada, 2007. ACM Press.

[5] J. Besag. Statistical analysis of non-lattice data. The Statistician, 24:179–195, 1975.

[6] M. Biba, S. Ferilli, and F. Esposito. Discriminative structure learning of Markov logic net-
works. In Proceedings of the Eighteenth International Conference on Inductive Logic Pro-
gramming, pages 59–76, Prague, Czech Republic, 2008. Springer.

[7] M. Biba, S. Ferilli, and F. Esposito. Structure learning of Markov logic networks through
iterated local search. In Proceedings of the Eighteenth European Conference on Artificial
Intelligence, pages 361–365, Patras, Greece, 2008. IOS Press.

[8] M. Bilenko and R. Mooney. Adaptive duplicate detection using learnable string similarity
measures. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 39–48, 2003.

[9] D. M. Blei, T. Griffiths, M. I. Jordan, and J. Tenenbaum. Hierarchical topic models and the
nested chinese restaurant process. In Proceedings of the Seventeenth Conference on Neural
Information Processing Systems, pages 17–24, British Columbia, Canada, 2003.

[10] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022, 2003.

[11] Matthew Brand. A random walks perspective on maximizing satisfaction and profit. In
Proceedings of the 8th SIAM Conference on Optimization, Stockholm, Sweden, 2005.



108

[12] F. Bromberg, D. Margaritis, and Y. Honavar. Efficient Markov network structure discovery
using independence tests. In Proceedings of the Sixth SIAM International Conference on
Data Mining, Bethesda, MD, 2006.

[13] E. Charniak. Toward a Model of Children’s Story Comprehension. PhD thesis, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Boston, MA, 1972.

[14] M. Craven and S. Slattery. Relational learning with statistical predicate invention: Better
models for hypertext. Machine Learning, 43:97–119, 2001.

[15] M. W. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and S. Slattery.
Learning to extract symbolic knowledge from the World Wide Web. In Proceedings of the
Fifteenth National Conference on Artificial Intelligence, pages 509–516, Madison, WI, 1998.
AAAI Press.

[16] J. Davis, E. Burnside, I. Dutra, D. Page, and V. S. Costa. An integrated approach to learn-
ing Bayesian networks of rules. In Proceedings of the Sixteenth European Conference on
Machine Learning, pages 84–95, Porto, Portugal, 2005.

[17] J. Davis, I. Ong, J. Struyf, E. Burnside, D. Page, and V. S. Costa. Change of representation for
statistical relational learning. In Proceedings of the Twentieth International Joint Conference
on Artificial Intelligence, Hyderabad, India, 2007.

[18] L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26:99–146, 1997.

[19] M. H. DeGroot and M. J. Schervish. Probability and Statistics. Addison Wesley, Boston,
MA, 3rd edition, 2002.

[20] L. Dehaspe. Maximum entropy modeling with clausal constraints. In Proceedings of the
Seventh International Workshop on Inductive Logic Programming, pages 109–125, Prague,
Czech Republic, 1997. Springer.

[21] S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19:380–392, 1997.

[22] W. Denham. The detection of patterns in Alyawarra nonverbal behavior. PhD thesis, De-
partment of Anthropology, University of Washington, Seattle, WA, 1973.

[23] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In Proceed-
ings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 89–98, Washington, DC, 2003. ACM Press.

[24] P. Domingos and D. Lowd. Markov Logic: An Interface Layer for Artificial Intelligence.
Morgan & Claypool, 2009.



109

[25] P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier under
zero-one loss. Machine Learning, 29:103–130, 1997.

[26] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley, New York, NY,
1973.

[27] M. G. Dyer. In-Depth Understanding. MIT Press, Cambridge, MA, 1983.

[28] G. Elidan and N. Friedman. Learning hidden variable networks: The information bottleneck
approach. Journal of Machine Learning Research, 6:81–127, 2005.

[29] G. Elidan, N. Lotner, N. Friedman, and D. Koller. Discovering hidden variables: A structure-
based approach. In Advances in Neural Information Processing Systems 14, pages 479–485,
Cambridge, MA, 2001. MIT Press.

[30] E. Erosheva, S. Feinberg, and J. Lafferty. Mixed-membership models of scientific publica-
tions. In Proceedings of the National Academy of Sciences of the United States of America,
2004.

[31] O. Etzioni, M. Banko, and M. J. Cafarella. Machine reading. In Proceedings of the 2007
AAAI Spring Symposium on Machine Reading, Palo Alto, CA, 2007. AAAI Press.

[32] C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, Cambridge, MA,
1998.

[33] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine Learn-
ing, 29:131–163, 1997.

[34] B. Fugledge and F. Topsoe. Jensen-Shannon divergence and Hilbert space embedding. In
IEEE International Sympsium on Information Theory, 2004.

[35] M. R. Genesereth and N. J. Nilsson. Logical Foundations of Artificial Intelligence. Morgan
Kaufmann, San Mateo, CA, 1987.

[36] L. Getoor and B. Taskar, editors. Introduction to Statistical Relational Learning. MIT Press,
Cambridge, MA, 2007.

[37] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain Monte Carlo in
Practice. Chapman and Hall, London, UK, 1996.

[38] Leo Grady and Eric L. Schwartz. Isoperimetric graph partitioning for image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28:469–475, 2006.



110

[39] T. Hasegawa, S. Sekine, and R. Grishman. Discovering relations among named entities from
large corpora. In Proceedings of the Forty-Second Annual Meeting of the Association for
Computational Linguistics, Barcelona, Spain, 2004. ACL.

[40] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combi-
nation of knowledge and statistical data. Machine Learning, 20:197–243, 1995.

[41] T. N. Huynh and R. J. Mooney. Discriminative structure and parameter learning for Markov
logic networks. In Proceedings of the Twenty-Fifth International Conference on Machine
Learning, pages 416–423, Helsinki, Finland, 2008. ACM Press.

[42] R. Karp and M. Luby. Monte Carlo algorithms for enumeration and reliability problems. In
Proceedings of the Twenty-Fourth Symposium on Foundations of Computer Science, pages
56–64, Tucson, AZ, 1983. IEEE Computer Society Press.

[43] C. Kemp, J. B. Tenenbaum, T. L. Griffiths, T. Yamada, and N Ueda. Learning systems
of concepts with an infinite relational model. In Proceedings of the Twenty-First National
Conference on Artificial Intelligence, Boston, MA, 2006. AAAI Press.

[44] S. Kok and C. Brockett. Hitting the right paraphrases in good time. In Proceedings of the
Eleventh Conference of the North American Chapter of the Association for Computational
Linguistics, 2010.

[45] S. Kok and P. Domingos. Learning the structure of Markov logic networks. In Proceedings
of the Twenty-Second International Conference on Machine Learning, pages 441–448, Bonn,
Germany, 2005. ACM Press.

[46] S. Kok and P. Domingos. Statistical predicate invention. In Proceedings of the Twenty-Fourth
International Conference on Machine Learning, pages 443–440, Corvallis, OR, 2007. ACM
Press.

[47] S. Kok and P. Domingos. Extracting semantic networks from text via relational clustering. In
Proceedings of the Nineteenth European Conference on Machine Learning, pages 624–639,
Antwerp, Belgium, 2008. Springer.

[48] S. Kok and P. Domingos. Learning Markov logic network structure via hypergraph lifting.
In Proceedings of the Twenty-Sixth International Conference on Machine Learning, pages
505–512, Montreal, Canada, 2009. Omnipress.

[49] S. Kok and P. Domingos. Learning Markov logic network using structural motifs. In Pro-
ceedings of the Twenty-Seventh International Conference on Machine Learning, Haifa, Israel,
2010. Omnipress.



111

[50] S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon, D. Lowd, J. Wang, and P. Domin-
gos. The Alchemy system for statistical relational AI. Technical report, Department of
Computer Science and Engineering, University of Washington, Seattle, WA, 2006-2010.
http://alchemy.cs.washington.edu.

[51] S. Kramer. Predicate invention: A comprehensive view. Technical report, Austrian Research
Institute for Artificial Intelligence, Vienna, Austria, 1995.

[52] N. Landwehr, K. Kersting, and L. De Raedt. nFOIL: Integrating naive Bayes and foil. In
Proceedings of the Twentieth National Conference on Artificial Intelligence, pages 795–800,
Pittsburgh, PA, 2005. AAAI Press.

[53] N. Landwehr, K. Kersting, and L. De Raedt. Integrating naive Bayes and FOIL. Journal of
Machine Learning Research, 8:481–507, 2007.

[54] N. Lavrač and S. Džeroski. Inductive Logic Programming: Techniques and Applications.
Ellis Horwood, Chichester, UK, 1994.

[55] S. Lee, V. Ganapathi, and D. Koller. Efficient structure learning of Markov networks using
L1-regularization. In Advances in Neural Information Processing Systems 19, Vancouver,
Canada, 2007.

[56] W. G. Lehnert. The Process of Question Answering. Erlbaum, Hillsdale, NJ, 1978.

[57] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In
Proceedings of the Twelfth International Conference on Information and Knowledge, pages
556–559, New Orleans, LA, 2003.

[58] B. Long, Z. M. Zhang, X. Wu, and P. S. Yu. Spectral clustering for multi-type relational data.
In Proceedings of the Twenty-Third International Conference on Machine Learning, pages
585–592, Pittsburgh, PA, 2006. ACM Press.

[59] László Lovász. Random walks on graphs: A survey. In D. Miklós, V. T. Sós, and T. Szőnyi,
editors, Combinatorics, Paul Erdős is Eighty, Vol. 2, pages 353–398. 1996.

[60] A. McCallum. Efficiently inducing features of conditional random fields. In Proceedings
of the Nineteenth Conference on Uncertainty in Artificial Intelligence, pages 403–410, Aca-
pulco, Mexico, 2003. Morgan Kaufmann.

[61] A. McCallum and D. Jensen. A note on the unification of information extraction and data
mining using conditional-probability, relational models. In Proceedings of the IJCAI-2003
Workshop on Learning Statistical Models from Relational Data, pages 79–86, Acapulco,
Mexico, 2003. IJCAII.



112

[62] A. McCallum, K. Nigam, and L. Ungar. Efficient clustering of high-dimensional data sets
with application to reference matching. In Proceedings of the Sixth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pages 169–178, 2000.

[63] A. McCallum, R. Rosenfeld, T. Mitchell, and A. Y. Ng. Improving text classification by
shrinkage in a hierarchy of classes. In Proceedings of the Fifteenth International Conference
on Machine Learning, pages 359–367, Madison, WI, 1998. Morgan Kaufmann.

[64] A. T. McCray. An upper level ontology for the biomedical domain. Comparative and Func-
tional Genomics, 4:80–84, 2003.

[65] Qiaozhu Mei, Dengyong Zhou, and Kenneth Church. Query suggestion using hitting time.
In Proceeding of the Seventeenth ACM Conference on Information and Knowledge Manage-
ment, pages 469–478, Napa Valley, CA, 2008.

[66] L. Mihalkova and R. J. Mooney. Bottom-up learning of Markov logic network structure.
In Proceedings of the Twenty-Fourth International Conference on Machine Learning, pages
625–632, Corvallis, OR, 2007. ACM Press.

[67] T. Mitchell. Reading the web: A breakthrough goal for AI. AI Magazine, 26(3):12–16, 2005.

[68] R. J. Mooney. Learning for semantic parsing. In Proceedings of the Eighth International Con-
ference on Computational Linguistics and Intelligent Text Processing, Mexico City, Mexico,
2007. Springer.

[69] S. Muggleton. Inverse entailment and Progol. New Generation Computing Journal, 13:245–
286, 1995.

[70] S. Muggleton and W. Buntine. Machine invention of first-order predicates by inverting res-
olution. In Proceedings of the Fifth International Conference on Machine Learning, pages
339–352, Ann Arbor, MI, 1988. Morgan Kaufmann.

[71] S. Muggleton and C. Feng. Efficient induction of logic programs. In Proceedings of the First
Workshop on Algorithmic Learning Theory, pages 368–381, Tokyo, Japan, 1990. Springer.

[72] J. Neville and D. Jensen. Leveraging relational autocorrelation with latent group models. In
Proceedings of the Fifth IEEE International Conference on Data Mining, New Orleans, LA,
2005.

[73] J. Nocedal and S. Wright. Numerical Optimization. Springer, New York, NY, 2006.

[74] D. N. Osherson, J. Stern, O. Wilkie, M. Stob., and E. E. Smith. Default probability. Cognitive
Science, 15:251–269, 1991.



113

[75] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Francisco, CA, 1988.

[76] J. Pitman. Combinatorial stochastic processes. Technical Report 621, Department of Statis-
tics, University of California at Berkeley, Berkeley, CA, 2002.

[77] H. Poon and P. Domingos. Sound and efficient inference with probabilistic and determin-
istic dependencies. In Proceedings of the Twenty-First National Conference on Artificial
Intelligence, pages 458–463, Boston, MA, 2006.

[78] A. Popescul and L. H. Ungar. Cluster-based concept invention for statistical relational learn-
ing. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 665–664, Seattle, WA, 2004. ACM Press.

[79] M. R. Quillian. Semantic memory. In M. L. Minsky, editor, Semantic Information Processing,
pages 216–270. MIT Press, Cambridge, MA, 1968.

[80] J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239–266,
1990.

[81] K. Rajaraman and A-H. Tan. Mining semantic networks for knowledge discovery. In Pro-
ceedings of the Third IEEE International Conference on Data Mining, page 633. IEEE Com-
puter Society, 2003.

[82] P. Ravikumar, M. J. Wainwright, and J. Lafferty. High dimensional Ising model selection
using L1-regularized logistic regression. Annals of Statistics, 2009.

[83] J. Reisinger and M. Pasca. Latent variable models of concept-attribute attachment. In Pro-
ceedings of the Conference of the Forty-Seventh Annual Meeting of the Association for Com-
putational Linguistics, 2009.

[84] B. L. Richards and R. J. Mooney. Learning relations by pathfinding. In Proceedings of
the Tenth National Conference on Artificial Intelligence, pages 50–55, San Jose, CA, 1992.
AAAI Press.

[85] M. Richardson and P. Domingos. Markov logic networks. Technical report, Department of
Computer Science & Engineering, University of Washington, Seattle, WA, 2004.

[86] M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62:107–136,
2006.

[87] A. Ritter, Mausam, and O. Etzioni. A latent Dirichlet allocation method for selectional pref-
erences. In Proceedings of the Forty-Eighth Annual Meeting of the Association for Compu-
tational Linguistics.



114

[88] D. Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82:273–302,
1996.

[89] D. Roy, C. Kemp, V. K. Mansinghka, and J. B. Tenenbaum. Learning annotated hierarchies
from relational data. In Advances in Neural Information Processing Systems 18, British
Columbia, Canada, 2006.

[90] R. J. Rummel. Dimensionality of nations project: attributes of nations and behavior of nation
dyads, 1950 -1965. ICPSR data file. 1999.

[91] Purnamrita Sarkar, Andrew W. Moore, and Amit Prakash. Fast incremental proximity search
in large graphs. In Proceedings of the 25th International Conference on Machine Learning,
2008.

[92] R. C. Schank and C. K. Riesbeck. Inside Computer Understanding. Erlbaum, Hillsdale, NJ,
1981.

[93] G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1978.

[94] Y. Shinyama and S. Sekine. Preemptive information extraction using unrestricted relation
discovery. In Proceedings of the Seventh Conference of the North American Chapter of the
Association for Computational Linguistics, New York, New York, 2006.

[95] G. Silverstein and M. J. Pazzani. Relational clichés: Constraining constructive induction
during relational learning. In Proceedings of the Eighth International Workshop on Machine
Learning, pages 203–207, Evanston, IL, 1991. Morgan Kaufmann.

[96] P. Singla and P. Domingos. Lifted first-order belief propagation. In Proceedings of the
Twenty-Third National Conference on Artificial Intelligence, pages 1094–1099, Chicago, IL,
2008. aaai.

[97] P. Singla and P. Domingos. Lifted first-order belief propagation. In Proceedings of the
Twenty-Third National Conference on Artificial Intelligence, pages 1094–1099, Chicago, IL,
2008. AAAI Press.

[98] A. Srinivasan. The Aleph manual. Technical report, Computing Laboratory, Oxford Univer-
sity, Oxford, United Kingdom, 2000.

[99] A. Srinivasan, S. H. Muggleton, and M. Bain. Distinguishing exceptions from noise in non-
monotonic learning. In Proceedings of the Second International Workshop on Inductive Logic
Programming (ILP’92), pages 97–107, Tokyo, Japan, 1992.

[100] K. Toutanova, C. D. Manning, and A. Y. Ng. Learning random walk models for inducing
word dependency distributions. In Proceedings of the Twenty-First International Conference
on Machine Learning, pages 103–110, Alberta, Canada, 2004. ACM Press.



115

[101] Y. Wexler and C. Meek. Inference for multiplicative models. In Proceedings of the Twenty-
Fourth Conference on Uncertainty in Artificial Intelligence, 2008.

[102] J. Wogulis and P. Langley. Improving efficiency by learning intermediate concepts. In Pro-
ceedings of the Eleventh International Joint Conference on Artificial Intelligence, pages 657–
662, Los Altos, CA, 1989. Morgan Kaufmann.

[103] A. P. Wolfe and D. Jensen. Playing multiple roles: discovering overlapping roles in social
networks. In Proceedings of the ICML-2004 Workshop on Statistical Relational Learning
and its Connections to Other Fields, pages 49–54, Banff, Canada, 2004. IMLS.

[104] Y. W. Wong and R. J. Mooney. Learning synchronous grammars for semantic parsing with
lambda calculus. In Proceedings of the Forty-Fifth Annual Meeting of the Association for
Computational Linguistics, pages 960–967, Prague, Czech Republic, 2007. ACL.

[105] Z. Xu, V. Tresp, K. Yu, and H.-P. Kriegel. Infinite hidden relational models. In Proceedings
of the Twenty-Second Conference on Uncertainty in Artificial Intelligence, Cambridge, MA,
2006.

[106] Z. Xu, V. Tresp, K. Yu, S. Yu, and H.-P. Kriegel. Dirichlet enhanced relational learning.
In Proceedings of the Twenty-Second International Conference on Machine Learning, pages
1004–1011, Bonn, Germany, 2005. ACM Press.

[107] A. Yates and O. Etzioni. Unsupervised resolution of objects and relations on the web. In
Proceedings of the Eighth Conference of the North American Chapter of the Association for
Computational Linguistics, Rochester, NY, 2007. ACL.

[108] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Generalized belief propagation. In T. Leen,
T. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13,
pages 689–695. MIT Press, Cambridge, MA, 2001.

[109] J. M. Zelle, R. J. Mooney, and J. B. Konvisser. Combining top-down and bottom-up tech-
niques in inductive logic programming. In Proceedings of the Eleventh International Confer-
ence on Machine Learning, pages 343–351, San Mateo, California, 1994. Morgan Kaufmann.

[110] L. S. Zettlemoyer and M. Collins. Learning to map sentences to logical form: Structured
classification with probabilistic categorial grammers. In Proceedings of the Twenty-First
Conference on Uncertainty in Artificial Intelligence, Edinburgh, Scotland, 2005.



116

Appendix A

DECLARATIVE BIASES FOR CORA DOMAIN

We define “template” predicates, each of which corresponds to a clause with three literals.

For example, we define AuthorTemplate(a1, a2, c1, c2) as AuthorTemplate(a1, a2, c1, c2) ⇔

¬SameAuthor(a1, a2)∨¬AuthorOfCit(a1, c1)∨¬AuthorOfCit(a2, c2). (Cit is short for cita-

tion.) Similarly, we define “template” predicates TitleTemplate(t1, t2, c1, c2),

VenueTemplate(v1, v2, c1, c2), and YearTemplate(y1, y2, c1, c2). A “template” predicate can

be added to a clause like an ordinary predicate. When a “template” predicate appears in a clause, it

is substituted by its corresponding 3-literals clause. “Template” predicates speed up the search for

clauses by allowing larger search steps to be taken.

We also restrict the syntax of a clause in the following two ways.

First, when a CommonWordsInTitlesIsX(t1, t2) predicate appears in a clause, the clause must

only contain CommonWordsInTitlesIsX(t1, t2) predicates and one SameTitle(t1, t2) predi-

cate. (X can be one of 0−20%, 20−40%, 40−60%, 60−80%, and 80−100%.) Similar syntactic

restrictions are defined for CommonWordsInAuthorsIsX/SameAuthor, and

CommonWordsInVenuesIsX/SameVenue.

Second, when AuthorOfCit(a1, c1) appears in a clause, there must be exactly two

AuthorOfCit predicates, one SameAuthor(a1, a2) predicate, and one

SameCitation(c1, c2) predicate among the predicates in the clause. Similar syntactic restrictions

are defined for TitleOfCit/SameTitle, VenueOfCit/SameVenue, and

YearOfCit/SameYear.



117

Appendix B

MARKOV LOGIC STRUCTURE LEARNER (MSL) EXPERIMENTAL
SETTINGS

When running MSL, we augmented each dataset by creating an isX arity-1 predicate for each

constant X in the dataset (e.g., isLeopard(animal)).

The beam search version of MSL was allowed to run for 24 hours on all datasets. If MSL did

not complete in 24 hours, we added the best clause in its current beam to the MLN it had found at

that point, and relearned the MLN weights (by optimizing weighted pseudo-log-likelihood).

Unless stated otherwise, we used the default parameters of the Alchemy package. For all

datasets, we set minWt to 0, and used the startFromEmptyMLN parameter. For the Ani-

mals dataset, we did not sample atoms and clauses. The length penalty was set to 0.0001. For

the UML and Kinship datasets, we had to aggressively sample the number of atoms so that MSL

could find some rules within 24 hours. We kept all the true atoms, and sampled the same number

of false atoms as true ones. We set the length penalty to 0.001, and the maxNumPredicates pa-

rameter to 4. For the Nations dataset, we did not sample atoms. The parameters maxV ars and

maxNumPredicates were both set to 10, and the length penalty was set to 0.01. All parameters

were set using preliminary experiments.

To evaluate the test atoms in each fold of a dataset, we ran MC-SAT for 24 hours or 10,000,000

iterations (whichever condition occurred earlier).



118

Appendix C

DERIVATION OF SNE’S LOG-POSTERIOR

We show how to derive the log-posterior of SNE. Recall that an MLN, together with a set of

constants, defines the probability distribution over possible worlds x as

P (X=x) =
exp

(∑
i∈F

∑
j∈Gi wigj(x)

)
Z

(C.1)

where Z is the partition function, F is the set of all first-order formulas in the MLN, Gi and wi are

respectively the set of groundings and weight of the ith first-order formula, and gj(x) = 1 if the jth

ground formula is true and gj(x) = 0 otherwise (Equation 2.3).

As stated in Chapter 5, we maximize the posterior probabilityP (Γ|R) ∝ P (Γ, R) = P (Γ)P (R|Γ)

where Γ is an assignment of symbols to clusters, and R is a vector of truth assignments to the ob-

servable ground atoms r(x, y). The posterior probability is defined by two MLNs — one for the

prior P (Γ) component, and another for the likelihood P (R|Γ) component.

We first derive the likelihood P (R|Γ) component that is defined by an MLN containing the atom

prediction rule. Using Equation 2.3, we get

P (R|Γ) =
exp

(∑
i∈F

∑
j∈Gi wigj(R,Γ)

)
Z

(C.2)

where F is the set of instances of the atom prediction rule (one instance per cluster combination

with a separate weight), and Gi and wi are respectively the set of groundings and weight of the ith

instance of the atom prediction rule. Note that each grounding of an instance of the atom prediction

rule contains exactly one ground atom r(x, y) in its consequent. (An antecedent and consequent

respectively appear on the left and right of the implication symbol ⇒.) Since each symbol can

belong to exactly one cluster, there is exactly one grounded rule containing ground atom r(x, y)

whose antecedent is true. All other grounded rules containing the same r(x, y) atom have false

antecedents, and are trivially true in all worlds. Such rules cancel themselves out in the numerator



119

and denominator of Equation C.2, and are ignored. Since now each ground atom r(x, y) appears

in the consequent of exactly one grounded rule, its truth value does not affect the truth value of

other grounded rules. Therefore, the grounded rules are independent given Γ, and consequently, the

r(x, y) atoms are also independent given Γ. We can rewrite Equation C.2 as

P (R|Γ) =
∏
i∈F

∏
j∈Hi

exp(wihj)
exp(wih0

j ) + exp(wih1
j )

=
∏
i∈F

∏
j∈Hi

exp(wihj)
1 + exp(wi)

=
∏
i∈F

(
exp(wi)

1 + exp(wi)

)ti ( 1
1 + exp(wi)

)fi
(C.3)

where Hi is the set of groundings of the ith instance of the atom prediction rule such that the

antecedent of each grounding is true; hj is the truth value of the jth grounding of the ith instance

of the atom prediction rule; h0
j and h1

j are respectively the truth values of the jth grounding when

the r(x, y) ground atom in its consequent is set to false and true; and fi and ti are respectively the

number of false and true r(x, y) atoms that are consequents in groundings of the ith instance of the

atom prediction rule. By differentiating Equation C.3 with respect to wi, setting the derivative to 0,

and solving for wi, we find that the equation is maximized when wi = log(ti/fi).

Substituting wi = log(ti/fi) into Equation C.3 and taking logs, we obtain

logP (R|Γ) =
∑
i∈F

[
ti log

(
ti

ti + fi

)
+ fi log

(
fi

ti + fi

)]
. (C.4)

Adding smoothing parameters α and β, we get

logP (R|Γ) =
∑
i∈F

[
ti log

(
ti + α

ti + fi + α+ β

)
+ fi log

(
fi + β

ti + fi + α+ β

)]
. (C.5)

We now derive the prior P (Γ) component defined by an MLN containing three rules. The first

rule is a hard rule (i.e., with infinite positive weight) stating that each symbol belongs to exactly one

cluster. The second rule imposes an exponential prior on the number of cluster combinations, and

it has fixed negative weight −λ. The third true encodes the belief that most symbols tend to be in

different clusters, and it has fixed positive weight µ.



120

Using Equation 2.3, we get

P (Γ) =
exp(∞ · n1 − λn2 + µn3)

Z

=
exp(∞ · nm +∞ · (n1 − nm)− λn2 + µn3)

Z
(C.6)

where n1, n2 and n3 are respectively the number of true groundings of the first, second and third

rules; and nm = 1 if the mth grounding of the first rule is true, and nm = 0 otherwise. Consider

the case where Γ violates the first rule. Specifically, suppose that the mth grounding of the first rule

is violated. Then we get nm = 0, Z = ∞ and P (Γ) = 0. In our search algorithm, we ensure that

each symbol belongs to exactly one cluster. Thus we can remove the exp(∞ · n1) term by dividing

both numerator and denominator by it. We can rewrite Equation C.6 as

P (Γ) =
exp(−λn2 + µn3)

Z ′
. (C.7)

Since λ and µ are fixed, Z ′ is a constant. Taking logs, we get

logP (Γ) = −λn2 + µn3 − log(Z ′)

= −λmcc + µ2d− log(Z ′) (C.8)

where mcc is the number of cluster combinations containing true ground atoms, and d is the number

of symbol pairs that are in different clusters (the 2 is due to the symmetry in the antecedent of the

third rule).

Combining the likelihood and prior components, we get

logP (Γ|R) ∝
∑
i∈F

[
ti log

(
ti + α

ti + fi + α+ β

)
+ fi log

(
fi + β

ti + fi + α+ β

)]
− λmcc + µ2d− log(Z ′)

=
∑
i∈F

[
ti log

(
ti + α

ti + fi + α+ β

)
+ fi log

(
fi + β

ti + fi + α+ β

)]
− λmcc + µ′d+ C

where µ′ = 2µ and C is a constant.



121

Appendix D

DERIVATION OF LIFTGRAPH’S LOG-POSTERIOR

In the MLN defining the prior component of the posterior probability, there are two rules. The

first rule has infinite weight, and it states that each symbol belongs to exactly one cluster. The second

rule has negative weight−∞ < −λ < 0, and it penalizes the number of cluster combinations. From

that MLN, we get

P ({Γ}) =
exp

(
∞ · n{Γ} − λm{Γ}

)
Z

=
exp

(
∞ · n{Γ} − λm{Γ}

)∑
{Γ}′ exp

(
∞ · n{Γ}′ − λm{Γ}′

) (D.1)

where Z is the partition function; n{Γ} and m{Γ} are respectively the number of true groundings of

the first and second rules for cluster assignment {Γ}.

We first consider the case where the first rule is violated in {Γ}, i.e., there is a symbol that does

not belong to exactly one cluster. Note that there is a cluster assignment in which the first rule is not

violated, specifically, the one where each symbol is in its own cluster. Let this cluster assignment

be {Γ}u. Rewriting Equation D.1, we get

P ({Γ}) =
exp

(
−λm{Γ}

)
exp

(
∞ · (n{Γ}u − n{Γ})− λm{Γ}u

)
+
∑
{Γ}′\{Γ}u exp

(
∞ · (n{Γ}′ − n{Γ})− λm{Γ}′

) .
(D.2)

Since n{Γ} < n{Γ}u , 0 < λ <∞, and 0 ≤ mΓu <∞, exp
(
∞ · (n{Γ}u − n{Γ})− λm{Γ}u

)
=

∞. Consequently, the denominator of Equation D.2 is ∞, and P ({Γ}) = 0. Thus when the first

rule is violated, the posterior P ({Γ}|D) = 0, and logP ({Γ}|D) = −∞.

Next we consider the case where the first rule is not violated in {Γ}. We divide the numerator

and denominator of Equation D.1 by exp
(
∞ · n{Γ}

)
. Let {Γ}′′ be a cluster assignment in the

summation of Z. When {Γ}′′ violates the first rule, its contribution to the summation is zero. This

is because n{Γ}′′ < n{Γ} and exp(∞ · (n{Γ}′′ − n{Γ}) − λm{Γ}′′) = 0. When {Γ}′′ does not

violate the first rule, n{Γ}′′ = n{Γ}, and exp(∞ · (n{Γ}′′ − n{Γ}) − λm{Γ}′′) = exp(−λm{Γ}′′).

Consequently, we can write Equation D.1 as



122

P ({Γ}) =
exp

(
−λm{Γ}

)∑
{Γ}′′ exp

(
−λm{Γ}′′

) =
exp

(
−λm{Γ}

)
Z ′

(D.3)

where the summation in the denominator is over cluster assignments that do not violate the first rule.

Taking logs, we get

logP ({Γ}) = −λm{Γ} +K (D.4)

where K = − log(Z ′) is a constant.

Next we derive the likelihood component of the posterior probability. Since each symbol xi

belongs to exactly one cluster γi, each ground atom r(x1, . . . , xn) is in exactly one cluster com-

bination (γ1, . . . , γn). Let Gr(x1,...,xn) be a set containing groundings of the atom prediction rules

and the (single) grounding of the default atom prediction rule that have ground atom r(x1, . . . , xn)

as their consequents. (An antecedent and consequent respectively appear on the left and right of

the implication symbol⇒.) Suppose the cluster combination (γ1, . . . , γn) to which r(x1, . . . , xn)

belongs contains at least one true ground atom. Then there is exactly one grounded atom prediction

rule in Gr(x1,...,xn) whose antecedent is true. The antecedents of all other rules in Gr(x1,...,xn) are

false, and the rules are trivially true. Similarly, when cluster combination (γ1, . . . , γn) does not con-

tain any true ground atom, there is exactly one grounded default atom prediction rule in Gr(x1,...,xn)

whose antecedent is true, and all other rules have false antecedents and are trivially true.

From the MLN defining the likelihood component, we get

P (D|{Γ}) =
exp

(∑
i∈F

∑
j∈Gi wigj(D)

)
Z

(D.5)

where Z is the partition function (different from that of Equation D.1); F is a set containing all

atom prediction rules and the default atom prediction rule; Gi and wi are respectively the set of

groundings and weight of the ith rule in F ; and gj(D) = 1 if the jth ground rule in Gi is true and

gj(D) = 0 otherwise.

In the numerator of Equation D.5, we sum over all grounded rules. We can rewrite the equa-

tion by iterating over ground atoms r(x1, . . . , xn), and summing over grounded rules that have

r(x1, . . . , xn) as their consequents.



123

P (D|{Γ}) =
exp

(∑
r(x1,...,xn)∈D

∑
j∈Gr(x1,...,xn)

wjgj(D)
)

Z
(D.6)

where Gr(x1,...,xn) is a set containing groundings of the atom prediction rules and the single ground-

ing of the default atom prediction rule that have ground atom r(x1, . . . , xn) as their consequents;

and wj is the weight of the jth rule in Gr(x1,...,xn),

In Gr(x1,...,xn), there is exactly one grounded rule whose antecedent is true. All other grounded

rules have false antecedents, and are trivially true in all worlds. Such rules cancel themselves out in

the numerator and denominator of Equation D.6. Hence we only need to sum over grounded rules

whose antecedents are true. We can write Equation D.6 as

P (D|{Γ}) =
exp

(∑
r∈R

∑
cr∈Cr

∑
j∈Fcr wcrgj(rj(x1, . . . , xn))

)
Z ′

(D.7)

where R is a set of predicates; Cr is a union of cluster combinations containing at least one true

grounding of predicate r, and a default cluster combination containing only false groundings of r;

Fcr is a set of grounded rules with cluster combination cr in their true antecedents and a grounding

of r as their consequents; wcr is the weight of the atom predication rule or default atom predication

rule that has cr in its antecedent; rj(x1, . . . , xn) is the ground atom appearing as the consequent of

rule j; gj(rj(x1, . . . , xn)) = 1 if rj(x1, . . . , xn) is true; gj(rj(x1, . . . , xn)) = 0 otherwise; and Z ′

is the partition function.

Because a ground atom r(x1, . . . , xn) is in exactly one cluster combination cr, and appears in

exactly one grounded rule with cr in its the antecedent, we can factorize Z ′, and write Equation D.7

as

P (D|{Γ}) =

∏
r∈R

∏
cr∈Cr

∏
j∈Fcr exp (wcrgj(rj(x1, . . . , xn)))∏

r∈R
∏
cr∈Cr

∏
j∈Fcr

∑
rj(x1,...,xn)∈{0,1} exp (wcrgj(rj(x1, . . . , xn)))

=
∏
r∈R

∏
cr∈Cr

∏
j∈Fcr

exp (wcrgj(rj(x1, . . . , xn)))∑
rj(x1,...,xn)∈{0,1} exp (wcrgj(rj(x1, . . . , xn)))

=
∏
r∈R

∏
cr∈Cr

∏
j∈Fcr

exp (wcrgj(rj(x1, . . . , xn)))
1 + exp(wcr)

=
∏
r∈R

∏
cr∈Cr

(
exp(wcr)

1 + exp(wcr)

)tcr ( 1
1 + exp(wcr)

)fcr
(D.8)



124

where tcr and fcr are respectively the number of true and false ground r(x1, . . . , xn) atoms in cluster

combination cr.

By differentiating Equation D.8 with respect to wcr , setting the derivative to 0, and solving

for wcr , we find that the resulting equation is maximized when wcr = log(tcr/fcr). Substituting

wcr = log(tcr/fcr) in Equations D.8, and taking logs, we get

logP (D|{Γ}) =
∑
r∈R

∑
cr∈Cr

tcr log
(

tcr
tcr + fcr

)
+ fcr log

(
fcr

tcr + fcr

)
. (D.9)

Adding smoothing parameters αr and βr, we get

logP (D|{Γ}) =
∑
r∈R

∑
cr∈Cr

tcr log
(

tcr + αr
tcr + fcr + αr + βr

)
+ fcr log

(
fcr + βr

tcr + fcr + αr + βr

)
.

(In our experiments, we set αr + βr = 10 and αr
αr+βr

to the fraction of true groundings of r in

the data.) Separating the default cluster combination c′r containing only false groundings of r from

the set of cluster combinations C+
r containing at least one true grounding of r, we obtain

logP (D|{Γ}) =∑
r∈R

fc′r log
(

fc′r+βr
fc′r+αr+βr

)
+
∑
cr∈C+

r

tcr log
(

tcr+αr
tcr+fcr+αr+βr

)
+fcr log

(
fcr+βr

tcr+fcr+αr+βr

) .
Using the fact that logP ({Γ}|D) = logP ({Γ})+logP (D|{Γ})+K ′ (whereK ′ is a constant),

and substituting logP ({Γ}) and logP (D|{Γ}), we get

log(P ({Γ}|D)

=



−∞ if there is a symbol that is not in exactly one cluster∑
r∈R

fc′r log
(

fc′r
+βr

fc′r
+αr+βr

)
+
∑
cr∈C+

r

tcr log
(

tcr+αr
tcr+fcr+αr+βr

)
+ fcr log

(
fcr+βr

tcr+fcr+αr+βr

)
−λm{Γ} +K ′′ otherwise

where K ′′ = K +K ′ is a constant. (When comparing candidate cluster assignments to find the one

with the best log-posterior, we can ignore K ′′ because it is a constant.)



125

Appendix E

PROOFS OF LSM’S PROPOSITIONS

We provide below the proofs of our propositions. p denotes the reverse of path p. pVs denotes

a path from node s to a set of nodes V . We begin by proving a lemma that is needed to prove our

propositions.

Lemma A Let v, v′ and s be nodes in a ground hypergraph whose nodes are all reachable from s.

If Syms(v, v′), then v and v′ have the same number of r-hyperedges connected to them.

Proof. Suppose for a contradiction that v and v′ respectively have n and n′ r-hyperedges connected

to them, and n>n′. Let pvs be a path from s to v, r1, . . . , rn be the r-hyperedges that are connected

to v, and V1, . . . , Vn be the sets of nodes that are connected to v by its r-hyperedges. V1, . . . , Vn

are all distinct because a ground hypergraph cannot have more than one r-hyperedge connected to

a set of nodes. (An r-hyperedge corresponds to a true ground atom, and each true ground atom can

only appear once in a database.) Note that p= pvsr1V1r1V1 . . . rnVnrnVn is a path from s to v. We

cannot create a path pv
′
s that is symmetrical to p because pv

′
s can contain at most n′<n distinct set

of nodes that are connected by r-hyperedges to v′. Hence we arrive at a contradiction that v and v′

are not symmetrical. �

Proposition 1 Let v, v′ and s be nodes in a ground hypergraph whose nodes are all reachable from

s, and Syms(v, v′). If an r-hyperedge connects v to a node set W , then an r-hyperedge connects v′

to a node set W ′ that is symmetrical to W .

Proof. Suppose for a contradiction that v′ is not connected by any r-hyperedge to a node set that is

symmetrical to W . Let v and v′ each be respectively connected by n r-hyperedges (by Lemma A)

to node sets W1, . . . ,Wn and W ′1, . . . ,W
′
n where n ≥ 1 and W1 =W . πi denotes a path from s

to Wi to v via r, and then back to s via the reverse path, i.e., πi = pWi
s rvpWi

s rv. Let Πi = {πi} be



126

the set of all such paths. Similarly π′i = p
W ′i
s rv′p

W ′i
s rv′, and Π′i = {π′i}. Let Q= {π1π2 . . . πn} be

the set of paths formed by concatenating πi ∈ Πi. Finally let Q={q1q2 . . . qmpvs}(m= 1, . . . ,∞)

be the set of paths formed by concatenating qj ∈ Q, followed by a path from s to v. Since v′ is

symmetrical to v, there exists Q′={π′1π′2 . . . π′n} andQ′ = {q′1q′2 . . . q′mpv′s } where q′j ∈ Q′ such

that Q′ is symmetrical to Q. Observe that the pW1
s prefix of each path in Q corresponds to the pW

′
1

s

prefix of each path inQ′. Since W1 and W ′1 are not symmetrical, there is a path inQ that cannot be

bijectively mapped toQ′ (or vice versa). Hence v and v′ are not symmetrical, which contradicts the

assumption that they are. �

Proposition 2 The maximum value of LW,C(X) is attained at W =W0 and C = C0 where C0 is

the set of all possible conjunctions of positive ground literals that are true in X , and W0 is the set

containing the globally optimal weights of the conjunctions.

Proof. Suppose for a contradiction LW1,C1(X) > LW0,C0(X). First consider W1 6= W0, C1 =

C0. This case is not possible because by definition W0 are the optimal weights for C0. Next

consider C1 6=C0. For each conjunction in C1, add all its groundings to a new set C2. Each ground

conjunction in C2 inherits the weight of the conjunction from which it is formed. (If C1 only

contains ground conjunctions, then C1 =C2.) If C2 contains fewer conjunctions than C0, add these

missing ground conjunctions to C2 and give them zero weights. (W2, C2) thus created is equivalent

to (W1, C1), and hence LW2,C2(X) > LW0,C0(X). Since C2 =C0. we contradict the assumption

that W0 contains optimal weights. �



127

VITA

Stanley Kok was born and bred in Singapore. In 1995, he won a scholarship from the National

Computer Board of Singapore (now Infocomm Development Authority (IDA)), and gleefully packed

his bags to begin his undergraduate education at Brown University in Providence, Rhode Island.

After spending four wonderful years there (and experiencing enough snow to last him his lifetime),

he graduated with honors with a Combined Bachelor of Science (Computer Science) and Bachelor

of Arts (Economics) degree. Upon returning to Singapore, he worked as an IT consultant at IDA

for several years. Realizing that this first love lay in research, he began his graduate studies in

the Computer Science and Engineering department at the University of Washington in Seattle. He

received his M.S. in Computer Science in 2005, and a Ph.D. in the spring of 2010. Stanley’s research

interests are in machine learning, artificial intelligence, and their applications.


