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In Web search, query and click log data are easy to collect but they fail to capture user

behaviors that do not lead to clicks. As search engines reach the limits inherent in click

data and are hungry for more data in a competitive environment, mining cursor movements,

hovering, and scrolling becomes important. This dissertation investigates how remotely col-

lecting rich user interaction data in the form of mouse cursor activity can help researchers

understand fundamental human behavior and improve the design of search engines. Specif-

ically, mining cursor activity can improve upon state-of-the-art methods for scoring and

ranking search results, and estimating where users are looking without eye-tracking. De-

scriptive analyses of cursor movements show how users move their cursor when they search

to provide signals of relevance and explain reasons for abandoning a search. User models

can be used to infer visual attention on the page to identify what content users are look-

ing at, as well as compute the relevance and attractiveness of search results to the user.

This implicit feedback given to the search engine can then inform the layout and content

presented on the pages, or improve the ranking of search results.

This dissertation will demonstrate the following thesis: users’ mouse cursor interactions

can be collected efficiently on the Web, used to understand users’ search behaviors, and can

be useful in the design of Web search engines.
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Chapter 1

INTRODUCTION

1.1 Motivation

People conduct billions of Web searches over billions of documents every day; it is an intrinsic

part of our lives. We seek turkey stuffing recipes, names of former middle school acquain-

tances, clues about a skin rash, our favorite musician’s website, and antiquated printer

drivers. Getting the right information to the user can educate and improve productivity for

billions of people.

From the Web searcher’s perspective, searches are issued through a familiar system

of typed queries and search results, via interactions with an intermediary Web browser.

From the search engine’s perspective, the goal is to find relevant Web pages that contain

information that will satisfy the searcher. It is this “conversation” between a searcher and

search engine that allows them to learn from one another.

Minimally, one of the search engine’s primary jobs is to score documents using a mul-

titude of signals, then return a ranked list of the highest scoring documents to the user.

The ranking signals in Web search can be classified into three categories: content signals,

structural signals, and Web usage [6]. The first search engines drew from techniques in

traditional information retrieval, matching the user’s query and the Web page using content

signals. Scoring methods such as tf-idf [87] and its descendant Okapi BM25 [82] analyzed

the document content in Web pages, scoring each Web page based on its content and how

well this content matched the query.

As Web search engines evolved, signals from the structure of the Web gained importance,

supplementing content signals through techniques such as mining the links between Web

documents, namely ‘link analysis.’ PageRank [10] emphasized the incoming links to a page,

scoring the page based on its relative importance, while HITS [60] computed two metrics

for a website: its authority, the value of the page content, and its hub score, the value of its
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outgoing links. Links thus became akin to reputation votes, so when one document linked

to another, it was like vouching for it. Search engines adopted PageRank and HITS based

algorithms, which became useful factors in ranking the documents.

Since then, Web search has evolved past document-query matching and hyperlink anal-

ysis (e.g., PageRank), to arrive at a stage where mining user interaction data is crucial to

search result ranking and user assistance features. The past several years have been fruitful

for using interaction data as implicit feedback from the user, providing relevance judgments

for search results that can improve the ranking for future searchers [57]. One popular type

of search interaction data is query logs, which includes people’s search queries and often,

what results they clicked. This information is easy to capture server-side and provides clean

signals that relate to user interest that can be used for ranking search results. For example,

if past users for a given query clicked on the third result more often than the second result,

perhaps this is a signal that the third result should be ranked higher. Other applications

assist the user, such as using past query reformulation to provide spelling corrections or

query suggestions. Finally, these interactions can also be used for analytics to better un-

derstand their users and to learn about information seeking behavior (e.g. [54], [86]). More

generally, search engines can use user behavior to infer the situational context which can

improve search quality in later search sessions.

Query logs are commonly used as ranking signals by providing information about what

people were searching for through the query text, and what they found appealing through

the click records [56]. These logs have also been shown to be useful for a multitude of

applications outside of ranking results. Query logs used in personalized search [78] customize

search results to the preferences of the current user; they can help with spelling correction

[2, 24], searcher modeling [18, 31, 37, 93], autocomplete queries, and offer query suggestions

[9, 59].

1.2 Beyond Query Logs

Query logs provide useful information about searchers’ queries and what they clicked, but

some limitations of query logs have been noted in the literature [35, 36, 61]. One obvious

limitation is that query logs do not typically contain interaction data besides the query
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and click. In the time between the search query and the result click, users still interact

with the page by scrolling and moving their mouse cursor around the page. Furthermore, a

large proportion of queries do not result in clicks, possibly because the information the user

seeks is already on the search results page, so clicks are unnecessary. Another possibility

is that the query is infrequent so the search engine has not had a chance to collect much

data in the past. A substantial portion of queries are infrequent so there are very few clicks

or even no clicks from those queries [34]. Researchers know that search engines do poorly

for these infrequent queries [28]. Thus, both infrequent and unclicked queries provide little

information to the search system about what happened after the query.

In other data-intensive fields such as natural language processing and data mining, there

has been evidence that collecting and mining additional data can be more useful than

improving algorithms. A study by Banko and Brill [7] looked at various learning algorithms

for disambiguating natural language. They showed that increasing the amount of data by

10-fold would boost even the worst algorithm’s performance to become better than the best

algorithm. A recent article titled “The Unreasonable Effectiveness of Data” highlighted

the power of Web-scale data for machine translation [43]. Natural language involves the

concept of context, which algorithms have trouble understanding. However, with enough

data in the form of words and word sets, machine translation and speech recognition can be

accomplished statistically. Rajaraman presented anecdotal evidence to argue that, “adding

more, independent data usually beats out designing ever-better algorithms to analyze an

existing data set” in an article titled “More data usually beats better algorithms” [79].

In one example, students in his data mining class competed to recommend Netflix movies

given a set of previously rated movies from users, a typical machine learning problem. The

team that applied a simple algorithm over combined Netflix data and IMDB data performed

much better than the team that applied a sophisticated algorithm on just the Netflix data.

A similar phenomenon may be occurring in Web search, where growing dependence on user-

generated search logs makes it more important going forward to collect more independent

data.

Having query logs at scale is essential because it provides good coverage over the queries

(which are known to have a long tail), and allow for stratification over variables such as
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geography, task type, topic, and user type. Web search already benefits by adding more of

the same data—more query logs are generated every second, thereby improving the accuracy

of inferences and analyses made from the data; this is akin to adding more Web pages to

the index in the early days of ranking using content signals. However, there may be further

benefit from adding different sources of data, akin to using structural signals to supplement

content signals for ranking, a breakthrough in search ranking quality. New independent

data can answer new sets of questions and provide information that cannot be inferred from

existing data.

While query logs are the most direct and easily understandable indicators of user inten-

tions and success, they can be further enriched with additional search interaction data. The

insight comes from my experience directly watching a person search over their shoulder,

in person. When I did this, I could tell a lot more information about the context of their

search. And if the search engine could just “see” what they were looking at on their screen,

how they were moving their cursor, and scrolling, and how they paused to think, the search

engine could know much more about their intentions and underlying thoughts. So a search

engine can put itself in the shoes of the users if they had that perspective, but that data is

not being captured.

1.3 Mouse Cursor Interactions

Mouse cursor1 interactions can be recorded with minimal intrusion using JavaScript, which

is built into all modern Web browsers. Small snippets of JavaScript can be injected on the

search page to record cursor interactions and send the data back to the search system using

a GET request or HTML5 WebSockets. This technique can be deployed on a large scale

without disrupting the searcher, or requiring any software installation. Thus, tracking cursor

interactions can be cheaply instrumented in commercial search engines or in large-scale user

studies on the Web.

Cursor movements can be recorded using JavaScript at fine levels of detail; the exact

resolution depends on the Web browser and operating system. Cursor data can then be used

1From this point forward, I refer to the ‘mouse cursor’ simply as the ‘cursor’.
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to diagnose usability issues at an individual level when the session is replayed; furthermore,

the data can be analyzed in aggregate to generate heatmaps. Other cursor activity such as

scrolling, highlighting text, or non-navigational clicks may be explored. Behavior-centered

analysis is also possible—some users move their cursor over text as they read, move the

cursor slowly when thinking, or toss aside the cursor to reveal content that the cursor or

tooltips were obscuring; these behaviors change the context in which they are interacting

with the page. Since cursor location has been shown to correlate with where a user looks in

some occasions [19, 22, 41, 83, 84], cursor data can also be used to understand and model

search result examination behavior.

Besides tracking cursor interactions on the search page using JavaScript, lab studies

provide another way of capturing people’s cursor interactions (e.g., [20, 33, 46]). Lab studies

involve asking users to enter a lab setting to perform an artificial task. They are useful for

qualitatively understanding the user since they give richer insights into what is on the

user’s mind and control for the situational context. However, mining remotely-collected

search data is a more scalable way to record user activity for automatically improving some

search engine attributes like ranking and user assistance features. Thus, large-scale cursor

data can complement other usability methods such as laboratory studies, surveys, etc. In

this dissertation, I use both qualitative and quantitative methods to collect descriptive

data about users’ cursor behaviors, but also show how models for computing relevance and

examination can be built purely from cursor interactions that can be collected remotely at

Web scale.

1.4 Research Question

The first step I take is to determine whether cursor interactions can be useful at all in

search. People move their cursors in irrelevant and unpredictable ways, and since cursor

data is so noisy, we may want to know whether we can even extract useful information from

the data. How can richer interaction data comprising cursor activity help us understand

search behaviors and improve the design of search engines? This requires an exploratory ap-

proach to looking at cursor interaction data, and then some creative ways to build practical

applications from the cursor data.
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1.5 Contributions

Following from the research question, the contributions presented in this dissertation fall

under three main categories. First is a method for tracking cursor interactions at scale

(Section 3.2). Having this data at Web scale enables practical applications by providing

coverage over many different types of queries and users. Second is a descriptive analyses of

how people use their cursor when they search (Chapters 4 and 6). This teaches us about

fundamental cursor behavior and informs the third category of contributions. This third

category is of practical user models that utilize cursor interactions in two situations: for

predicting the content that a user visually examines (Chapter 5), and computing relevance

scores for documents in relation to a query (Chapter 7). I show that having cursor data

can do these tasks better than current state-of-the-art methods that don’t use cursor data.

Put together, these contributions show that users’ mouse cursor interactions can be

collected efficiently on the Web, used to understand users’ search behaviors, and can be

useful in the design of Web search engines.

1.6 Ambiguous Terminology

This section does not aim to define all the technical terms used within this dissertation.

Instead, the definitions are for terms that can have multiple meanings, to specify how they

are used in this document.

1.6.1 Cursor

I will use the word “cursor” as the pointer typically controlled by a mouse on a computer.

In other text, authors have simply called it the “mouse” but I feel this is imprecise. The

cursor can be controlled by many input devices, such as a touchpad or trackpad. However,

referring to it as a pointer is also unsatisfying because that terminology is used only in

the Windows operating system, and users of other environments are not familiar with that

term. I acknowledge that the term “cursor” is still not ideal, because in other contexts it

can also mean the text cursor or caret used for editing text. But I feel it is the best term

for referring to the pointer controlled by an input device, typically the mouse.
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1.6.2 Query and Click Logs

I will use the terms “query logs”, “click logs”, and “click data” almost interchangeably. The

typical logs collected by search engines are essentially Web server logs, where for example

on Google, clicks actually navigate to a URL on the search engine’s Web server but are

inconspicuously redirected to the target page. This redirection allows the search engine to

know which items were clicked. Along with the server logs, the queries are automatically

captured as they are part of the URL generated by the search engine after a query. Thus,

this data contains queries, clicks, a timestamp, and other metadata together. In other

literature, it is referred to as any of the above terms and sometimes even as “transaction

logs” [54].

1.6.3 Gaze and Attention

In this document, I will make the assumption that the eye gaze position is also the location

of visual attention. In practice, there may be a difference between a person’s eye gaze and

their visual attention. Since the eye gaze is tracked by an eye-tracking device, a person

may actually visually be focused elsewhere; the eye gaze may also include saccades that

are irrelevant to visual attention on a page. However, for simplifying the concepts, the two

terms are regarded as equivalent, defined in this dissertation as the eye-tracker’s estimations

of the focal point of the user’s gaze.



8

Chapter 2

RELATED WORK

Three lines of research relate to this dissertation. One focuses on tracking cursor inter-

actions on the Web and in search, mostly in laboratory studies; this involves inferring user

interest and intentions directly from the user’s interactions with the search engine results

page (SERP) or a Web page. The second area explores the relationship between the cursor

position and gaze position in order to infer the user’s visual attention based on cursor move-

ments; most of these studies seem to suggest that cursor positions may be a good proxy

for remotely tracking visual attention (i.e., eye gaze). Lastly, there have been a number of

models of searchers’ result examination behavior typically using query logs.

2.1 Cursor Tracking on the Web and in Search

The first research projects on cursor tracking involved modifying the Web browser in order

to track the cursor interactions. They were done on a small scale in lab studies, and

reported qualitative findings. In early work, Goecks and Shavlik modified a Web browser to

record themselves browsing hundreds of Web pages [33]. They found that a neural network

could predict variables such as the amount of cursor activity on the SERP, which they

considered surrogate measurements of user interest. Claypool et al. [20] developed the

“curious browser,” a custom Web browser that recorded activity from 75 students browsing

over 2,500 Web pages. They found that cursor travel time was a positive indicator of a

Web page’s relevance, but could only differentiate highly irrelevant Web pages. They also

found that the number of clicks on a page did not correlate with its relevance, despite the

intuition that clicks represent links that users found appealing. Hijikata [46] used client-

side logging to monitor five subjects browsing a total of 120 Web pages. They recorded

actions such as text tracing and link pointing using the cursor. The findings showed that

these behaviors were good indicators for interesting regions of the Web page, around 1.5



9

times more effective than rudimentary term matching between the query and regions of the

page. Shapira et al. [85] developed a special Web browser and recorded cursor activity

from a small number of company employees browsing the Web. They found that the ratio

of cursor movements to reading time was a better indicator of page quality than cursor

travel distance and overall length of time that users spent on a page. More recently, Leiva

and Vidal released an open source cursor tracking toolkit called “Simple Mouse Tracking”

[67]; this toolkit allows website owners to set up their own cursor tracking systems on their

website after installing it. Their toolkit has been used by numerous website developers to

track the cursor interactions from their own users. Leiva and Vidal themselves have applied

cursor tracking to cluster Web documents based on the cursor interactions on the page.

Some academic studies have analyzed the cursor in usability settings to learn about

engagement on Web pages [3, 4, 92]. Atterer et al. investigated the usability of an online

form through cursor analytics [4], Arroyo et al. presented visualizations of cursor trails to

students who “proposed and prototyped redesigns reorganizing information where it could

be easily found, and simpler to navigate,” and Torres and Hernando described and offered a

tool for websites to conduct usability on their own cursor-based investigations [92].Outside

of academic literature, several commercial companies (e.g., ClickTale, Mouseflow, UserFly)

have offered cursor tracking analytics for Website operators, typically presenting this data

as heatmaps and replays. These services offer cursor interaction data to website developers

to apply in usability analysis as they see fit.

In the search domain, Guo and Agichtein [39] captured cursor movements using a mod-

ified browser toolbar and found differences in cursor travel distances between informational

and navigational queries, as defined by human labelers. Furthermore, a decision tree could

classify the query type using cursor movements more accurately than using clicks. Guo and

Agichtein also used interactions such as cursor movement, hovers, and scrolling to accu-

rately infer search intent and interest in search results [40]. They focused on automatically

identifying a searcher’s research or purchase intent based on features of the interaction. In

a more recent paper, Guo and Agichtein look at cursor interactions after the click onto the

landing page and find that these post-click interactions (e.g., cursor movements, dwell time)

correlate with document relevance [42]. They show that a post-click behavior model is more
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effective than simply using dwell time for computing document relevance scores. Diriye et

al. investigate the use of cursor interactions for classifying the reason why a user abandoned

a query, whether it was because they were satisfied because they found the information they

were seeking, or dissatisfied at the point of abandonment [27]. They showed that features

such as cursor movement distance could distinguish the reason for abandonment, and that

multiple additive regression trees (MART) were the best approach to the classification.

2.2 The Gaze-Cursor Relationship

Lab studies involving eye-tracking systems have been commonly used to track searchers’

visual attention as they seek information on the Web. Past research has found a correlation

between gaze and cursor positions [19, 22, 41, 83, 84] and that cursor movements can

be useful for determining relevant parts of the Web page with varying degrees of success

[33, 46, 85].

By applying a reading detection method, Buscher et al. [13] used gaze tracking features

directly to infer user interest and show that this can yield great improvements when person-

alizing search. Buscher et al. also demonstrated the value of gaze information for building

models that predicting salient regions of Web pages [12] while Cole et al. built reading

models operating on gaze tracking data to investigate information acquisition strategies of

the searcher for different search tasks [21].

One line of research examines the relationship between eye gaze and cursor positions in

general Web browsing. An early study by Chen et al. [19] measures this relationship by

recording 100 gaze and cursor positions from five subjects browsing the Web. They showed

that the distance between gaze and cursor was markedly smaller in regions of the page that

users attended. Liu and Chung [70] recorded cursor activity from 28 students browsing

the Web and noticed patterns of viewing behaviors, including reading by tracing text with

the cursor. Their algorithms were capable of predicting users’ cursor behaviors with 79%

accuracy.

Some assume that users look where they point with their mouse and that the cursor

is a suitable substitute for eye-tracking. For example, the popular Web analytics service

ClickTale notes on their website about their Mouse Move Heatmaps that “By aggregating
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the mouse movements of thousands of visitors on a Web page, we create a comprehensive,

visual representation of what visitors are looking at and focusing on within the page.”1 I

show this assumption is misleading in many situations later in this dissertation.

More recent work has focused on the relationship between cursor and gaze in Web

search. In a study involving 32 subjects performing 16 search tasks each [83, 84], Rodden

et al. identified a strong alignment between cursor and gaze positions. They found that

the distance between cursor and gaze positions was larger along the x-axis than the y-axis,

and was generally shorter when the cursor was placed over the search results. Rodden et al.

also observed four general types of cursor behaviors: neglecting the cursor while reading,

using the cursor as a reading aid to follow text (either horizontally or vertically), and using

the cursor to mark interesting results. Guo and Agichtein [41] reported similar findings

in a smaller study with ten subjects performing 20 search tasks each. Like Rodden et al.,

Guo and Agichtein noticed that distances along the x-axis tended to be larger than the

distances along the y-axis. They could predict with 77% accuracy when gaze and cursor

were strongly aligned using cursor features. Rather than tracking the eye gaze with eye-

tracking equipment, Lagun and Agichtein [63] presented a method to estimate gaze position

by blurring the SERP and only revealing a region proximal to the cursor. They found

that result viewing and clickthrough patterns agree closely with unrestricted viewing of

results, as measured by eye-tracking equipment. Their method can also be used for large-

scale investigations of search result attractiveness. Buscher et al. [15] also used scrolling

to infer user interest and compared it to gaze tracking feedback. They found that scrolling

behavior in connection with information on the browser’s viewport could be as effective as

gaze tracking feedback in during query expansion.

Finally, Navalpakkam et al. extend the work in this dissertation by investigating the

gaze-cursor relationship on non-linear page layouts which, in search, may represent cases

when information or advertisements are shown in the second column [74]. Furthermore,

they predict eye-gaze using a non-linear model and identify particular regions of interest in

addition to the coordinates.

1http://www.clicktale.com/products/heatmap-suite/mouse-move
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2.3 Searcher Models from Query Logs

The third area of related research involves modeling the searcher, typically using graphical

models such as Bayesian networks. Searcher models attempt to infer the searcher’s state

as they issue queries, examine the search results, and perhaps click on some results. These

models attempt to determine which search result a user has examined, whether a clicked

search result was satisfying, and other unobserved states. Searcher models have been de-

veloped from two main hypotheses that are commonly used as assumptions in the models.

Since users are biased towards clicking search results that are higher ranked [56], the ex-

amination hypothesis is used to isolate a search result’s attractiveness from its position.

This hypothesis, originally formulated in Richardson et al. [81], states that the likelihood

that a user will click on a search result is influenced only by 1) whether the user examined

the search result and 2) its attractiveness. In other words, a user must examine a search

result before potentially clicking that result. By making this assumption, a search result’s

attractiveness can be computed independent of its position in the ranking, i.e.,

P (Ci = 1) = P (Ei = 1)P (Ci = 1|Ei = 1),

where the term P (Ei = 1) is the position bias and the term P (Ci = 1|Ei = 1) is the search

result’s attractiveness.

To determine whether a user examined the search result, some searcher models (like the

Cascade Model) draw from the linear traversal hypothesis [23] that designates which

search results a user has examined. The linear traversal hypothesis states that a user

always examines search results sequentially and goes from top-to-bottom on the SERP. A

user decides whether to click a result before examining the next result, preventing scenarios

where the user returns to a higher-ranked search result after passing it by. Therefore, if

users do not examine a particular search result, they will not examine any search results

below it, i.e.,

P (E1 = 1) = 1,

P (Ei+1 = 1|Ei = 0) = 0.
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While the original Cascade Model stipulated that once a user clicked, they would no

longer examine any search results, extensions of this hypothesis have removed this assump-

tion. The Dependent Click Model [38] allows for query sessions to comprise multiple clicks,

by using a parameter representing the probability that the clicked document is not relevant

and the user returns to examining more search results. The Click Chain Model [37] and

Dynamic Bayesian Network Model (DBN) [18] both extend this by adding an additional pa-

rameter representing the probability that a user abandons a query session without clicking,

thus circumventing the side-effect of the linear traversal hypothesis that users are assumed

to examine every search result in abandoned queries.

Other searcher models such as the Partially-Observable Markov Model [93] and User

Browsing Model [31] avoid the linear traversal hypothesis entirely, allowing the user to

jump between search results non-sequentially in their examination. However, these models

have more parameters representing the probabilities of transitions between search result

positions which make inference more difficult, especially when there are fewer query sessions

with clicks from which to learn.

2.4 Extending Related Work

This dissertation extends the existing literature in several ways. One is by introducing

efficient techniques to enable remote cursor tracking at scale on the Web, particularly applied

to the search domain, and demonstrating their practicality by deploying the tracking widely

on the Bing search engine. A second is going beyond analyzing the relationship between

gaze and cursor, and instead using cursor interactions to predict gaze positions (which

Navalpakkam et al. [74] build upon). The third is offering a method for extending existing

click models built from query logs using cursor interactions, and showing that this can

improve the relevance scoring of search results. These methods are scalable, and I show in

this dissertation how they can be applied to enhance search systems at Web scale.
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Chapter 3

METHODS FOR CURSOR TRACKING1

This dissertation presents results gathered through two methods. One is a lab study

involving an eye- and cursor-tracking device, and the other is a large-scale deployment of

cursor tracking. The lab study provides information about where people are looking when

they use the cursor, obtains demographics information, and provides data collected in a

controlled setting. The large-scale deployment gives us a larger population from which to

compute experimental results and show aggregate patterns of cursor usage.

3.1 Eye-Tracking Lab Study

The gold standard of determining where people are looking is an eye-tracking device. Eye-

tracking is a technique for recording where people are looking on the screen using a special

eye-tracking camera. The eye-tracking device projects a light into the eye of the user and

captures the image at high frequency, which is then processed to determine the direction of

the gaze. Eye-tracking allows researchers to figure out what parts of the screen capture a

user’s attention while they are interacting with the site, which informs how site designers

should modify the layout or content of the page. It is a prominent technique in the field of

Web usability, and many companies spend lots of money and time conducting eye-tracking

studies.

In this dissertation, eye-tracking data was collected using a Tobii x50 eye tracker with

50 Hz tracking frequency and an accuracy of 0.5° visual angle (corresponding to 16 pixels in

our setting) on a 1280× 1024 resolution 17 inch monitor (96 dpi) and 1040× 996 resolution

Web browser. Cursor and gaze coordinates were collected from 38 subjects (21 female, 17

male), recruited from a user study pool2. They ranged in age between 26 and 60 years

1Portions of this chapter are published in CHI 2012 [49] and CHI 2011 [51]

2The eye-tracking trials were run by Georg Buscher during his summer internship at Microsoft Research.
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(M = 45.5, SD = 8.2), and possessed a wide variety of backgrounds and professions. Two

subjects had incomplete data due to technical issues and were dropped from the analysis.

Each subject completed 32 Web search tasks (information needs) on the Bing search

engine in a randomized order. Half of the tasks were navigational (i.e., they had to find a

specific Web page) and half were informational (i.e., they had to find factual information).

Each task started with a description of what subjects should look for on the Web. They

had to start searching with a predefined query for each task (e.g., task = “What are some

side-effects of Ibuprofen?”, predefined query = “ibuprofen side effects”) that were generated

from the task, but were then free to interact with the search results, browse the Web and

search further. The browser cache and cookies were cleared after each subject to prevent

subjects from noticing previously viewed pages (from hyperlinks turning purple) and search

engine personalization effects. Each subject took about one hour to undertake an eye

tracker calibration phase at the beginning, complete all 32 search tasks, as well as fill in a

demographics questionnaire at the end.

Gaze and cursor positions were recorded for each SERP as well as subsequent Web pages

(i.e., pages visited after clicking on a search result). In total, the eye-tracking data for

1,210 search tasks included 1,336,647 gaze positions and 87,227 cursor positions (whenever

the subject moved the cursor). Additional details about the experimental procedure are

described in Buscher et al. [14]. Gaze-specific findings on this data set, unrelated to cursor

features, have been reported elsewhere [14, 30].

In the logs, the gaze positions were recorded approximately every 20 ms, whereas cursor

positions were recorded approximately every 100 ms. Gaze positions are estimated by the

eye-tracker; because of the saccades (rapid movements) of the eye, recording at a higher

frequency can give more accurate positions. On the other hand, the cursor position is

an exact value and recording at 10 Hz is sufficient—the cursor is not radically changing

directions at sub-second speeds in a way that we cannot later interpolate its position3.

Since cursor and gaze events did not necessarily have identical timestamps, a gaze posi-

tion was interpolated for every cursor position. Interpolation was performed by computing

3I tested different frequencies of interpolation and found negligible differences.
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gaze x and y coordinates weighted by the coordinates of the nearest gaze coordinates before

and after the cursor position. For example, the interpolated x-coordinate for eye gaze is

computed as,

xi = x0 + (x1 − x0)
ti − t0
t1 − t0

(3.1)

where ti is the time for the corresponding cursor position, x0 is the gaze’s x-coordinate

preceding the cursor position, recorded at time t0, and x1 is the gaze’s x-coordinate following

the cursor position, recorded at time t1. The interpolated y-coordinate was computed the

same way, substituting x for y in the above equation. To reduce interpolation inaccuracies

due to noise from the eye-tracker, cursor positions were only captured if they occurred

between gaze positions that were at most 100 ms apart.

Bringing subjects into an eye-tracking lab creates inherent limitations. Subjects may

behave differently in the lab with a camera monitoring their gaze than in a natural setting.

The study takes place in an artificial setting where experimenter bias can surface (e.g.,

the Hawthorne Effect [64]). While every attempt was made to ground the search tasks in

realistic information needs, the tasks might not be a representative sample. The users are

unlikely to take breaks in the lab or multi-task by doing other things at the same time,

factors which may affect cursor behavior outside of the lab. Additionally, though SERPs

provide a controlled environment for our studies (and there are already several applications

if we focus on that domain alone), more work is also needed to generalize this research

beyond SERPs to any Web page.

3.2 Remote Cursor Tracking

Gaze-tracking studies with participants present in the laboratory can provide detailed in-

sights but on a small scale. Studying such behaviors in laboratory settings is limited in

terms of what inferences can be made. On the other hand, cursor movements can be col-

lected remotely at Web scale through a different method. Tracking cursor movements across

large numbers of users can provide a rich new source of behavioral information to under-

stand, model, and satisfy information needs. While cursor movements correlate with eye

gaze [19, 40, 83, 84], and may therefore be an effective indicator of user attention, having
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such data at scale can help researchers understand different cohorts of populations and learn

models for improving the search experience.

To collect this data, I instrumented a cursor tracking script to collect this new interaction

data by inserting a tiny bit of compressed JavaScript into the Bing search engine’s search

results page. The script embedded in the HTML source would remotely track cursor activity,

including movements, scrolling, hovering, the location of the key user interface elements on

the page, and clicks. The code was activated whenever the Web page it sits on is viewed,

and it ran for every visitor to that page without requiring any software installation and

without disrupting the user.

When logging any additional type of user interaction data beyond clickthrough, a trade-

off has to be made between: (i) level of detail (e.g., temporal and spatial resolution), (ii)

the impact of any additional JavaScript code on page weight, page load time, and therefore

the user experience, which can be sensitive to even small increases in load time, and (iii) the

amount of data transferred (and hence bandwidth consumed) between the client and the

remote server, as well as log volume created on the backend server. I sought to minimize

the data gathered and transmitted to avoid adversely affecting the user experience with

delays associated with log data capture and data transmission to the remote server. The

script negotiated a trade-off between these dimensions by: (i) reasonably coarsening the

log resolution, (ii) compressing the JavaScript, and (iii) compressing the log data as well as

using a buffering approach for its transferal via AJAX to the backend server.

The embedded script had a total size of approximately 750 bytes of compressed JavaScript,

which had little effect on the page load time (it was less than one percent of the search re-

sults page file size). The script recorded users’ cursor interaction within the Web page’s

borders relative to the top-left corner of the page. Since cursor tracking was relative to

the document, the script captured cursor alignment to search engine results page (SERP)

content regardless of how the user got to that position (e.g., by scrolling, or keyboard).

Therefore this approach did not constrain other behaviors such as scrolling or keyboard

input.

In previous cursor tracking studies, cursor position was recorded at particular time

intervals, such as every 50 milliseconds (ms) [41] or every 100 ms [83]. This is impractical
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at a large scale because of the large amount of data to transfer from the user’s computer

to the server. One alternative is to record events only when there is activity, but this is

still problematic because even a single cursor movement can trigger many cursor movement

events. When a user moves their cursor from left to right, it can generate a hundred

coordinates—too many to constantly send over the network in terms of data and bandwidth.

My solution was to compress this data but still retain the important points using a technique

called pause-based polling (described in more detail in the next section). I recorded all clicks

since they were less frequent. The events were buffered and sent to a remote server every

two seconds and also when the user navigated away from the SERP through clicking on a

hyperlink or closing the tab or browser; this was typically 1–3 kilobytes of data sent with a

JavaScript GET request, so overall this approach was highly scalable. It was unlikely that

the user would not notice any delay in the page load or bandwidth. The pseudo-code below

summarizes the logic in my algorithm.

onCursorMove: 
  loc = getCursorPos() 
  wait(N milliseconds) 
  if loc == getCursorPos(): // cursor stable for N ms 
    buffer.add(time,loc,getRegion(loc),“position”) 
onCursorClick: 
  buffer.add(time,loc,getRegion(loc),“click”) 
onTick, onPageClose: 
  send(buffer) 
  clear(buffer) 

A server-side process aggregated data from multiple pageviews belonging to the same

query (e.g., from returning to SERP using the browser “back” button or viewing multiple

result pages), to facilitate query-level in addition to pageview-level analysis. I identified

regions that the cursor hovers over using attributes in the HTML, and use two such regions

in subsequent analyses (result rank, link id). The large volume of data collected enabled

me to focus on aspects of how searchers use their cursors on SERPs. For this purpose, I use

the query-level data, comprising all clicks and cursor movements for a query session4. In

4Query session is defined as a query, along with activity taking place following that query including if
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addition to the location of cursor positions, I summarize the total amount of cursor activity

for a query using cursor trails (i.e., complete contiguous sequences of cursor movements on

the SERP). As shown later, these trails are useful in situations where no clicks are observed.

Data were accumulated from two samples of users. One was a random sample of Mi-

crosoft employees’ searches on Bing between May 12, 2010 and June 6, 2010. In total,

this dataset contained 7,500,429 cursor events from 366,473 queries made by 21,936 unique

cookies; the actual number of users may have been fewer since multiple cookies could belong

to a single user. Although employees of Microsoft may not be representative of the general

Web searcher population in some respects (e.g., they were more technical), their interaction

patterns can still provide useful insights on how SERPs are examined. A second sample of

log data was gathered using the same algorithm over a period of 13 days between May 26,

2011 and June 7, 2011 during an external experiment on a small fraction of user traffic, pri-

marily from English-speaking countries. Samples were drawn by user, storing every query

from each user in the dataset. In total, this dataset comprised around 1.8 million queries,

averaging eight queries per searcher (median = 3 queries). This second sample was used for

the searcher modeling experiment described in Chapter 7.

A summary of the differences between the methods is below in Table 3.1.

Eye-Tracking Lab Study Remote Cursor Tracking

Sample 1 Sample 2

Coordinates Collected Eye gaze and cursor Cursor Cursor

Number of Users 38 21,936 230,000

Period Summer 2009 Summer 2010 Summer 2011

Number of Queries 1,216 366,473 1,800,000

Sections Using Method Chapters 4, 5 Chapter 6 Chapters 4, 7

Table 3.1: A summary of the differences between the two methods of data collection used
in this dissertation.

they user navigates to a search result link and returns.
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3.2.1 Optimal Cursor Sampling

While recording cursor interactions can be done without disrupting the user directly, the

overhead of recording the cursor trail and transmitting this data over the network can be

substantial. To compress the cursor data, it is important to understand that not every

cursor coordinate has equal value. Furthermore, different compression algorithms are more

suited to different goals or applications.

Applying compression can optimize for reducing data size and therefore bandwidth be-

tween the client and the server, having minimal effect on client-side performance, or repro-

ducing the original data the most accurately. In collaboration with Luis Leiva, I looked at 10

compression algorithms, half of them lossless and the other half lossy. Lossless compression

algorithms are capable of reducing the data size while also reproducing the original cursor

activity; we found that among lossless methods, LZW [97] performed well. However, lossy

compression can offer greater gains in compression as well as improved performance, at the

expense of exactly replicating the original trail. A detailed treatise into the exploration and

evaluation of the 10 compression algorithms is provided in Appendix A.

We evaluated 5 lossless and 5 lossy compression algorithms over two datasets (one from

a live website, another from a lab study), computing client-side performance, space sav-

ings, and how well a lossy algorithm can replicate the original cursor trail. The results

showed that different compression techniques may be suitable for different goals: LZW of-

fers superior lossless compression, but lossy algorithms such as piecewise linear interpolation

and dispersion-threshold identification offer better client-side performance and bandwidth

reduction.

Lossless compression like Huffman and LZW encoding is bad for performance, and pro-

vides moderate compression. Lossy compression techniques like interpolation, polling, and

distance-based sampling are fast but are not necessary the best points to capture. For

the same compression levels, the naive method of time-based polling replicated the original

trail worse than recently-developed methods. Piecewise linear interpolation and dispersion-

threshold identification could reproduce the original trail better at the same levels of com-

pression. Pause-based polling, which has been previously deployed on a large scale, remains
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superior in terms of client-side performance; this compression method is especially suitable

for wide distribution when some users may be using slower computers.

Submovement boundaries
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Figure 3.1: Plot of a single cursor movement towards a target generated by FittsStudy [100],
illustrating the large initial ballistic movement followed by smaller corrective movements.
The short pauses between movements are reasonable places to capture a cursor position.

The pause-based polling approach that provided a reasonable trade-off between compres-

sion, performance, and capturing key points is informed from insights about human factors.

When humans move pointing devices, we make large ballistic movements and then smaller

corrective ones (Figure 3.1). At these submovement boundaries, there are very short pauses,

so to record key points during a movement, the script recorded cursor positions after a move-

ment delay, which can be easily interpolated to recreate the intermediate points if needed.

Basically, this method captures the key points that bound intentional movements. From

experimentation, I found that recording cursor positions only after a 40 ms pause provided

a reasonable trade-off between data quantity and granularity of the recorded events. This

approach recorded sufficient key points of cursor movement, e.g., when the user changed

directions in moving or at endpoints before and after a move. Occasionally, points within a

longer movement were also captured if the user hesitated while moving.
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Chapter 4

RELATING CURSOR AND EYE GAZE1

This chapter provides descriptive analysis of the behaviors people engage in with their

cursors in relation to how they visually examine the Web pages. The findings presented are

from data obtained through the eye-tracking lab study (Method from Section 3.1).

4.1 Gaze-Cursor Alignment

People navigate the Web as part of their daily lives by looking, finding, reading, pointing,

and clicking. Because the flow of using a site is such a fundamental experience for so many

users, usability professionals and site designers seek to optimize the experience by analyzing

which parts of the page grab a visitor’s attention, and what information users read on

the page. To achieve this, they conduct laboratory studies using eye-tracking equipment to

track users’ gaze while they navigate the site. Research studies have shown gaze to be useful

in determining what people are reading from their fixation [13, 80], in determining salient

regions of Web pages [12], and in identifying the effects of changes to SERPs [25]. But could

the cursor be a cheap and scalable alternative to eye-tracking for the same purposes? If so,

cursor tracking systems can be deployed on any website, replacing eye-trackers.

Prior work has shown that gaze and cursor are correlated but a further goal is to deter-

mine when gaze and cursor are aligned. We want to know when the cursor position is a good

proxy for gaze position and the effect of various factors such as time, user, cursor behavior

patterns, and search task on the gaze-cursor alignment. This analysis will contribute to

knowledge of how people use their cursor and how they examine Web search result pages.

One starting point is to investigate whether the overall cursor trail can give a good approxi-

mation to visual attention with better accuracy than simply using the corresponding cursor

position.

1Portions of this chapter are published in CHI 2012 [49] and WSDM 2012 [16]
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In order to understand the relation between attention and cursor position, I will delve

into the relationship between eye-gaze and cursor coordinates to find how not only when

the cursor could be used as a proxy for attention, but later in this dissertation also where

people were looking (Chapter 5).

The gaze-cursor alignment can be examined from the eye-tracking study of 36 subjects

and 32 search tasks. Plotting the distance on the x and y axes between the gaze position and

cursor position at each point in time, Figure 4.1 illustrates that there is some correlation

between gaze and cursor positions, but with substantial variation. Other studies measuring

gaze-cursor alignment [41, 83] have presented evidence of alignment with charts nearly

identical to Figure 4.1.
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Figure 4.1: ∆x, ∆y, and Euclidean distance plotted in a frequency distribution for the
search results page, and for (Post-SERP) Web pages that users land on after clicking a link
on the SERP.

Figure 4.1 shows the frequency distribution for different values of ∆x (distance be-

tween cursor x-coordinate and gaze x-coordinate), ∆y (distance between cursor y-coordinate

and gaze y-coordinate), and Euclidean distance between cursor and gaze coordinates, i.e.,√
(∆x)2 + (∆y)2. The solid lines show the distances for SERP pages. As can be seen,

cursor and gaze positions are quite similar for both x and y values, their deltas peaking
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near 0, when the gaze and cursor positions are in the same place. The mean Euclidean

distance between cursor and gaze is 178 px (σ = 139 px) and the median is 143 px. The

most common offset for the cursor is +3 px (to the right) for the x-coordinate and +29 px

(lower) for the y-coordinate. That is, the cursor is most likely to be just below where the

user is focusing with their eyes. In aggregate, the differences are greater in the x than y

direction (average 50 px in the x direction and 7 px in the y direction), similar to other

studies [41, 83] so this means the cursor tracks the gaze better along the vertical dimension

on a screen. Two explanations for the difference between ∆x and ∆y are: (i) users may

place the cursor to the left or right of their gaze to prevent it from obscuring the text as they

read up or down, and (ii) computer screens are usually wider than they are tall, offering

more horizontal space for the cursor.

The dotted lines in Figure 4.1 represent post-SERP landing pages. Distances between

the gaze and cursor on the landing pages were greater than those on the SERP (215 px vs.

178 px), perhaps due to greater variance in the layout and the content of those pages, as

has already been suggested by earlier gaze analysis [5]. Thus the cursor is a better proxy for

user attention on the SERP than post-SERP pages. This result implies that cursor tracking

may be particularly useful technique in search compared to typical Web pages.

4.2 Cursor Behavior Patterns

Cursor interaction spans a variety of behavioral patterns [3, 22, 70, 83, 84] including reading,

hesitating, highlighting, marking, and actions such as scrolling and clicking. Identifying

these behaviors is a prerequisite to understanding what meaning the cursor interactions

convey.

Several studies have reported different behavioral patterns when using the cursor. Rod-

den et al. observed several types of cursor behavior: neglecting the cursor while reading,

using the cursor as a reading aid to follow text, and using the cursor to mark interesting

results [84]. Liu and Chung also noticed patterns of cursor behaviors, including reading by

tracing text [70]. Arroyo et al. observed users hesitating and reading with the cursor [3].

Mueller and Lockerd found users hesitating before clicking and resting the cursor on white

space [22]. Finally, Claypool et al. observed the following cursor behaviors: ignoring the
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cursor, examining the page using the cursor, following the text with the cursor, and using

it to interact with the page or browser [20]. The taxonomy I have developed categorizes

cursor behavior patterns in a manner resembling those reported by Claypool et al.

Informed by prior work and our own qualitative observations of user interactions with

the SERP, I separated cursor behaviors into four categories:

Inactive cursors are not moving and are ignored by the user for some time.

Reading cursors are used to follow the text while the user is reading the page.

Action cursors are used when the user is about to perform an action (click on a link, edit

the query in the search box, drag the scrollbar, etc.).

Examining cursors move around while the user is examining the page, not including time

spent in ‘reading’ or ‘action.’

Each of the previously mentioned studies discusses the cursor behavior qualitatively and

most do not have corresponding gaze data. This study involved more subjects and search

tasks than the largest prior study, facilitating a quantitative analysis of the cursor behaviors.

4.2.1 Distinguishing Between Cursor Behaviors

A heuristic-based method can classify the different cursor behaviors to determine the cur-

rent behavioral intent, such as: marking content with the cursor, moving the cursor away

to read, using the cursor to perform an action, etc. This method entails iteratively examin-

ing replays of the recorded interaction behaviors, deciding which behaviors belong to each

category, classifying the behaviors using simple rules, and finally comparing the classified

behaviors with the judged behaviors. The process is ad-hoc yet flexible to develop a simple

classification scheme that captures the essence of each behavior type.

I developed classification rules informed by watching replays of the interaction in a query

session. The cursor is considered inactive if the user leaves it in one location (pausing it)

while they examine the page. ‘Inactive’ is defined as the cursor staying idle for at least one

full second. The behaviors occurring when the cursor’s position is active can be classified in
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three ways. As Claypool et al. noted, users may be using the cursor to help examine or read

the page [20]. However, the cursor also serves the purpose of interacting with elements of the

page or with the Web browser, typically by clicking on controls on the browser or Web page.

I classify these ‘action’ behaviors as those occurring in the one second preceding a click.

The remaining interactions were classified as either ‘examining’ or ‘reading’. Reading was

typically defined as users following the text horizontally (an observed pattern in Rodden et

al. [84]), since the text in a snippet or advertisements goes from left to right. The movement

to the right was not enough to classify as reading, since the cursor may be moved to the

right for many reasons. I arrived at three rules for an interaction which, if met, would label

all cursor positions within that timeframe as ‘reading’: the cursor could not have moved

more than 50 px vertically (about 3 lines of text); the cursor must have moved at least

150 px to the right (the length of a handful of words); and the cursor must have moved

back to the left at least 50 px. The remaining interactions, in which the cursor was neither

inactive nor reading nor performing an action, were labeled as ‘examining.’ The final result

was five cursor patterns (including clicking which was treated as an instantaneous action)

exhibiting behaviors that warranted further analysis. I studied gaze-cursor alignment in

these behaviors next.

4.2.2 Cursor Behavior’s Effect on Alignment

I noticed that as people get more engaged with the cursor (as the behavior goes from Inactive

to Examining to Reading to Action to Click), the distance between where they are looking

and pointing decreases. By identifying when they are more engaged on the page, we can

then notice that the eye is looking somewhere near the cursor. This data shows that the

cursor works differently from the eye, because we know from human physiology that the eye

remains fixated on content it finds attractive [29], but the cursor is fixated on one spot when

the user’s focus is usually somewhere. So it’s the opposite effect—an idle cursor means the

user is probably not paying attention there.

For each of the five cursor behaviors, I computed the distance between gaze and cur-

sor. Table 4.1 summarizes the proportion of time spent in each cursor behavior and the



27

corresponding median distance between gaze and cursor. As expected, gaze and cursor are

further apart when the cursor is inactive, since the eye is still roaming the SERP—233 px.

Alignment is much closer when the cursor is being actively used to examine, read, or perform

an action. The median distance when examining the page using the cursor is 167 px, while

the alignment is closer when using the cursor to read—150 px. When the subject is moving

the cursor to perform an action involving a click, alignment is extremely close—77 px, and

even closer at the actual click—74 px. These findings agree with Hauger et al. that being

in motion increases the alignment between cursor and gaze [44].

Behavior Inactive Examining Reading Action Click

Total Time 58.8% 32.9% 2.5% 5.7% -

Distance 233 px 167 px 150 px 77 px 74 px

Table 4.1: The median gaze-cursor distance for different cursor behaviors. The total time
is summed across all subjects and search tasks.

During the study, the cursor was inactive a total of 18,554 seconds (58.8% of the time),

representing time the subject may have been looking through the page without moving

the cursor or just pausing for a few moments to read or think. Inactive time is more

than the combined time spent examining, reading, and performing an action on the page,

meaning that a substantial period exists in which it is difficult to predict the gaze position.

Anecdotally, some people believe they rarely use the cursor while examining Web pages.

But in aggregate, a large portion of time is still spent actively moving the cursor, most of

which does not produce an action.

Claypool et al. remarked, “Some users move the cursor while reading the window text

or looking at interesting objects on the page, while others move the cursor only to click

on interesting links” [20]. I quantified individual differences in gaze-cursor alignment and

cursor behavior; Appendix B presents the duration of each cursor behavior and gaze-cursor

alignment for each subject. The distances were macro-averaged over search tasks for each

subject to mitigate the effect of a subject spending more time on certain search tasks.

Leaving the cursor idle from 50% to 79% of the time was common, like Subject 29 who
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left the cursor inactive during the majority of the time. Other subjects actively moved the

cursor while examining the page; Subject 12 spent 55% of their time examining the page

with the cursor, and a mere 29% of their time idling the cursor. Reading behavior comprised

2% or less of total search time for more than half the subjects (22 of 36), who exhibited

nearly no reading behavior (per the definition of this behavior that I used). At the other

end of the spectrum, Subject 9 spent 8% of their time reading with the cursor. Turning to

gaze-cursor distance, some subjects had poor alignment (Subject 33) when not performing

an action. While in the aggregate, subjects had stronger alignment when the cursor was

active, Subject 18 had essentially unchanged alignment between inactive, examining, and

reading behaviors. These differences show that individuals vary substantially in their cursor

behavior usage and gaze-cursor alignment. I initially thought that perhaps the variation in

users’ gaze-cursor alignment could be explained by choice of cursor behavior, but for each

cursor behavior, gaze-cursor alignment still varied substantially among the subjects.

4.3 Alignment Effects of User and Task

In addition to the aggregate analysis in the previous section, gaze-cursor alignment can also

be viewed through slices of user and search task.

Different people behave differently on the Web in the queries they issue [96], how they

gaze at the page [5, 30], and how they interact with the page [41]. People visually exam-

ine Web pages differently [12], and have individual styles in their control of the cursor. In

essence, there are different types of “personalities” of how people move their cursors. Adopt-

ing the terminology from prior eye-tracking research [5] users can be classified as exhaustive,

representing users who like to review all the information before making a decision, or as

economic users who jump on the first link that looks attractive or potentially satisfying2.

Past findings have shown that users behave differently depending on search tasks (e.g.,

between informational and navigational task types [25]). Guo and Agichtein analyzed gaze-

cursor alignment [41] on a smaller subject pool and found differences in user (up to twice the

average distance between gaze and cursor for some users) and search task type (navigational

2In the field of information seeking behavior exhaustive users are similar to Explorers, while economic
users are similar to Navigators [98].
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vs. informational). Here I explore whether search task or individual differences (including

age and gender) have a stronger effect on alignment. Larger variances in alignment would

indicate that a search system might have difficulty predicting alignment for users or queries

that have not occurred before.

To study alignment differences among subjects, I macro-averaged the gaze-cursor dis-

tance across their queries (i.e., took the average of the average for each of their queries, thus

giving equal weight to each query). The results in Figure 4.2 show that subjects are fairly

distinct in terms of gaze-cursor alignment. Some keep their cursor within about 130 px of

their gaze, while others average about 280 px. The standard deviation representing the vari-

ation among subjects is SD = 33.9. I checked for gender differences in gaze-cursor distance

using a two-tailed t-test and found no statistically significant effect (t(34) = 1.31, p = 0.20).

There was a Spearman correlation of ρ = 0.22 between age and gaze-cursor alignment, but

this was also not statistically significant (N = 36, p = 0.18). Therefore, I conclude that

whether the subject tracks their gaze closely with their cursor is more likely to stem from

personal habits rather than age or gender.

Next I looked at the average differences in gaze-cursor alignment for different search

tasks. Subjects were given predefined queries to begin with, filtering out reformulated

queries since reformulations may be reflective of personal style or individual search skills.

A search task is therefore represented by a single query in this analysis. For each search

task, I first macro-averaged the gaze-cursor distance across subjects to normalize the data

(i.e. averaged the distances within each subject for that task), then took the mean of this

value to compute the average distance for each task. The search task averages are shown in

Figure 4.3, which reveals that there are modest differences between tasks. The alignment

distance ranges from about 150 px to about 220 px, and the standard deviation among

search tasks is SD = 20.2.

The click entropy for each query can provide insight into the attributes of the search tasks

as a measure of result click diversity [91, 96]. The click entropy is computed as the Shannon

entropy (H ) of the click distribution on the search result links (Equation 4.1), which may

correspond with gaze-cursor alignment. It is possible that gaze and cursor align differently

depending on characteristics of the query; typically, queries with low click entropy are more
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Figure 4.2: The average gaze-cursor distance for each subject with error bars representing
the standard error. The variance between subjects is high (SD = 33.9). Subjects are sorted
by ascending age so that oldest subjects are on the right.

navigational. The past year’s search logs of the Bing search engine were used to compute

the click distributions for each query. Five queries had not appeared in the search logs in the

past year and thus had unknown entropy. From the remaining queries, I found no Spearman

correlation between click entropy and gaze-cursor alignment (ρ = 0.01, N = 27, p = 0.96).

H(q) = −
∑
u∈R

P (cu|q)× logP (cu|q) (4.1)

where u is a URL in the set of search results R, and P (cu|q) is the probability that URL u

was clicked following query q.

The standard deviation in gaze-cursor alignment across means for different subjects is

higher than across means for different search tasks. A Levene’s test for homogeneity of

variance shows that the differences in variance are statistically significant (Levene statistic3

3Levene’s test is typically used to compare the variance between two sources rather than between two
sets of macro-averaged values, so its use here is admittedly a little unusual.
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Figure 4.3: The average gaze-cursor distance for each search task with error bars represent-
ing the standard error. The variance between search tasks is modest (SD = 20.2). Queries
are sorted by ascending click entropy so queries with more diverse result clicks are on the
right; five queries with unknown entropy are on the left (shaded lighter).

= 4.529, p = 0.037). This suggests that users have individual preferences and that these

differences are stronger than the differences between search tasks. I experimented with not

normalizing the data when computing the mean averages (i.e., micro-averaging), but the

differences in standard deviation between search task and subject were similar.

These user and task differences also surface in interaction data collected remotely, i.e.

the second dataset sample described in the Methods chapter. In work that I was involved

in, Buscher et al. [16] show that there are cohorts of users who examine search results

in a similar way, and that the grouping becomes clearer when we consider task effects.

The work found pronounced task effects that impact how users engage with the SERP

and that can interact with users’ typical search behaviors. These findings were established

by analyzing logs containing detailed data on user interactions including clicks, scrolls,

and cursor movements for millions of search queries and presenting a study of individual
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differences in search result page examination behavior. By clustering the data using these

interaction features, we identified individual differences in search behavior, and strong effects

of user, task and user-task interaction.

Our initial analysis revealed six user clusters. However, we also showed that there are

strong effects from the type of search task on users’ search behavior, as well as strong inter-

action effects between task and user. When we focused on non-navigational tasks, we found

three distinct user clusters who exhibited different result examination behaviors. Promis-

ingly, users exhibited behavioral patterns similar to those found in previous gaze tracking

research [5, 30], especially the presence of exhaustive and economic groups (as mentioned in

Section 4.3). Not only do we confirm the existence of these clusters in a naturalistic search

setting, but also demonstrate that we can automatically generate them via search engine

log analysis. Identifying users with consistent search strategies and patterns is important

to understanding how systems are currently being used and create search support.

When we consider task type (by focusing on non-navigational queries) in conjunction

with user behavior, three distinct user clusters emerge. These clusters share behavioral

traits with those identified in laboratory studies, but we observe these without gaze tracking

technology and at scale on the Web, opening up a wealth of opportunity for adaptation of

the search experience based on individuals’ searching behaviors.

Tailoring the search experience to a user and task are important, but there may be

limited practical application to an adaptive model. The reason is that many users and

tasks have not been seen by the search engine before, so a personalized model is only helps

in a subset of cases, when there is enough historical data from that user or task to make

inferences. Global models like the ones presented in the next two chapters help in all cases,

and are not restricted to having seen a particular user or task before.

4.4 Temporal Effects on Alignment

In this section, I investigate the possibility that the gaze and cursor may not be most aligned

at each point in time, but rather better aligned when one variable is temporally shifted.

Researchers have found that there is some visual sequence in how users examine a Web

page, which can be predictable [12]. The duration that the search results page has loaded
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can affect where users are pointing and where they are looking at each point in time. For

example, a user may possess the habit of quickly scanning the page first to see what kinds

of items are on the page, then skimming it quickly to see if there is an answer to their

information need while neglecting the cursor, then finally reading the text word-by-word.

As the time spent dwelling on the SERP increases, the alignment between gaze and cursor

may change due to the dynamism of the behaviors.

This change may be analyzed from the eye-tracking data. Averaging gaze and cursor

distances for different dwell times, Figure 4.4 shows the relationship between gaze and cursor

over time for the first five seconds after the page loads. Indeed, the time since the page

has loaded has an effect on alignment. Specifically, the alignment distance ranges from

170 px to almost 240 px. Right when the page loads, gaze and cursor are closely aligned,

perhaps from the previous action that led to the page. The peak at 240 px is within one

second of the page loading, suggesting that the subject may first scan the displayed page

without moving their cursor. The gaze-cursor alignment narrows after about two seconds

when the subject may start to examine the page more closely and perhaps prepare to click

a link. While the subject’s actions at this stage change from query-to-query, the aggregate

alignments provide clues of typical examination behavior.

This behavior led us to ask—given that we see the eye moving within a second of the

page loading, does the cursor move as quickly? I arrived at three credible hypotheses: a) the

user treats the cursor as a reading aid [84] and so the eye follows the cursor, b) the gaze and

cursor positions are optimally aligned at each given point in time, c) or the cursor follows

gaze because the user looks at something and then moves their cursor to interact with it.

The last hypothesis is consistent with findings from early work by Ware and Mikaelian [95]

and Zhai et al. [102] that showed that the eye fixation was a faster method for target

selection than the cursor. While target selection is not the objective of this study, the

difference between eye and cursor speed may cause the cursor to lag behind the gaze.

To investigate this, I used a technique similar to cross-correlation in signal processing

that computes when two waveforms are most aligned [53]. I first interpolated cursor and

gaze positions at 50 ms intervals again using Equation 3.1. This equalized the periods

between positional data points, computing the cursor positions at different time shifts (e.g.,
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Figure 4.4: The average gaze-cursor distance at 100 ms intervals after the SERP loads,
macro-averaged over subjects. The distance is low just as the page loads, increases at 0.5–1
second, then decreases. The shaded area is the region representing the standard error of
the mean.

50 ms, 100 ms, 150 ms, ...) after each gaze position. Then I computed the root mean square

error (RMSE) between gaze and cursor4 for each shifted time interval for each subject. The

cursor and gaze positions are considered most correlated at the time shift with the lowest

RMSE.

Figure 4.5 shows the macro-averaged RMSE values across subjects compared with three

example subjects. The first thing to note is that for the macro-averaged values, shifting

the cursor positions 700 ms into the future minimizes the RMSE. This means the cursor

lags behind eye gaze by about 700 ms, so the user looks at something and then (almost one

second) later their cursor is moved to that location on the page. Temporal alignments vary

depending on the user and query session; the per-subject RMSE values showed that different

people had different delays in moving their cursor to their gaze. In the same manner, the

cursor lagged behind the gaze for each individual subject; the inverse situation—gaze lagging

behind the cursor—did not occur, refuting the hypothesis that some people lead with the

4Note that RMSE differs from the average alignment distance metric used throughout this chapter; RMSE
takes the root of the mean of the squared distances which is not the mean distance. RMSE is useful in
this instance for comparing between different values of time shift, and penalizing larger distances.
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cursor when examining the page. Still, some subjects were quick, moving their cursor to

their gaze in 350 ms (one subject had a minimum RMSE at 250 ms shift), while others took

over one second.
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Figure 4.5: The root-mean-square error for gaze and cursor distance at different intervals
(in 50 ms increments) of gaze-cursor lag, representing how well gaze positions correlate with
future and past cursor positions. The thick solid line plots the RMSE macro-averaged over
subjects, and thin dashed lines plot the RMSE for three example subjects.

So far, the findings show that while subjects vary their gaze-cursor alignment substan-

tially, they lag their cursor behind their gaze by at least 250 ms and on average by 700 ms.

Both dwell time and the user’s personal style affect the distance between the cursor and

gaze positions. Finally, as shown earlier in Table 4.1, this distance is longer when the cursor

is inactive, shorter when the cursor is used to help examine or read the page, and even

shorter when the user is performing an action.
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Chapter 5

PREDICTING GAZE WITH CURSOR INTERACTIONS1

While studying how eye gaze aligns with the cursor position is useful to understanding

behaviors (Section 4.1), knowing only the alignment has but limited application. A more

practical application is being able to actually predict the eye-gaze position based solely on

cursor interactions, so that visual attention can be determined at any point in time, and

at scale. By reducing the barrier of time and effort in acquiring knowledge about visual

attention on Web pages, I can enable a better understanding of searcher behavior.

5.1 Motivation

This chapter illustrates that cursor interactions can be used to predict eye-gaze better than

simply using the current cursor coordinates, thus estimating user attention more accurately.

In other words, rather than simply determining how likely the gaze and cursor are aligned, I

propose a technique to select different points on the screen that are more likely to be where

the user is looking than the current cursor position. The technique uses features from the

cursor interactions and uses the lessons from the previous chapter to build a model for

predicting where people were looking on a page, all while the user browses naturally from

home.

The goals of this chapter can be illustrated with an analogy. Imagine you are a spy

plane, monitoring a ship sailing in the ocean. The ship sails around, moving fast or slow,

sometimes stopping, sometimes for a purpose and other times for seemingly no reason at

all. One day, you are lent x-ray goggles and see a submarine which is normally hidden,

protecting the ship. The submarine tends to follow behind the ship, but varies greatly in

how well its position aligns with the ship. There are also patterns like when the ship is

stopped, the submarine often goes elsewhere. You learn these patterns, and after you return

1Portions of this chapter are published in CHI 2012 [49]
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the x-ray goggles, you still have a reasonable idea where the submarine may be based on the

ship’s movements. In our case, the ship is the cursor, and the submarine is the eye-gaze.

The data from the eye-tracking study reveals how the gaze and cursor are aligned, but the

eye-tracking data can be used to predict gaze even when an eye-tracker is not available by

using the model built from the study’s data.

My first attempt at this is to use a multiple linear regression which allows point predic-

tion. A later section will discuss potential next steps for predicting gaze using a hidden-

markov model, which discretizes features to do region prediction. Predicting the point where

a user is looking is similar to eye-tracking, while region prediction requires knowledge about

the layout of the page in order to be useful.

The findings from this work can be applied to many practical situations. Predicting

gaze will improve state-of-the-art techniques for approximating visual attention with the

cursor. Current commercial cursor-tracking systems merely present heatmaps of the cursor

movements and claim that the user attention is proximal to the hot areas of the map. My

findings will inform these and other applications that remotely collect large amounts of

cursor data at scale by showing how to more effectively use this data. More broadly, this

work supports collecting user attention data in situations where eye-tracking equipment is

unavailable or costly, such as for large numbers of Web users.

5.2 Cursor Features

To acquire the features, I extract four types of features from the raw interaction data, aiming

to select features that seemed to influence the gaze-cursor alignment, as informed by the

analysis in the previous chapter.

At each time t that we want to predict the gaze position, we have the cursor position

at that time, represented by a tuple (x, y). The cursor position alone is suggested for

approximating gaze position in some prior literature and current Web analytics services.

This approach is the baseline against which I will compare our performance, but I also use

cursor position as a feature in our gaze prediction model. In addition to the cursor position,
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the model uses dwell time2, temporal features relating to cursor behavior, and future cursor

positions to determine the current gaze position.

Cursor behavior has a strong effect on gaze-cursor alignment, as shown in Section 4.2.2.

Both our earlier analysis and a study by Hauger et al. [44] showed that active cursors

are better aligned with gaze than inactive cursors. A long idle time is an inactive cursor

with larger distance between gaze and cursor, while little or no idle time between cursor

movements indicates an active cursor. To generalize this, I use the idle time following the

last movement before t as the behavior feature, representing activity level. Idle time is an

easy value to compute and provides a signal of the potential strength of alignment into the

model.

Each recorded interaction on the Web page has a corresponding timestamp, allowing us

to deduce the length of time since the SERP has loaded. Our analysis has shown that the

time since the SERP loaded influences the gaze-cursor alignment. This time (currentt −

pageloadt) is the dwell feature, which I incorporate into the linear regression model. Guo

and Agichtein also use this feature to predict gaze-cursor alignment [41]. This feature has

the potential to influence both x-axis and y-axis predictions because of the visual sequence

in which users examine Web pages.

Our analysis showed that for every subject in our study, the cursor position lagged behind

the gaze position, i.e. there is a stronger correlation between a future cursor position and

the current gaze position. I refer to the globally most likely later cursor position for the

current gaze as the future feature. The future cursor positions were only used if the last

movement was within 10 seconds of the target future time. However, including future cursor

positions in the model prevents the ability to predict gaze in real-time (see the Discussion

section for detail).

The model also incorporated the interaction effect of cursor position with dwell and

cursor position with behavior, since we know that behavior and dwell affect alignment. The

user or query were not treated as features for two reasons. First, in practical situations, a

user’s gaze data is not available to train the model. Second, there is unlikely to be enough

2Dwell time here is the page dwell time as typically measured in information retrieval literature, rather
than cursor dwell time.
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gaze data for most queries to train the model, and the analysis described in an earlier

chapter found that query only has a modest effect on gaze-cursor alignment. Our current

features are all global and so require fewer training examples in the form of eye-tracking

data (i.e., actual gaze positions).

5.3 Experiment

I predict the subject’s gaze position using a linear model of interaction features to see if

the predicted position is closer to the ground truth than the simple cursor position. The

ground truth is the gaze position measured by the eye-tracking system during the lab study.

The x- and y-coordinates of the gaze position were predicted separately (i.e., univariate

prediction). To compute the weights (coefficients) for each feature, I performed a multiple

linear regression. Figure 5.1 illustrates the value of gaze prediction in an example query

session with cursor positions, gaze positions, and predicted gaze positions overlaid on the

SERP.

The model for the regression for the x-coordinate is:

gx ∼ cx + log(td) + log(tm) + cx × log(td) + cx × log(tm) + fx (5.1)

where td is the dwell time, tm is the time since a movement, cx is the x-coordinate of the

cursor position, gx is the x-coordinate of the gaze position, and fx is the most likely x-

coordinate of the gaze based on future cursor positions. The regression equation for the

y-coordinate was similar, but substituting x for y in Equation 5.1.

The evaluation was a 36-fold cross-validation, where each fold was an individual subject;

this is essentially a leave-one-out evaluation for each subject. By testing each subject

separately with the training data of all 35 other subjects, we achieve a practical method of

predicting the gaze position for users that have not been seen before (which would be the

typical case in a real deployment unless there was a per-user training phase). Essentially,

a multiple linear regression on the gaze and interaction data of 35 “training” subjects were

used to compute the weights (coefficients); then those coefficients were used to predict gaze

positions from just the interaction data for the “test” subject. This process was repeated

for every subject being the “test” subject. For each subject tested, I computed the RMSE
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Figure 5.1: The cursor position (orange), the gaze position predicted by the linear regression
model (purple), and the gaze position as determined by the eye-tracker (green) are drawn
over the SERP presented to the subject following the query “rent a stretch limo hummer”
from our study. The figure omits the right and left columns of the SERP.

for their predicted gaze with and without the future feature, as well as the RMSE for just

the cursor positions. Without using the future feature, there is a potential application for

real-time gaze prediction, while with future cursor positions, the gaze prediction must be

performed offline (after the query session, e.g., for analytics).

Table 5.1 shows the results of the prediction experiment. When using only the cursor

position for prediction, the distance RMSE is 236.6 px. But using a multiple linear regression

with cursor position, behavior, and dwell time, the predicted gaze position is significantly

closer to the actual gaze position—186.3 px, a 21.3% decrease in RMSE. Adding future
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RMSEx RMSEy RMSEd

Cursor (baseline) 185.0 px 145.0 px 236.6 px

Predicted Gaze with

Cursor+Behavior+Dwell
125.2 px 137.1 px 186.3 px

Predicted Gaze with

Cursor+Behavior+Dwell+Future
125.1 px 129.9 px 181.1 px

Table 5.1: The computed accuracies in cross-validation evaluations of estimating the gaze
position using the cursor position, the cursor position along with behavior and duration
using multiple linear regression, and the cursor position along with behavior, duration,
and future cursor positions using multiple linear regression. The accuracy is measured by
root-mean-square error for the x-axis, y-axis, and Euclidean distance.

cursor data from that query session to the model reduces RMSE further to an overall 23.5%

decrease in RMSE compared to just using the cursor position. The RMSEs in the x- and

y-coordinates alone were similarly improved by the linear model. An ANOVA shows that

the RMSE differed significantly between gaze-cursor alignment and alignment between gaze

and predicted gaze along the x-axis (F (2, 105) = 59.72, p < 0.001) and Euclidean distance

(F (2, 105) = 41.31, p < 0.001).

The Lindeman, Merenda and Gold (LMG) metric [69] (R2 partitioned by averaging over

orders) determined the relative importance of the features for predicting the x-coordinate.

This metric differs from regression weights which depend on the unit of measurement for the

feature. Using LMG, the features were in descending order of importance: log(td), cx, fx,

cx× log(tm), log(tm), and cx× log(td); the relative importance of the features for predicting

the y-coordinate in descending order: cy, fy, log(td), log(tm), cy × log(tm), and cy × log(td).

5.4 Discussion

This analyses in Chapter 4 has shown that gaze-cursor alignment is situational, as it depends

on the time spent on the page (Section 4.4), personal browsing habits (Section 4.3), and

a user’s current cursor behavior (inactive, examining, reading, action) (Section 4.2.2). A

model using these features could predict the subject’s gaze significantly better than using

the cursor position alone. These findings have implications for using large-scale cursor data
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more effectively, which has already been demonstrated to be efficiently obtainable at scale,

both in prior work [4] and in this dissertation.

The findings suggest that for certain circumstances, it may be possible to predict the

actual gaze position on SERPs using only cursor features. This extends previous work [41]

which attempted the binary prediction task of whether we can be confident of gaze-cursor

alignment within a threshold. Using a linear model, I show that there is room for improving

gaze prediction by using other factors on top of solely the cursor position. The predictive

model reduces the RMSE by 60 px in the x-direction and is 15 px more accurate in the

y-direction. 15 px is around two lines of text on a SERP, and 60 px is around 10 characters

of that text. These gains could be significant for differentiating between engagement with

regions on the SERP, especially when the cursor is near the boundary of two or more regions.

However, since the linear regression fits using least squares, the predicted gaze tends to be

conservative and often stays around the center of the screen. This leads us to believe that

gaze prediction may be improved further by a more complex combination of the features,

perhaps in non-linear models, since interaction effects of time, behavior, and cursor position

exist.

The gaze prediction results in Table 5.1 suggest a counterintuitive finding. While several

past studies [41, 83] and our own analysis from Section 4.1 agree that the cursor is better

correlated with the gaze in the y-direction than the x-direction, the x-coordinate of the gaze

is easier to predict than the y-coordinate. This undermines the expectation that better

correlation leads to better prediction for gaze. This phenomenon may be an artifact of

the prediction model, but perhaps left-right eye movement is less surprising than up-down

movement. Scrolling may cause the cursor to move down relative to the page, making it a

good estimate of vertical attention, whereas most SERPs require little horizontal scrolling.

The results show that one can predict gaze more accurately when using past and future

cursor movement data, rather than only past data. However, the gain in accuracy is quite

small, whereas using past data alone would allow us to build applications that could respond

to user attention in real-time, such as a focus-plus-context view of the SERP, in which the

context could update dynamically with new content based on where the user had already

attended during their engagement with the SERP. Still valuable however, is inferring gaze
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positions after the user has left the SERP. This would allow us to accurately model where

on the SERP the user examined and use this data for applications such as building richer

searcher models (improving on existing models, e.g., [18, 37]), usability assessments [3, 4],

or profiling users [4]. Thus, whether or not to use the future cursor positions in practice

may depend on the application, since the accuracy gain is minimal.

Cursor tracking, deemed the “poor man’s eye tracker” [22], may approximate gaze track-

ing without the eye tracker depending on the accuracy required. Although cursor features

would allow us to model many aspects of user attention in situ as they browse the Web

from home, they cannot completely replace gaze. For example, eye-gaze fixation is a posi-

tive signal of interest because the user pays more attention to that position, but prolonged

cursor fixation may not be since given this study’s findings, the user’s attention is probably

elsewhere. Here I elected to focus on understanding different cursor behaviors rather than

gaze fixations to support cursor-tracking applications that can be remotely deployed on a

Web site. More work is needed to study in more detail the relationship between cursor and

gaze fixations, especially to determine if and when there are cases in which cursor fixations

can be reliably interpreted as attention.

5.5 Further Extensions: Non-Linear Methods

The relationship between gaze and cursor is not necessarily linear. In fact, I observed many

instances where there was a non-linear relationship between the two trails. For example,

the inactivity of the cursor affects the vertical movement of the eye on the page because

the user is likely scanning up and down the page after moving their cursor aside. However,

making non-linear predictions is inherently more challenging because it is unclear how ex-

actly to define the relationship. The space of possible relationships between the features

is intractable, but models may be constructed using an understanding of how the cursor

features affect eye gaze. This section describes two potential methods for predicting gaze

using non-linear models, one developed by myself and the other [74] by Navalpakkam et al.

They represent potential future directions to pursue if getting the best predictions of gaze

positions is the ultimate goal.
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5.5.1 Using Hidden Markov Models

Because of the sequential nature of the eye-gaze movements, the movements map well to a

hidden-markov model (HMM). In the HMM, the gaze positions can be treated as the hidden

states with transitions between different positions. The cursor interactions are the observed

features that are output depending on the gaze positions and the intent of the user (Figure

5.2). Using the eye-tracking data that includes both gaze and cursor features to train the

HMM, it is possible to estimate where the eye is looking.

= Observed

= Hidden

Gaze
Position

Time

Cursor 
Features

Gaze
Position

Cursor 
Features

Gaze
Position

Cursor 
Features

Figure 5.2: An example hidden markov model for predicting gaze positions.

Because the HMM is a discrete model, the features and gaze positions have to also be

discretized. Rather than prediction the actual position of the eye-gaze, it is useful to instead

predict the gaze position relative to the cursor position. That is, using polar coordinates of

the gaze relative to the cursor. Instead of predicting the x and y coordinates, predicting the

angle and distance between gaze and cursor may make sense in an HMM, as variables that

are more meaningful to a user. The angle and distance can be discretize to form regions

emanating from the cursor’s position, with larger regions existing further from the cursor.

However, further research is needed to explore empirically how well an HMM can predict

the region a user is looking in.
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5.5.2 Extensions of Gaze Prediction Models

Navalpakkam et al. extend my methods of gaze prediction in two ways [74]. One is by

exploring gaze prediction on 2-column page layouts, which is less typical in search but

may represent cases when information or advertisements are shown in the second column.

Secondly, they make gaze predictions using a non-linear model of cursor interactions through

a kernel method. They also conduct experiments to show that using the historical behavior

from a particular user can improve the gaze prediction for that user as well. Similar to the

gaze prediction methods presented in this chapter, their methods perform point prediction

as well as region prediction, and take prediction accuracy one step further.

5.6 Summary

In the previous chapter, we have seen the effects of user, query, dwell time, cursor behavior,

and future cursor positions on gaze-cursor alignment. These features can provide guidance

about whether the alignment is stronger or weaker, but predicting the strength of alignment

is only useful in determining the confidence of the gaze position from only interaction

features. Claiming that the cursor approximates the gaze is misguided, as I showed before,

because this assumption is often not true depending on time and behavior. Instead, a more

practical prediction task is to find the position of the user’s attention when an eye-tracker

is unavailable by using interaction features.

This chapter shows that it is possible to improve upon using cursor position alone to

predict the gaze position by using several cursor features. Note that while the evaluation

uses data from an eye-tracking lab study, a pre-trained model can predict gaze at Web scale

in any situation where cursor interactions are collected. Cursor movements, scrolling, and

other client-side interactions are easy to collect at scale, which many Web analytics services

offer to do. The linear regression technique predicts the gaze position using cursor features

to achieve 23.5% more accuracy than simply using the corresponding cursor position alone.

Non-linear methods are also possible to reach higher levels of prediction accuracy. Chapter

7 focuses on a more focused task of computing attractiveness and relevance of search results

specifically.
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Chapter 6

PATTERNS OF CURSOR MOVEMENTS DURING SEARCH1

A first step to making use of cursor interactions is to explore the nature of the data

to find out how people are actually using their cursors when they search, specifically how

their move their cursor when they search. One aspect to this exploration is learning what

results they hover over, and what this may mean for result relevance and examination. This

chapter reports analysis of the first data sample gathered through remote cursor tracking

(see Method from Section 3.2).

6.1 Hover on Search Results

6.1.1 General Cursor Activity

Aggregate analysis of general cursor activity can provide an overview of how users actually

use their cursor when examining results. This subsection determines where on the SERP

users click and move their cursors. The coordinates of the recorded clicks and movements

offer some initial insight into differences between click and movement data.

The positions of where a user has clicked or moved their cursor can be overlaid on

the SERP, and a simple heatmap illustrating these cursor positions can be beneficial for

website designers or usability professionals. Figure 6.1 shows heatmaps for clicks and cursor

movement activity for the same query aggregated over all instances of the query [lost finale

explanation] (in reference to the final episode of the US television series “Lost”) observed

25 times from 22 different users in our data. Heavy interaction occurs in red/orange/yellow

areas, moderate interaction in green areas, and light interaction in blue areas. Most of the

clicks occur on results 1, 3 and 7, and this is also seen in the cursor activity. However, there

are some interesting differences as well. For example, there is considerable cursor activity

on result 4 even though it is not clicked. The cursor heatmap also shows some activity on

1Portions of this chapter are published in CHI 2011 [51]
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Figure 6.1: Heatmaps of all click positions (left) and recorded cursor positions (right) for the
query lost finale explanation. Heavy interaction occurs in red and yellow areas, moderate
interaction in green areas, light interaction in blue areas.

query suggestions (on the left rail) and advertisements (on the right rail) although there are

no clicks on these regions. Across all queries, cursor positions are more broadly distributed

over the SERP than clicks. Thus, cursor movement can provide a more complete picture of

interactions with elements on the SERP. Such information may be useful to search engine

designers in making decisions about what content or features to show on search result pages.

6.1.2 Search Result Examination

In addition to monitoring general cursor movement activity on the SERP, we can also

summarize cursor movements that reflect how people examine the search results. Previous

work on gaze tracking demonstrated differences in the length of time that users spend

reading each of the results based on its position in the ranked list [25]. In a similar way,

it is interesting to determine whether the time participants spent hovering over the search

results was related to the position in the ranked list. Using the data about the location of

the SERP elements in conjunction with the cursor positions, I could determine when each

search result title was hovered over by the cursor. Figure 6.2 presents a graph of the average
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time spent hovering over each search result title (shown as bars; corresponding scale shown

on the left side), and the average time taken to reach each result title in the ranked list

(shown as circles connected with lines; corresponding scale on the right side). To reduce

noise caused by unintentional hovering, I removed hovers of less than 100 ms in duration.

Error bars denote the standard error of the mean (SEM).
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Figure 6.2: The mean title hover duration (bars) and the mean time for the user’s cursor
to arrive at each result (circles).

The figure shows that time spent hovering on the results decreases linearly with rank and

that the arrival time increases linearly with rank. The results are similar to gaze tracking

findings reported in previous literature [14, 25, 57]. Hover time decreases with rank as was

previously reported; however, cursor hover time drops off less sharply than gaze duration.

This difference may be due to some missing data of rapid skimming behavior on low ranks

that has been observed previously [14, 25, 57], since the data only comprised hovers after a

40 ms pause (to reduce data payload) and filtered out hovers of 100 ms or less (to reduce

cases of capturing accidental hovers). As expected, search results that are lower ranked are

entered later than higher ranked results due to the typical top-to-bottom scanning behavior

[23]. The arrival time is approximately linear, suggesting that users examine each search

result for a similar amount of time.

I also examined which results were hovered over before clicking on a result, re-querying,
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or clicking query suggestions or advertisements. This analysis provides further information

about how searchers are using their cursor during result examination and again allows us to

compare the findings with prior eye-tracking research from Cutrell and Guan [25]. Figure

6.3 summarizes the findings, showing the mean number of search results hovered over before

a click as blue lines, and clicks as red circles. The data are broken down by result position

(1–10), and separately for clicks on query suggestions, clicks on ads, and re-queries.
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Figure 6.3: The mean number of search results that users hovered over before clicking on
a result (above and below that result). Result clicks are red circles, while result hovers are
blue lines.

Figure 6.3 shows that prior to clicking on a search result, people consider the surrounding

search results. For example, before clicking on result 1, searchers also hover on results 2

and 3 on average; when they click on result 2 they also hover on results 1, 3, and 4; etc.

The findings are similar to those reported by Cutrell and Guan [25], but differ in that the

search result hovers do not appear to extend as far above the clicked search result in cases

where a result is clicked on far down the list (in positions 6–10). This difference may be

because queries where low-ranked clicks are observed may have clearly irrelevant results

in top ranks, and by excluding hovers of less than 100 ms we miss rapid skims over such
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irrelevant results.

The findings also show that users consider many results prior to turning their attention

to the additional SERP features: on average, six results in the case of query suggestions,

five results in the case of advertisements, and around four results prior to re-querying. This

behavior is similar to that reported in Cutrell and Guan [25], at least in terms of re-querying,

which is examined in both studies. Cutrell and Guan do report inspection further down the

list (up to rank position 8) prior to re-querying, whereas the findings here show that users

hover over approximately four results. One explanation for the difference is that the cursor

does not track well with eye movements in situations where users rapidly skim low-ranked

search results. An alternative explanation is that in naturalistic non-laboratory settings,

users may only consider the top-ranked search results prior to trying another query by

clicking on a query suggestion or re-querying.

The next section compares the distributions of search result clicks and search result

hovers, expanding on this analysis of search result behavior.

6.1.3 Comparing Click and Hover Distributions

Prior studies have presented data on click distribution [57, 77] or gaze distribution for the

search results [14, 57]. These distributions reveal on average how much attention a user gives

to each result because of its rank and other features such as snippet content [25]. Some

theoretical models of behavior depend on accurate assumptions of these distributions, e.g.,

Huang and Kazeykina [48] assume the frequency with which users review a search result is

a power law of its rank, while Wang et al. [94] assume the frequency with which a search

result is clicked follows a geometric distribution of its rank.

Click and hover distributions can be analyzed using the cursor positions and layout

of the SERP collected from the remote cursor tracking dataset. This analysis presents a

cursor hover distribution over search results and compares it with the corresponding click

distribution. Figure 6.4 shows both the number and proportion of cursor hovers and clicks

that occur on each of the top ten search result links. Bars representing absolute counts are

scaled by the primary y-axis (on the left), e.g., there are approximately 240,000 occurrences
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of the cursor hovering on the first search result. Circles representing percentages are scaled

by the secondary y-axis (on the right), e.g., 50% of result clicks occur on the first search

result.
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Figure 6.4: Frequencies and percentages of cursor hovers and clicks occurring on the search
results. The percentages reflect the proportion of hover or click events over all ten results.

As is typical in SERP interactions, users interact more with top-ranked search results

because they are in a more accessible location and are presumed to be more relevant.

However, Buscher et al. reported that the distribution of clicks does not always reflect the

relative distribution of visual attention (measured by gaze in their study) [14]. Similarly,

we find that hovers are more uniformly distributed across the top-ten results than clicks,

and the hover rate is higher than clickthrough rate for all ranks beyond the first position.

6.1.4 Unclicked Hovers

In cases where there is no click, cursor interactions are particularly important as they

become the only interactions that can be captured. This subsection investigates whether

hovering over a result but not clicking on it can be a useful signal of user interest. To
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examine this, I define an unclicked hover as an instance of the cursor hovering over a link

but not clicking that link before being moved to another location on the page. Table 6.1

shows the number of unclicked hovers on a search result and the percentage of times that

it was subsequently clicked by the same user. Result clicks can occur without an unclicked

hover in two scenarios: when the user does not hover over the result for at least 100 ms, or

if they don’t move their cursor to another location on the page before clicking the result.

# unclicked hovers Results clicked

0 7.0%

1 16.7%

2 19.0%

3 22.4%

4 23.3%

5 25.2%

Table 6.1: The percentage of unclicked hovers for which the hovered search result was
eventually clicked.

When there are no unclicked hovers, the result is not likely to be clicked (only 7% of

the time). Observing one or more unclicked hovers dramatically increases the likelihood of

a result click, perhaps because it demonstrates that the user has attended to it. The trend

appears to be that the more occurrences of unclicked hovers, the more likely the user will

ultimately return to the result and click it. The Pearson correlation between the number of

unclicked hovers and the percentage eventually clicked is strong (r = 0.84), when considering

up to 10 unclicked hovers. Thus the number of unclicked hovers on a result may help predict

result clickthrough or perhaps result relevance.

Segmenting the unclicked hovers by the search result rank shows that result rank sig-

nificantly affects unclicked hover behavior. Figure 6.5 shows the proportion of each result

rank that is eventually clicked after an unclicked hover.

The blue squares show that a search result is eventually clicked after an unclicked hover

around 25% of the time for the top-ranked result and less than 15% for low-ranked results.

However, when we consider that low ranked results typically have a low clickthrough rate,
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Figure 6.5: The proportion of search results that are eventually clicked after an unclicked
hover, plotted against the click distribution from Table 6.1.

an unclicked hover on a low ranked result may actually provide implicit feedback that

the result is relevant. To illustrate this, I overlay the click distribution on the chart to

compare the probability that an unclicked hover results in a later click (blue squares) with

the original probability that the search result will be clicked (red circles). The chart shows

that whether an unclicked hover is a positive or negative indicator depends on result rank.

To quantify the degree of this effect I compute the phi coefficient (φ) across all queries2.

For the first search result, the presence of unclicked hovers negatively correlates with result

clicks (φ = −0.47), but for results at lower ranks, unclicked hovers positively correlate with

clicks (φ = 0.59). Thus, this is evidence that an unclicked hover can have different meanings

of result attractiveness depending on the rank of the result.

2The phi coefficient measures the association between two binary variables, a specific case of the Pearson
correlation coefficient which measures the association between two continuous variables.
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6.2 Estimating Search Result Relevance

There are a broad range of possible signals that can be extracted from large volumes of

cursor tracking data, from signals about the query type to indicators for potential search

interface enhancements. The next two sections demonstrate that capturing cursor activity

could give insights about two elusive metrics in search: relevance and abandonment. The

results showed that a user hovering their cursor over a search result was a better indicator

of its relevance than a user clicking, and their cursor movement speed and distance related

to whether they would abandon the search.

One useful signal that we attempt to extract from cursor movement data is whether the

search result is relevant to the user or not. At scale, these data could be used as an additional

data source to train search engine ranking algorithms and boost retrieval performance.

As part of this study, we gathered human relevance judgments for query-URL pairs, and

examined the correlation between features of the cursor movements and the human relevance

judgments. In addition, we examined the signaling value that cursor movements provide

compared with search result clicks, the more traditional source of behavioral data used to

estimate search result relevance.

As a first step, the human relevance judgments were obtained for thousands of queries

as part of an ongoing evaluation of search engine quality. Trained judges assigned relevance

labels on a five-point scale—Bad, Fair, Good, Excellent, and Perfect—to top-ranked pooled

Web search results for each query. The judges provided hundreds of relevance judgments

for each query. From here, we intersected the judgment data with our cursor data, resulting

in 1,290 query-result URL pairs for which we had both explicit relevance judgments and

cursor activity. These pairs formed the basis of our analysis. We computed the following

features for each pair:

Clickthrough rate: Fraction of the times that URL was clicked when the query was issued

(and URL returned).

Hover rate: Fraction of times that URL was hovered over when the query was issued (and

URL returned).
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Number of unclicked hovers: Median number of times for which the query was issued

and the URL was hovered over but not clicked, as per the earlier definition. The

number of unclicked hovers were selected as a feature because it was correlated with

clickthrough in our previous analysis (Section 6.1.4).

Maximum hover time: The maximum time that the user spent hovering over the result

per SERP instance. We take the maximum as this indicates the point where the user

was most interested in the result.

As stated earlier, the clickthrough rate is commonly used to estimate the relevance of a

URL to a query from behavioral data [57], and is included in this analysis as a baseline.

We computed the Pearson correlations between each feature and the human relevance

judgments (represented numerically as a five-point scale ranging from 0 to 4, inclusive)

independently and in combination using linear regression. Table 6.2 summarizes the find-

ings, grouped by whether results were clicked for the query. All correlations and differences

between correlations are significant at p < 0.02 using Fisher’s z-transformation where ap-

propriate.

The results of this analysis show that the use of cursor tracking data can improve esti-

mates of search result relevance. Result hover features correlate better with human relevance

judgments than clickthrough rates (0.46 vs. 0.42), and they lead to an improved model when

combined with clickthrough (0.49 vs. 0.42). In addition, even when there are no clicks for a

query, hover features show a reasonable correlation with human judgments (0.28). This is

particularly important since many queries occur infrequently, resulting in little or no click-

through data. Further analysis on the impact of query-URL popularity shows that hover

features provide most value over clickthrough rate when query-URLs are less popular. There

are large and significant increases in the correlation for query-URL pairs with fewer than

five instances in our cursor data (0.45 hover vs. 0.35 click) and small and not significant for

pairs with five or more instances (0.59 hover vs. 0.58 click). Thus cursor data appears to

be especially useful when click data is less plentiful, which allows relevance estimates to be

made for a much larger range of queries.
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Result 
clicks or 
no clicks

Feature source 
Correlation with 

human relevance 
judgments 

Clicks 
(N=1194) 

Clickthrough rate (c) 0.42 
Hover rate (h) 0.46 

Unclicked hovers (u) -0.26 
Max hover time (d) -0.15 

Combined1 0.49 

No clicks 
(N=96) 

Hover rate 0.23 
Unclicked hovers 0.06 
Max hover time 0.17 

Combined2 0.28 
1 y = 2.25 – 0.1c + 1.38h – 0.08u – 0.12d;  2 y = 0.36 + 0.80h + 0.22u + 0.30d 

Table 6.2: Correlations between click and hover features and relevance judgments for queries
with and without clicks.

The correlations between human judgments and unclicked hovers and hover time are

interesting as well. For clicked queries, unclicked hovers and hover time are negatively

correlated with relevance judgments. This result appears to contradict previous findings

which suggested that hesitation over a result is a positive indicator of relevance [70, 73].

One explanation may be because clicks often occur on top-ranked results, where unclicked

hovers are negatively correlated with clickthrough (as shown in Figure 6.5). For unclicked

queries, we find small positive correlations between judgments and all measures. Unclicked

queries have fewer relevant results, leading to more exploration lower in the search results

(where unclicked hovers are positively correlated with clicks).

In this section, I showed that the correlation between explicit relevance judgments and

search activity increases when cursor actions are added to clicks, especially when clicks are

infrequent or unavailable.
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6.3 Distinguishing between Good and Bad Abandonment

A second signal drawn from cursor information is the likely reason the user abandons a

search. Abandonment occurs when searchers visit the search engine result page, but do

not click. As noted in previous research [68], abandonment can suggest that users were

not attracted to any of the search results (bad abandonment) or that they have found the

answer directly on the SERP (good abandonment). For example, for queries like [Vancouver

weather] or [WMT stock price], answers are typically shown on the SERP so there is no

need for people to click through to other pages. We now examine whether features of SERP

cursor behavior can distinguish between good and bad abandonment.

As reported in Li et al. [68], it may be straightforward to estimate good or bad aban-

donment for queries where search engines offer special interface treatment (e.g., weather

updates or stock quotes). A more challenging scenario is determining whether observed

abandonment for other queries is good or bad. To study this we selected queries from our

log data that were short questions (ending in a question mark) which could be answered

by SERP snippets. A similar query class was also studied in earlier abandonment research

[68]. To identify examples of likely good abandonment in such cases, we performed some

hand labeling.

Whether these short questions were answered on the SERP was determined by a human

judge reviewing the results returned to users and identifying whether an answer appeared

in the snippet text of results. Judgments were made for results which were hovered over

for at least 100 ms, indicating that they had been attended to but not clicked on. Of the

859 queries for which the SERPs were visually inspected, 184 (21%) contained the answer

in the snippet content and hence were identified as likely examples of good abandonment.

The remaining 675 queries were classified as bad abandonment.

We computed summary measures that reflect how the cursor was used on the SERPs.

Specifically, we looked at cursor trail length, cursor movement time, and cursor speed for

each SERP, defined as follows:

Cursor trail length: Total distance (in pixels) traveled by the cursor on the SERP.
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Movement time: Total time (in seconds) for which the cursor was being moved on the

SERP.

Cursor speed: The average cursor speed (in pixels per second) as a function of trail length

and movement time.

Feature 
Abandonment Type 

Good Bad 
M SEM M SEM

Cursor trail length (px) 1084 98 1521 71 
Movement time (secs) 10.3 0.9 12.8 0.6 
Cursor speed (px/sec) 104 9 125 5 

Number of queries 184 675 

Table 6.3: Features of cursor trails for queries associated with likely good and bad aban-
donment.

Table 6.3 shows the mean (M) and SEM for each measure. As can be seen from the

table, the preliminary analysis reveals differences in trail length, movement time, and the

speed with which users moved their cursor in good and bad abandonment queries. Cursor

trails were shorter in cases where good abandonment was likely, compared to instances of

bad abandonment. Searchers also spent less time moving the cursor, and moved the cursor

more slowly when answers were in the snippet (good abandonment). All differences between

the measures for good and bad abandonment were significant using independent measures

t-tests (trail length: t(857) = 2.58, p = .01; movement time: t(857) = 2.20, p = .03; cursor

speed: t(857) = 2.17, p = .03). It appears that when the answer appears on the SERP,

users need to consider fewer results, and move the cursor more slowly as they examine

snippet content in detail. These findings show that features of cursor trails, such as length,

duration, and speed, are different for good and bad abandonment.

Diriye et al. build off this work [27] by using cursor features for classifying the reason

why a user abandoned a query. Cursor movement distance was also an important feature
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in distinguishing between abandonment reasons in their experiment. Like the findings pre-

sented here, Diriye et al. showed that there some some ability for cursor interactions in

distinguishing between good and bad abandonment. Knowing the true reason for abandon-

ing a query allows search engines to learn from the feedback, as it provides a clearer signal

of which result snippets are attractive for a given query.

The last two sections presented ways in which cursor interactions could signal two search

metrics: estimating search result relevance and distinguishing good abandonment from bad

abandonment. The first signal was based on features from search result hovers, whereas

the second came from features derived from cursor trails. In the first application, cursor

interaction data captured for uncommon queries where strong indicators of relevance such as

result clicks may occur less frequently or not at all. Analyzing click logs for a query that has

been issued several times but never clicked may provide limited relevance information, but

cursor behavior on the SERP associated with the query provided insight about relevance.

In the second application, in cases of so-called good abandonment [68], where the content

on the SERP satisfied the user’s information need directly, a search result click may be

unnecessary. Thus the lack of a click should not always be interpreted as a search failure;

instead, cursor movements in the form of trails can help distinguish between good and bad

search abandonment.

This chapter has presented correlations between cursor movements and hover and in-

teresting search metrics. The next chapter takes large-scale cursor interactions on search

results further by applying them to a searcher model to better infer document relevance, a

key search metric.
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Chapter 7

EXTENDING SEARCHER MODELS WITH CURSOR
INTERACTIONS1

While a good understanding of user behavior can inform search engine designers how do

develop search interfaces or lay out the information, it does not directly show how the cursor

interactions can be used to improve the search engine, a central goal of this dissertation.

This chapter presents work extending a dynamic Bayesian network model of clicks to include

cursor hovering and page scrolling to model user search result examination behavior. With

the right data, this approach enables search systems to compute more accurate parameters

of result attractiveness and document relevance. These models could be used to better label

Web documents for relevance to a query, improving the ranking of search results. For the

top 5 search results, the extended model incorporating cursor interactions was about twice

as likely to outperform a standard click model than vice versa.

7.1 Motivation

Being able to compute relevance scores from implicit feedback allows a search engine to

better rank the search results for future queries. Clicks (in the aggregate) provide a clear

signal that users were attracted to the search result, and numerous studies have used click

data in searcher models to infer relevance scores. These searcher models (e.g., [18, 23, 93])

track the user’s state as they examine search results and use the observable events (e.g.,

clicks) to infer search result attractiveness and document relevance. However, query logs

possess inherent limitations as I noted earlier: they are unable to reveal actual user intent,

provide little data about uncommon queries, and omit many interactions. Furthermore,

they are uninformative for queries that have no clicks, i.e., abandoned queries.

In this chapter, I will introduce how the cursor interaction data can be used to sup-

1Portions of this chapter are published in SIGIR 2012 [50]
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plement query and click data. Cursor movements and scrolling can be additional implicit

signals of relevance. These interactions can be captured at scale and can be recorded with-

out disrupting the user, as was shown in Section 3.2. Actions such as cursor hovering and

scrolling can be translated into implicit relevance feedback when overlaid on the SERP.

Here, I explore techniques to extend searcher models by using cursor hovering and scrolling

activity to reveal latent variables in these searcher models to more accurately infer search

result attractiveness and document relevance. To date, this is the first study that explores

the potential of cursor and scrolling interactions for use in searcher models.

The contribution in this chapter is the experiment extending a popular searcher model

by adding hover and scroll data, informed by our analysis of replays of user interactions on

the search results page. Qualitative evidence shows from a human observer’s perspective

that hovering and scrolling provide insight into the user’s intentions and attention as they

examine the SERP. Searcher models can be improved further by estimating whether a search

result was viewed based on cursor hover and scroll behavior.

7.2 Cursor Data

We recorded interaction data directly on the SERP of the Bing Web search engine using

the large-scale cursor tracking method described in the Methods chapter, as the second

sampled dataset, between May 26, 2011 and June 7, 2011 (see Table 3.1 for a description).

The sample was drawn by user, storing every query from each user in the experiment.

To obtain a detailed understanding of user interactions with the SERP, we measured

and recorded a variety of interactions with the page as well as page characteristics, such as

the layout of elements on the page. The data comprised information on cursor movements,

clicks, scrolling, as well as bounding boxes of certain components on the SERP and the

browser’s viewport size.

Figure 7.1 presents a fictional query along with the corresponding click data and client-

side interactions. In this and many other cases, the cursor and scrolling data reveals addi-

tional information about the user’s intent. In the above scenario, the query logs only show

that a query was issued, and that some time later, the fourth result was clicked. This is

useful information, but the interaction data supplement this by showing that the user was
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Query: lady gaga concert tickets

Cursor moves from top to hover over 3rd search result

Cursor pauses for 3 seconds

Text “Tour Dates Only” is hovered with the cursor

Cursor moves to the 4th search result, pausing 1s

User scrolls to the 5th search result, pausing 3s

Cursor returns to the 4th search result and clicks

Click: Result 4 [http://gaga.com/tix/]

Figure 7.1: A user searches for “lady gaga concert tickets”, examines the first page of results,
and clicks the 4th search result. Typical query logs contain only query and click data (bold).

active the whole time examining several results and that the user likely examined the 5th

result and returned to the 4th result, indicating the 1–3 and 5th results may have been less

relevant than the 4th result.

Figure 7.2 presents a fictional query that has no clicks. In typical query logs, the only

recorded data would be the query text itself. The richer cursor and scrolling data here

shows that the user did indeed scroll all the way to the bottom. We also see that the user

paused to read through the results2. In this particular case, it seems reasonable to assume

the user abandoned the query because they did not find what they were seeking. Thus,

this query can be labeled as unsatisfying in a user-centered analysis of the logs that include

cursor interaction data.

Based on these insights, we recorded several fields into the logs with the following the

techniques. A detailed treatise of the different types of data is included here to allow other

researchers to recreate the searcher model.

7.2.1 Cursor Positions

The JavaScript function for logging cursor positions periodically checked the cursor’s x-

and y-coordinates within the Web page relative to its top-left corner of the page every

2Query logs can compute the dwell time of a click, but only if another recorded event occurs after the
click.
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Query: flourless cake recipe

Cursor moves to the bottom-right over whitespace

No activity for 4 seconds

Cursor moves over to the scrollbar

User scrolls down half a screen

No activity for 2 seconds

User scrolls down half a page

Cursor makes left-right motions over the 6th result

User scrolls to the bottom of the page

User quickly scrolls back up to the top

Cursor moves to the top-right over the page

User closes the page

Figure 7.2: A user searches for “flourless cake recipe” and scrolls to the bottom of the page,
then scrolls back up and closes the window. Typical query logs contain only query and click
data (bold).

250 milliseconds. As this was the largest sample yet, new coordinates were sent to the

backend server only when the cursor had been moved more than eight pixels away from its

previously logged position. Eight pixels correspond to approximately half a line of text on

the SERP. Since cursor tracking was relative to the document, I captured cursor placement

to SERP content regardless of how the user got to that position (e.g., by scrolling, or

keyboard). Therefore, this approach was compatible with other behaviors such as scrolling

or keyboard input.

7.2.2 Clicks

Clicks were recorded using the JavaScript onMouseDown event handling method. Thus,

the backend server received log entries with location coordinates for every click, no matter

whether the click occurred on a link or elsewhere on the page (even on white space containing

no content that appears adjacent to or between SERP elements). In order to identify clicks

on hyperlinks and differentiate them from clicks on inactive page elements, we also extracted

and logged unique hyperlink identifiers that were embedded in the SERP, along with the
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corresponding URL of the hyperlink. The URL helped identify the actual search result

because different query sessions could have different search results or the same search results

ranked differently.

7.2.3 Scrolling

The current scroll position was also recorded, i.e., the y-coordinate of the uppermost visible

pixel of the SERP in the browser viewport. This coordinate was checked three times per

second and was recorded whenever it had changed more than 40 pixels compared to the

last logged scroll position. Forty pixels correspond to the height of about two lines of text.

From this coordinate I was able to gain a number of insights into scrolling activity, including

whether the user was scrolling up or down, and the maximum scroll depth in the result page,

in order to understand how far down the page the user had scrolled.

7.2.4 Page Layout

Simply logging the text of what was displayed on the SERP is insufficient for reconstructing

its layout since SERPs vary per query (depending on what kinds of SERP elements are

shown, etc.), font sizes, and other browser preferences. To reconstruct the exact SERP

layout as it was rendered in the user’s browser, we recorded the positions and sizes of

certain regions. The specific regions in which we were interested in were as follows: (i) top

and bottom search boxes, (ii) left rail and its contained related searches, search history, and

query refinement areas, (iii) mainline results area and its contained result entries, including

advertisements and instant answers, and (iv) right rail.

For each region bounding box, we determined and logged the coordinates of its upper

left corner as well as its width and height in pixels. Using this information, we could later

map the positions of cursor positions and clicks to specific regions of the page. The recorded

data also contained the size of the user’s Web browser window, which combined with the

scrolling activity could deduce information about the parts of the page that were visible at

a particular time during the query session.

Figure 7.3 presents a screenshot of the page layout of a reconstructed SERP taken from
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Figure 7.3: The reconstructed SERP during a query session replay. Light blue boxes outline
important components, a gray pointer represents the user’s cursor position, and the green
area overlays off-screen portions of the Web page. The number in the top-left is the time
elapsed since the start of the query session.

a query session replay. Important components are outlined in light blue boxes; the user’s

cursor position is shown as a gray pointer; and the green area represents parts of the Web

page not visible in the browser window on the user’s screen at the current time.

7.3 Exploratory Analyses

Before constructing any searcher models, I sought to obtain a deeper understanding of the

recorded cursor and scrolling activity since this type of data was relatively unexplored. This

included both a qualitative perspective and a more traditional quantitative analysis of the

data. The findings here informed the approach I took in enhancing the searcher model.
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7.3.1 Qualitative Observations

I began by reconstructing the SERP layout from the recorded logs, and developed a tool to

replay the entire sequence of cursor interactions on the page in great detail. This included

an outline highlighting the viewable area of the Web page (based on the dimensions of the

Web browser viewport), since this would change according to the users’ screen resolution

and their scrolling. I then visually investigated a random sample of over a hundred replays of

interactions on the search result pages made by real users. During the replays, I put myself

in the users’ place to determine their intent. My judgments of their intents were informed

by the cursor behaviors described in prior literature. These qualitative observations were a

rich way of understanding the data and provided a number of key insights that were difficult

to quantify.

First, I saw that many users could only view a small portion of the Web page initially,

which only displayed ads or an “Answer” element (such as the PhonebookAnswer, which

shows local results and contact information, in Figure 7.3); these users would often scroll

down a bit to view at least a couple of search results. The time spent pausing after a scroll

suggested that they indeed examined those newly revealed search results. Thus, the newly

reveal search results are highly related to an examined result. I was less confident that the

user had examined all the visible search results if they did not scroll, since they often clicked

a link or abandoned the query immediately after the page loaded.

Second, while I could not see where the user was actually looking, the cursor would

commonly move around the page from top-to-bottom while hovering over particular areas,

and then move to the scrollbar to reveal more search results, corresponding nicely with

the linear traversal hypothesis [56]. This behavior seemed to suggest that whenever a user

hovered over a search result, they had at least examined that result and the search results

above it.

Third, I observed some users moving their cursor back-and-forth horizontally which I

believed was evidence of them following the cursor as they read text; some users would

do this quite frequently in a single query session. This corroborates previous work that

observed this behavior in lab settings [70, 84] including our earlier analysis in Section 4.2,
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and suggests that this behavior is specific to individual users.

Finally, I observed many sessions in which the user would move their cursor quickly

and directly from the search box to the first search result, without scrolling down to view

any of the lower-ranked search results. This happened often in navigational queries, so

this provoked the question of whether interaction data would be more or less useful in

navigational queries; I explore this later in Section 7.5.2.

7.3.2 Quantitative Summary

The raw interaction events comprised cursor positions, clicks, window scrolls, and page

layout. Statistics specific to the different types of interaction data logged include:

Cursor: Users hovered over multiple search result captions (mean = 2.6, median = 2),

even for navigational queries when it became clear that a single search result would suffice.

This pattern of behavior has been observed in previous studies of eye tracking [25], as well

as previous work on large-scale cursor tracking.

Clicks: Clicks and their corresponding targets were collected in the logs regardless of

whether they were navigational clicks (clicks on a hyperlink) or interactive clicks on controls

in the page (17.1% of clicks). 64.7% of all clicks were hyperlink clicks and 35.2% were non-

hyperlink clicks, including re-query events (estimated from clicks on the upper or lower

search boxes) totaling around 11% of all queries.

Scrolling: Window scrolling is a client-side interaction that is rarely captured in the

context of Web search. Of the queries in our set, 29.7% contained at least one scroll event.

61.8% of logged interaction sequences for a query ended on a downwards scroll. As expected,

there were more downward scrolls than upward scrolls, and the majority of scrolled queries

(54.8%) comprised only downward scrolls. This suggests that most queries do not result in

the user returning to the top of the SERP to examine search results that may be hidden

following scrolling.

Figure 7.4 contrasts queries in which the user has scrolled with queries where the user

did not scroll. As expected, when the user has not scrolled, the click distribution is sig-

nificantly more skewed towards higher-ranked search results. The difference between the
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Figure 7.4: The click distributions for cases in which the user does not scroll, and when
there is at least one scroll event during the query session. The distribution is heavily skewed
when there is no scrolling, and almost linear when the user has scrolled.

click distributions is quite drastic: in query sessions where the user has scrolled, search

results in lower-ranked positions have a fairly good chance of being selected. This is con-

sistent with the examination hypothesis mentioned earlier, and supports a hypothesis that

scrolling towards a set of search results makes it likely the user has examined those results.

The observations informed the following two hypotheses that could be applied to the

searcher models: 1) when a user scrolled down, they have already examined the search

results in their viewing area and those above it, and 2) when a user hovered over a search

result, they have examined it and the search results above it. In the next section, I validate

these hypotheses by implementing them in a traditional searcher model that uses only clicks.

7.4 Extending a Searcher Model

Searcher models are structured based on theoretical knowledge of a user’s search exam-

ination process. Their internal parameters are inferred from observable data, which in

turn can be applied to compute relevance label scores for search results. Label scores are

position-independent and computed from the model for every query × search result. The
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search results can then be re-ranked using these labels for future occurrences of the same

query. Thus, a better searcher model can compute more accurate relevance labels for search

ranking.

The Dynamic Bayesian Network (DBN) model [18] was the baseline model to which the

extended model was compared against. The DBN model is the most cited searcher model

since the Cascade Model [23] (which compared favorably to all models that came before).

It compares favorably to the Cascade Model in recent evaluations [18, 103], and fares well

compared to other models (e.g., [103, 104]). Thus, the DBN model serves as a solid baseline

for our purposes; it provides an example searcher model in which we can focus on whether

cursor data can improve a model, rather than outperforming all models, i.e., more of an

analysis of the value of cursor data than strictly model development.

The DBN model is a graphical model where the nodes represent states of the user

examining the search results. The model is represented formally as follows:

• Ei: the user examined the search result

• Ci: the user clicked the search result

• Ai: the search result attracted the user

• Si: the landing page satisfied the user (relevance)

Ai = 1, E1 = 1⇔ Ci = 1

P (Ai = 1) = au

P (Si = 1|Ci = 1) = su

Ci = 0⇒ Si = 0

Si = 1⇒ Ei+1 = 0

P (Ei+1 = 1|Ei = 1, Si = 0) = λ

Ei = 0⇒ Ei+1 = 0

In this model, users examine search results from top to bottom, assessing at each result

whether or not it is attractive enough to click (linear traversal hypothesis), which depends
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only on the attractiveness of the link au (examination hypothesis). If they click, there is some

probability su they will be satisfied and stop the search process; if they are not satisfied, they

either return to the search results page to examine the next search result with probability

λ, or abandon the search. Figure 7.5 enumerates the user states and decisions in the DBN

model; the “hover above and scroll towards” state was a new observable event generated

from the cursor data. Examining a search result could emit this event, but the events are

not a precondition of examining a result.

Examine next 
search result on 

SERP

Click search 
result?

Search result 
attractiveness

View document

Examine more 
documents?

Is document 
relevant?

Document 
relevance

End

Start

No

Yes

Yes

Hover above or 
scroll towards

No

No

Yes

Figure 7.5: Flow diagram of the users’ states in the modified Dynamic Bayesian Network
model enhanced with cursor hover and scrolling data. The hexagon represents the new
potentially observable events that can be captured in interaction logs.

During the exploratory analysis phase, I saw that scrolling towards a set of search results
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led to a higher chance of those results being examined. Additionally, hovering over a search

result similarly suggested that result and those above it were examined. These assumptions

were incorporated into the searcher model by adding the following constraint:

(∃h ∈ H : i ≤ h) ∨ i ∈ V ⇒ P (Ei = 1),

where H is the set of search result positions the user hovered over, and V is the set of all

search results shown when the user scrolled. These events would reveal that the user had

examined the search results, but a user examining a search result would not necessarily emit

a corresponding hover or scroll event.

I reimplemented the DBN model with λ = 1, labeled Algorithm 1 in Chapelle and Zhang

[18], to simplify the inference of latent variables. Then I incorporated the additional exam-

ination constraint into the model to validate the observations in the exploratory analyses.

7.5 Experiment

Next came an experiment to see whether this extended model truly depicted the users’

internal states more accurately than the existing DBN model. This section describes an

experiment comparing the baseline DBN model with the modified DBN model incorporating

cursor data for computing relevance labels. I define the click perplexity metric used to

evaluate the model and report the experiment and results.

7.5.1 Evaluation

While the unobserved events in a searcher model cannot be directly evaluated, the model

can be tested by how well it predicts clicks, the observable events. Click perplexity was

evaluated in a number of other searcher model studies [31, 37, 101, 103, 104] as a measure

of predicting clickthrough rates. Our evaluation used a similar methodology as the past

studies in literature: query sessions were divided evenly into training and test sets, each

comprising at least 5 query sessions; we only accepted one query session from each user for

a particular query to prevent a small number of users from dominating the data. There

were 7,341 unique queries in which at least 10 distinct users issued the query; this filtered

out queries with insufficient data.
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I compared the DBN model with only click data, as it is implemented in the literature,

with the DBN model with click and cursor data from our logs. These data were used to

train the searcher model, and the trained model was used to predict clicks in the test set3.

Better prediction of clicks in the test set implies that the searcher model (and its inferred

parameters) better reflects the result examination process. The click perplexity quantifies

how much the test data surprises the trained model; it is computed for each combination

of query and position as,

pi = 2−
1
N

∑N
n=1(C

n
i log2q

n
i +(1−Cn

i )log2(1−qni )) (7.1)

where pi is the perplexity in the ith position, N is the number of links, and qni is the

predicted click probability for the nth query session. The exponent represents the cross-

entropy estimated from a probability distribution. The lowest perplexity is 1, meaning the

trained model perfectly predicted the test data, while a larger perplexity means the model

was less accurate in predicting the test data. Because the lower bound of the perplexity

depends on the clickthrough rate of the query, the perplexity varies substantially depending

on the position of the search result. Therefore, a separate perplexity value was computed

for each of the top ten rank positions.

7.5.2 Results

This subsection reports on the results of my experiments. Figure 7.6 shows the computed

perplexities for each position on the SERP. The baseline searcher model comprising only

click data did not perform as well as the searcher model incorporating both click and

scrolling data. The latter model was further improved when incorporating hover data as

well, although the improvement was small since there is an overlap between the search

results the user scrolls to, and the search results at or above that which the user hovers

above.

It is clear that the additional cursor data improves relevance labels for search results in

positions 2–5, but the prediction is the same or slightly worse for search results in positions

3The cursor data was only used for training the searcher model, and not for testing, i.e., I did not try to
predict cursor movements and scrolling.
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Figure 7.6: A comparison between 3 variations of the DBN model: 1) the baseline model
using only click data, 2) a modified model also incorporating scrolling data, and 3) a modified
model incorporating clicks, scrolling, and hover data. Lower click perplexity represents
better prediction. Error bars represent the standard error of the mean.

6–10. However, users benefit more from the better prediction accuracy for the search results

in higher positions since users consider them more important, so there is an overall improve-

ment. More accurate click predictions signify that the document relevance and search result

attractiveness labels are more likely to be close to true objective values of these parameters.

For search results in positions 6–10, there appears to be a slight decrease in accuracy for

predicted clicks in the models incorporating cursor data. I am unsure whether this is due to

overfitting or noise in the data. The difference in perplexity for using clicks only compared

to clicks + scrolling was significant at the t(7340) = 8.26, p < 0.001 level at positions 2–5.

The difference in perplexity for using clicks + scrolling data compared to clicks + scrolling
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+ hover data was significant at the t(7340) = 3.07, p < 0.002 level at positions 2 and 3,

as the perplexity drops from 1.46 to 1.37 in position 2 and from 1.25 to 1.21 in position 3.

Both differences were significant even after applying the Bonferroni correction.

With my collaborators, we performed two additional sets of analyses of our results

designed to better understand the nature of our gains. We studied the distribution of

gains and losses across the top 10 rank positions, and studied the effect of query types

(navigational versus non-navigational) on our click prediction accuracy. I now report the

findings of each.

Gains and Losses

For each of the 7,341 queries in our dataset, and for each rank position, we determined

whether the DBN model with full cursor data (clicks + scrolling + hovers) outperformed

the model with only clicks. We then computed the percentage of queries for which the

model with cursor data attained a perplexity value above, below, or equal to the clicks-only

model. Note that to simplify the analysis, we ignored the magnitude of difference between

the models for a query. Figure 7.7 highlights the change in click prediction performance for

different positions.

The findings reveal a number of things. First, there was generally no change for the first

rank position. Second, the biggest gains from the cursor model came at position 2, where

over 60% of queries were benefited by using the additional cursor data. Third, the fraction

of queries for which the cursor model performed best decreased fairly rapidly with rank,

ending with only 5% of queries benefiting from cursor data for at rank position 10. One

possible explanation is that since users only scroll for a third of queries, we possess less hover

and scrolling evidence from which to learn user preferences at lower ranks. Finally, for the

second rank position onwards, the fraction of queries for which there is no change remains

fairly constant in the 20–35% range (increasing gradually with rank). Although there were

no immediately noticeable patterns in the queries with unchanged click perplexities, they

need more analysis since they may represent an opportunity for additional gains, especially

further down the ranking, where they represent a sizable fraction of queries.
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Figure 7.7: The percentage of queries whose click perplexity was helped or hurt by adding
cursor hover and scroll data to the DBN searcher model.

Effect of Query Intent

To investigate the dependence of relevance scoring on search task, which has shown to

affect cursor behavior (Section 4.3), we segmented the queries into navigational and non-

navigational query types to see if performance differences existed between different query

intents in the models. Teevan et al. adopted a metric of click entropy as a threshold to

classify navigational and non-navigational query types [91]. They showed that navigational

queries classified in this manner exhibited differences in user behavior. We used the same

method to segment the queries in our set, and identified 2,407 navigational queries and 3,509

non-navigational queries. The remaining 1,426 queries had a click entropy value between

the navigational and non-navigational thresholds, and were removed from this part of the

analysis.

Originally, we hypothesized that cursor and scrolling data may be less useful for nav-
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igational queries, since the clicks can be determined more easily. However, the findings

(summarized in Figure 7.8) showed that click prediction improved when cursor data was

added in both navigational and non-navigational queries, particularly in higher-ranked po-

sitions; the click predictions were almost evenly improved in navigational queries as in

non-navigational queries. Differences in click perplexity between all four combinations—

navigational and non-navigational queries, with and without cursor data—were statistically

significant at the t(5915) ≥ 7.63, p < .001 level after applying the Bonferroni correction. We

also inspected the individual queries for which the additional cursor data helped and hurt

click prediction; the queries exhibited no discernible pattern. The improvements appeared

to be uniform and not particular to one type of query.
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Figure 7.8: Comparison of click prediction between navigational and non-navigational
queries, with and without cursor data. Lower click perplexity represents better prediction.
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7.6 Limitations

The searcher model presented in this chapter was fairly simple because my goal was to

demonstrate the value of new interaction data rather than develop the best overall searcher

model. My searcher model does not take advantage of several metrics that have been shown

to improve searcher models: click order [55], the duration between clicks [45], and temporally

changing relevance of search results [90]. Another limitation is that SERPs in commercial

search engines are becoming richer and more interactive. While SERPs have greatly evolved

from 10 blue links, features such as hover preview and interactive customized displays for

many types of search results have changed how users behave. Finally, the extensions I made

to the searcher model were informed by an exploratory analysis of replays of user sessions;

the results show that there can be benefit to incorporating non-click data in searcher models,

but I have not investigated what other forms of data may similarly improve them. These

limitations can be addressed in future extensions, perhaps with searcher models beyond the

DBN model, incorporating previously mentioned factors such as click order, duration, and

temporal relevance.

7.7 Summary

Initial exploratory findings have provided key insights about user behavior. Exploratory

analyses of recorded user interactions on the SERP with both qualitative and quantitative

approaches (replays and aggregate analyses) suggested that users seem to examine the search

results they scroll towards, and the search results they hover over. These observations were

converted into constraints in a dynamic bayesian network model, a popular searcher model

originally described by Chapelle and Zhang [18]. Adding these interactions as constraints

in a popular searcher model allowed it to infer new attractiveness and relevance labels for

search results.

An experiment comparing the relevance labels from the original DBN model with only

click data to the newly computed relevance labels in the DBN model with hover and scrolling

as examination signals, showed that the additional data helped predict future clicks, imply-

ing that the labels were more accurate. After further disentangling the queries into naviga-



78

tional and non-navigational query intents, little difference was found between the two types

of queries, and visually inspecting the queries themselves sustained our confidence that bet-

ter relevance labels could be inferred across all types of queries. The experiments in this

chapter have shown that by augmenting query logs with richer interaction data attainable

at scale (in our case, cursor hover and scrolling), search systems can realize improvements

in existing searcher models. By incorporating hover and scroll events into searcher models,

the models can compute more accurate attractiveness and relevance labels for pairs of query

× search result, which in turn lead to position-independent search result scores that can be

ranked.

This work has implications for the design of search systems. Search companies have

been processing query logs for some time now, and the amount of query logs that can be

collected is limited—they cannot obtain more query and click data from a fixed number

of users. However, companies can scalably and efficiently collect more search data such

as cursor movements and scrolling. These can be used to improve searcher models by

generating more accurate attractiveness and relevance labels for search results. Search

engineers can then leverage these labels to supplement existing scoring factors for ranking

the search results, such as document and link analyses algorithms. Additionally, the labels

can be used for analytics and to answer questions such as, “Which search results are highly

attractive but are not actually relevant?” or, “which queries are users likely to abandon

because of unattractive search results?” Overall, having cursor interactions in current state-

of-the-art models can potentially improve existing search engines via these methods.
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Chapter 8

ADDITIONAL CONSIDERATIONS1

8.1 Touch Interactions

A recent survey puts mobile usage at 12.1% of all Web browsing in September 2012, near

doubling from 6.7% a year ago [1]2; and a talk by Google at a mobile convention in February

2011 notes “Roughly one in seven searches, even in the smaller categories, are happening

on a mobile phone, ...”[89]. While search activity on desktops and laptops are still likely

to be dominant for the near future, the growing portion of searches on mobile devices is

becoming increasingly important. This evolution is an opportunity for Web search engines

and other websites to begin using user interaction behavior on mobile devices for usability

analysis and to inform their own design.

In touch-based interfaces such as tablets and smartphones, a cursor is not available

to the user, and touch events have different meanings from cursor events. Additionally,

viewing a Web page effectively on a small screen requires extensive panning and zooming,

actions that can provide meaningful information. There has been little work on the utility

of user interaction data in a touch-centric environment—interactions with the potential to

affect Web search and other online websites. In this section, I propose methods to best take

advantage of these interactions, and note the challenges in pursuing this line of research.

Touch interactions have been used for a few applications. Leiva used touch interactions

to make adjustments to the stylesheet of a Web page such as element and font sizes [66].

However, there has not yet been evidence that users benefited from these adjustments.

Speicher goes beyond CSS metrics and tracks a greater portion of user interactions to

adapt a Web page for mobile [88]. The users in Speicher’s study found the adapted mobile

Web interface to be better than the baseline page. Carta et al. record individual touch

1Portions of this chapter are published in HCIR 2012 [47]

2Note that mobile usage has remained steady at around 14% between December 2012 and April 2013.
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Interaction Description

C
u

rs
o

r

Scrolling
Changes the page content being shown in the browser to a general
region of interest. Often, this is vertical scrolling, which can mark
what the user has or has not read.

Highlight text The selection of text on a page. This can identify terms or phrases
of significance.

Hover
Hovering is when the cursor idles over a region on the page. Hov-
ering over search results may be interpreted as a signal that the
user examined that result.

T
o

u
ch

Pan
Changes of the visible content on a device. Panning towards a new
area of the page shows user attention shifting from the previous
region to the new one.

Zoom
Magnifying or shrinking specific regions on a page, often per-
formed by double tap or pinch gestures. Zoom can indicate degree
of interest based on zoom level.

Table 8.1: Example Cursor and touch interactions that can be recorded by a website, and
their potential usage for identifying content of interest to the user.

interaction events touchstart, touchmove, and touchend to incorporate into visual timelines

[17]. Finally, Nebeling et al. investigate the use of mis-touches on links (touches that don’t

lead to clicks on the links they intended) to automatically increase the spacing between links

to decrease future errors [76]. They are able to show that the touch interactions facilitate

an adaptation of Wikipedia to a mobile version that mobile users prefer over the standard

Web version, but not as good as a hand-made mobile version of Wikipedia. Overall, these

studies show some potential in using the touch interactions.

8.1.1 Substituting Cursor with Touch

An immediate reaction may be to simply replace cursor interactions with touch interactions

for the same applications on the Web. Recording cursor coordinates becomes recording

touch coordinates by changing onmousemove to ontouchmove [75]. The recorded data could

include the centroid coordinates from the touches (Figure 8.1), along with timestamp. By

doing so, the same applications follow—aggregating the coordinates result in heatmaps, and
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Figure 8.1: Touch interactions on a mobile device could potentially be recorded by the
loaded Web site.

the individual interactions played back over time in an animation become replays. In fact,

ClickTale has recently began testing a mobile version of their analytics service3, explaining,

“Businesses can now visualize what’s working and what’s not on their websites by seeing

every swipe, pinch, tilt and tap.”

Despite the potential of recording touch interaction events, using them in practice is

problematic. The primary reason is that there is no evidence or rationale that the touched

coordinates on the page relate to user interest or attention. While there is some justification

for this in cursor coordinates, touch-enabled devices do not have a cursor that users can

possibly use as a marker to aid in reading text or mark interesting parts of the page. The

“cursor” on a touch-enabled device is the user’s finger and unlike the cursor, it is not tracked

when not clicking on the page. When users are performing gestures on the touchscreen, the

area beneath a gesture such as pinching does not necessarily relate to the area the user

wants to see more of; in fact, the user may be performing this gesture somewhere that does

not obscure looking at the region of interest. The assumption that the touch coordinate is

where the user’s attention is focused is unfounded.

Additionally, current browsers do not reliably report touches. Speicher, who spent a

3http://research.clicktale.com/ClickTale-Mobile-Beta.html
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considerable amount of time working with these events remarked, “When trying to recog-

nise zooming gestures based on streams of touchdown, touchmove and touchup events using

jQMultiTouch [a library specifically built for touch event tracking], we found out that the

browsers used for testing showed different and partially unreliable behaviors in firing the

corresponding touch events, ...” [88]. Although there is a W3C working draft on “Touch

Events Specification”, it is still up to the browser vendors to implement the specification.

Additionally, the resolution in which the touch coordinates are recorded is variable; the

W3C’s specification offers, “the rate at which the user agent sends touchmove events is

implementation-defined, and may depend on hardware capabilities and other implementa-

tion details.”

Reproducing the resulting effect of a gesture is also difficult. When tracking a simple

gesture such as a flick, browsers each record different points and many sample the gesture

which makes it difficult to later reproduce the users’ earlier action. Recreating different

zoom levels from the pinch or double tap gestures is also difficult, since the zoomed level is

device dependent and not all touch events trigger the JavaScript ontouchmove event.

8.1.2 Focusing on the Viewport

A website that tracks the viewport can store the bounding boxes of these viewing areas

and how long the user spent in each. These bounding boxes are easily recorded as they

are relatively small in size (bytes), and aggregate well once collected. Generating heatmaps

from the aggregated bounding boxes produces an easy visualization of which parts of the

Web page the users focused on (Figure 8.2). When generating the heatmap, greater weight

can be assigned to areas where there was a higher degree of zoom. Besides the information

that users spent in a viewport, the act of moving the viewport away from an area can be

useful information as well. A short dwell time may indicate that a user did not find an area

on the page interesting after glancing at it, while a long dwell time indicates the user has

read the contents in that region. It may also be useful to analyze which parts of the screen

the user is often attending, since after zooming, the user is probably not equally likely to

be looking at each part of the page.
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Figure 8.2: An illustrative example of a heatmap on a Web page generated from mobile
device users’ viewport data.
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In search, where results are often presented as vertical lists, the viewport plays a key

role. Search engines can determine which results are on the users’ screens at any given time,

and how much of the snippet they can see. Typically, Web search engines like Bing and

Google can only present two or three search results at a time on a mobile device, and like

ViewSer [63], touch-enabled smartphones can determine which results the user is looking

at and how much time they spend examining the snippet. Using this information, websites

can then use this information in traditional information retrieval models, such as searcher

models [18] or learning to rank systems [11].

8.1.3 Looking Forward

As a portion of online user activity such as Web search moves to touch-enabled mobile

devices, online services will begin thinking about recording these user interactions as they

do in traditional cursor-based systems such as desktops. While the initial reaction may be to

simply replace cursor coordinates with touch coordinates, this is impractical because touch

coordinates do not hold the same meaning as cursor coordinates. Touch events typically are

region-free methods for navigating the page, and there is no rationale behind the assumption

that users are attending to the specific touch coordinates. Additionally, technical difficulties

in recording fine-grained touch coordinates prevent applicability of these events.

However, tracking the viewport coordinates can be tremendously useful in noticing where

on the page a user is attending to, especially on small screens, where zooming and panning

is a necessity. I believe this is the data that should be recorded and analyzed, and as a

usability tool, can potentially be used to improve the design of websites and search engines.

8.2 User Privacy

Conducting research involving behavioral data requires careful consideration of users’ pri-

vacy. Recording cursor interactions adds to the click and query data already being collected,

which may reveal users’ additional intent that they prefer to keep private. Because people

use the cursor differently, and due to the level of detail at which this data is recorded, it

may be possible for cursor movements to unintentionally identify particular users. While my

research does not pursue this route, it is important during the research to separate personal
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identifiable information from the behavioral data. Notions of k-anonymity [65] or l-diversity

[71] can be potential guidelines on how to validate the anonymity of the behavioral data.

However, it is difficult to strictly follow those guidelines with query logs because queries are

often sufficiently unique that some individuals can be identified through numerous types of

attacks [58], rendering the data difficult to anonymize correctly.

The privacy concerns raised by this work centers on whether there are additional identify-

ing information in cursor interaction data that are not present in query and click data—data

generally accepted to be collected and used to improve the design of search engines. Cur-

rently, the cursor interactions are unlikely to contain compromising information about a

user. But one concern is that while some users are aware that clicks and queries can be

captured because the browser indicates when data is uploaded, my method of remotely cap-

turing cursor interactions does not cause such notifications. Certainly, websites can prompt

the user and ask for informed consent before collecting this information, which would alle-

viate this concern. However, what data users may or may not be aware can be collected

from them is a question of education as well as policy in how websites and browsers should

negotiate data transmission. It may be useful to explore how interfaces can balance being

informative about potential cursor interaction data collection, while not being disruptive.

Another question may be what model of opt-in or opt-out is best; a simple choice of

opt-in might not to garner enough data to be useful, and thus search engine results may

suffer from the tragedy of the commons, since to a single person, opting out has very little

effect on their own experience but reduces the data available to other users. An opt-out

model is less likely to suffer from the same consequences but many users will probably not

be aware of the option. Regardless of the initial default, one reasonable arrangement could

be to allow only users who opt-in to benefit from the cursor interactions collected from

other users in their search experience; users who opt-out receive an experience not affected

by the interaction data from other users.

In any case, user privacy remains a controversal topic in any situation where additional

user information is being collected without explicit consent, as cursor interactions could be.

There is no simple solution that satisfies all stakeholders today, and this area continues to

warrant further study.



86

Chapter 9

CONCLUSION

Understanding how people interact with search engines is important in improving search

quality. Popular Web search engines currently analyze queries and clicked results, but these

actions provide limited signals regarding search interaction. In this dissertation, I have

explored how cursor data, which can be easily collected at scale, can be used to augment

more commonly-used click measures to provide a richer picture of how searchers interact

with search result pages. Cursor interaction data can supplement existing query and click

data, especially in tail queries where query logs are sparse. Cursor movements, scrolling,

and hesitations are noisy but can provide detailed information if collected efficiently and

analyzed properly.

I have described how people use their cursors in relation to their eye-gaze, clarifying

the relationship between cursor positions and visual attention. The findings show that the

alignment between gaze and cursor is affected by the factors of user, task, and time. Cursor

behavior is also a factor, and five distinct behaviors are drawn from the literature and my

study. Additional analysis reported in this dissertation has examined interactions on search

results to see how users behave with their cursor by hovering or moving it while they search,

and how cursor movements can improve estimates of search results relevance and distinguish

good from bad search abandonment.

I have also demonstrated how cursor interactions can be used to build user models

that have practical applications. This involves understanding the behaviors surrounding

the cursor interactions, such as whether the user is using the cursor to examine the page,

read text, click, preparing to interact with Browser controls, or leaving it inactive. These

behaviors and other factors such as the user, task, and time aspects relate to how well the

cursor is a proxy for measuring visual attention. Features from cursor interactions like the

behavioral pattern and time variables can be used to predict where a user is looking better
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than simply using the current cursor position; I have demonstrated this in a multiple linear

regression model, and I discussed possible non-linear models with the same goal.

Specific to search, scrolling and hovering were found in observations to relate to search

result relevance, and I have developed a way to incorporate these interactions into an existing

searcher model. Hover and scroll are additional observable events that can more accurately

infer the unobserved variables to compute more accurate relevance and attractiveness scores

for the search results (evaluated through more accurate click prediction). In both the gaze

prediction and the relevance labeling tasks, I showed that models incorporating cursor

interactions beat the state-of-the-art methods that did not include cursor data.

Overall, cursor interaction data can be useful in search for queries where click data is

available by supplementing it (there are more hovers and scrolling data than click data)

and in instances where no clicks are available, cursor data can substitute for some of its

applications. But cursor data has qualitative uses as well. Usability tools that use cursor

behavior (e.g., [3]) may be useful to search quality analysts. For aggregate analysis of cursor

movements, heatmaps (such as those in Figure 6.1) can show where the interaction took

place for different SERP features or queries, by allowing analysts to quickly see aggregate

behavior across multiple query sessions or queries. They may be useful for determining

whether users notice new features and how cursor behavior changes following their intro-

duction. The work presented in this dissertation adds to the general understanding of how

users examine search results, which is typically difficult to study in naturalistic settings on

a large-scale, and demonstrates utility of these data in search-related applications. There

may be broader applications beyond Web search: commercial Web analytics companies offer

cursor tracking services, but are limited in how they use this data (typically heatmaps and

session replays). Search is one domain where I have shown numerous applications beyond

heatmaps and replays, and the same may be possible for different types of websites.

I have demonstrated that users’ mouse cursor interactions can be collected efficiently

on the Web by successfully deploying tool for cursor tracking at scale and describing an

efficient method for doing so. In Chapters 4 and 6, I have shown how cursor interactions

can be used to understand users’ search behaviors. And finally, I have shown that cursor

interactions can be useful in the design of Web search engines by extending existing tech-
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niques used in designing search engines with cursor interactions and showing that adding

cursor interactions into the models improve these state-of-the-art techniques for predicting

visual attention and computing relevance scores for ranking results. Overall, I have pro-

vided evidence that cursor interaction data has the potential to substantially improve Web

search. Collecting this new source of data will enable mining and analysis of rich user data

that can provide additional context to the user’s search.

Alternate forms of user interaction tracking may involve touch devices where the cursor

is not the typical input technique, or high-frequency, high-resolution cameras attached to

mobile devices may be practical to track where a user is looking, if the user consents. In

the medium term, cursor interactions are here to stay and I believe deeper mining of richer

interaction data to understand searchers, particularly cursor interactions, is an important

research direction to pursue in Web search. Cursor tracking has tremendous potential and

I believe this is the right time and the right opportunity for Web search.
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Appendix A

Techniques for Compressing Cursor Coordinates

While recording cursor interactions can be done without disrupting the user directly, the

overhead of recording the cursor movements and transmitting this data to the server can

be substantial. For instance, swiping the mouse from left to right can generate a hundred

{x, y} cursor coordinate pairs, which over a minute of interaction can lead to nearly 1MB

of data being sent to the analytics server. This Appendix presents experiments to compress

the trail a cursor makes on a page, taking advantage of the fact that not every cursor

coordinate has equal value to the user of the data. This problem is particularly important

for situations where bandwidth is limited, such as a mobile device or in locations with a

slow Internet connection. And while there are a limited number of services offering cursor

tracking features, having efficient cursor tracking methods will benefit all Web users. One

Web analytics company may be used by a thousand websites which in turn may serve a

million users.

This Appendix presents a rigorous evaluation of 10 compression algorithms for 3-

dimensional data (x-coordinate, y-coordinate, and time), evaluated with multiple metrics

over for the compressed data. The work was done in collaboration with Luis Leiva. The

evaluation is conducted across both a dataset collected from a lab study and a dataset from

a live web page with real users. We show that different compression techniques may be use-

ful in different situations; the situations can reflect a desire for consuming less bandwidth,

better client-side performance, more accurate replication of the original data, or a combi-

nation of all three. By improving the compression methods used to record cusor positions,

tracking cursor interactions moves towards being a more practical, scalable technology.

For each combination of compression algorithm and dataset, we measured data size

reduction (compression ratio) and performance (compression time). For lossy compression,

we also computed the distance between the compressed trail and the original trail from
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which it was derived. This measures how well the original trail can be replicated via the

lossy-compressed trail, for situations where reproducing the original trail is useful. We

define trail replication as the per-pixel similarity measure defined by the following distance

metric:

τ =

T∫
0

1

|~g|

√√√√ d∑
i=1

[
~ci(t)− ~gi(t)

]2
dt (A.1)

where ~c represents the vector of compressed cursor coordinates, and ~g represents the

vector of the original cursor coordinates. Equation A.1 therefore computes the sum of

distances between the coordinates, normalized by the number of coordinates. Given that ~c

and ~g have different lenghts, to compute (A.1) we iterate over ~g and find the closest point

in time from ~c.

While a compression algorithm may not be able to exactly reproduce the entire trail, it

may capture the important points in the trail which may be sufficient for many applications.

We used the points before a click as a proxy for an important point in the trail. So for

a second distance metric, we computed Equation A.1 only for coordinates occurring just

before a click. This measure represents how well the compression algorithms perform when

only the points before a click matter.

A.1 Data

We used two datasets in our evaluation to achieve generalizbility of the compression meth-

ods. One dataset was from a lab study, which we will refer to as lab while the other was

the tracking script deployed on a website accessible to the public, which we will refer to as

live.

The lab dataset was collected in Feild et al. during an eye-tracking study of web searcher

frustration in October 2009 [32]. The dataset consists of full interaction logs and sensor

readings for 30 participants who were asked to conduct search tasks. During the study,

coordinates for the cursor were recorded by a toolbar that captured cursor positions when

they changed and stored them in logs. We removed 5 outliers from this dataset for users
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whose time at the lab spanned over two consecutive days, leaving 25 participants in the

dataset.

The live dataset was collected from a live website with the script described earlier that

captured raw cursor events in JavaScript. Events were buffered at regular time intervals and

sent to our server. The website was an informational resource listing the best paper awards

in computer science; the content on the page was lengthy and included numerous clickable

links to navigate the page and to search for the award-winning papers. The data was

gathered between June and September 2012, and totaled 12K visitor logs. After removing

outliers using inter-quartile range introspection, this dataset contained 10,471 interaction

logs from 7,064 unique visitors.

There are some notable differences between the live and lab datasets. The users in

the lab dataset were brought into a lab, asked to perform search tasks, and the data was

recorded with a toolbar. In contrast, the users in the live dataset were browsing in situ in

their natural environments and the data was recorded using a tracking script on the website.

A.2 Lossless Compression

There are two fundamentally different types of data compression: lossless and lossy. Loss-

less compression involves a transformation of the representation of a data set such that it is

possible to reproduce exactly the original data set by performing a decompression transfor-

mation. Lossy compression is a representation that allows us to reproduce an approximation

to the original data set. In other words, lossless compression allows the server to recreate

the exact cursor trail recorded, while lossy compression can typically compress the data

more.

Five standard encoding techniques comprise our set of lossless algorithms: Delta, GZip,

Huffman, LZW, and LZ4. They are commonly used in various compression utilities for file

compression. These algorithms were selected for their popularity and appropriateness for

the data.

Delta compression refers to compressing data in the form of a sequence of differences

between the original data and the follow-up changes performed to such data. A delta-
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compressed cursor point ~c at time t is

∆~c(t) =
{
~g(t)− ~g(t− 1)

}
∀t > 0

where ~g is a d-dimensional point from the original cursor data.

Huffman compression [52] is a form of statistical encoding, where a binary tree is built

from character counts. Then, symbols from the original (uncompressed) string are replaced

by their corresponding binary codes. The more frequent a symbol is encoded, the shorter

its bit-sequence.

The remaining lossless encoding techniques (GZip, LZW, and LZ4) are based on the

milestone algorithm LZ77 [105]. In this encoding algorithm, repeated strings are replaced

by back-references linking to the previous location of that identical string. Concretely:

1) GZip [26] is based on the deflate algorithm, a combination of LZ77 and Huffman, using a

sliding window during compression; 2) LZW [97] is an optimization of LZ78, in which data

are encoded by means of explicit dictionary entries; 3) LZ4 is an improvement over LZP [8],

a variation of LZ77, using finite context Markov prediction.
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Figure A.1: Compression ratio for lossless algorithms (lower is better). Error bars denote
95% confidence intervals.

Relative compression performance is reported in Figure A.1. The results show that

Delta, Huffman, and LZ4 behaved similary, reducing the data size by around 50% in both

the lab and live datasets. Gzip and LZW were able to achieve the most compression,

reduced the data size by approximately 80% in both datasets.
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Figure A.2: Compression time for lossless algorithms (lower is better). Error bars denote
95% confidence intervals.

In a comparison of compression time (Figure A.2), LZ4 is shown to be faster than the

other methods, with a payload as low as 0.5 ms on average for lab data and 0.1 ms for

live data. Huffman and LZW encoding performed similarly, requiring at least twice the

time consumed by Gzip and Delta compression. Gzip performed significantly faster than

Delta compression in the live data set.

A.3 Lossy Compression

We investigated five lossy compression techniques, shown visually in Figure A.3. Three were

resampling techniques: piecewise linear interpolation (RSL) [72], non-linear interpolation

(RSN) [62], and dispersion-threshold identification (IDT) [99]. Two were time-based polling

techniques inspired by other researchers: sampling the cursor position after a fixed interval

(time-based polling, TBP) [41] and sampling after a pause longer than a fixed amount of

time (pause-based polling, PBP) [51].

These techniques operate by removing redundant and non-significant variations in the

data. RSL is the simplest reconstruction method, sampling the points from a trajectory

uniformly. RSN creates a resampled sequence by using piecewise linear interpolation on

point distances accumulated along the original trajectory. IDT is a popular method to

sample cursor data [3, 41, 73], and samples coordinates when the cursor moves away from
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the previous point by a fixed number of pixels. TBP can be seen as an application of RSL in

time instead of spatial dimensions. Similarly, PBP is a derivation of IDT using time rather

than spatial constraints.

Figure A.3: An illustration of a cursor trail compressed with different lossy compression algo-
rithms in a thick red line, drawn alongside the original cursor trail in grey. The compression
ratio for each algorithm is set to 50%, removing half of the original cursor coordinates.

For lossy compression algorithms, the compression ratio becomes a configurable inde-

pendent variable in our experiments. We set the number of cursor points to be preserved as

a percentage of the original data points, representing the option to choose an appropriate

compression level for the application. We experimented with compression ratios ranging

from 10% to 90%. A compression ratio of 10% meant that a cursor trail is reduced to 10%

of the original cursor trail length. Therefore, the lower the compression ratio the lower

the number of compressed data points. A good lossy compression algorithm achieves good

performance and replication results at a low compression ratio.

The lossy compression algorithms had different input parameters to lead to the resulting

compression ratio. Both RSL and RSN take as input the number of points to be sampled.

IDT takes as input a threshold distance between consecutive cursor coordinates [99], which

we chose to be the distance that returned the desired number of points according to the

selected compression ratio. For TBP we set the poll interval proportional to the point

percentages, which is also proportional to the compression ratio. Unfortunately, for PBP

it is impossible to create a similar dependency, as there is no direct way to relate a pause

threshold to a desired number of points to be sampled. A pause was counted when the
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time between consecutive data points was greater than 250 ms, the same threshold used in

Huang et al. [50]. Thus, PBP showed constant behavior for all tested compression ratios.
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Figure A.4: Compression time for lossy algorithms (lower is better), as a function of com-
pression ratio (higher ratios mean less reduction of cursor data points). Error bars denote
95% confidence intervals.

As expected, the lossy compression techniques except PBP (which used a fixed pause

threshold and therefore a fixed compression ratio) performed better as the compression ratio

increased. For the live data, PBP performed significantly better than the other techniques

considered. The other techniques (which were set to depend on the number of data points)

reduced the data size linearly compared to the compression ratio. As a consequence of

this linear dependence, a higher compression ratio requires more time to compress the data

(Figure A.4), because more points are processed while sampling the original cursor trail.

Figure A.5 shows how well the compressed cursor trails reproduce the original cursor

trail. Polling techniques were least able to produce the original trail using the metric from

Equation A.1. Their poorer performance compared to other lossy compression techniques

may be because the timestamps of compressed points in TBP and PBP are usually assigned

to coordinates that are distant from the original cursor position. Therefore, while they

achieve good compression ratios, they are less useful for replicating the original cursor data.

However, the performance for TBP will change for different polling intervals.

The three resampling techniques had an approximate distance of 50 px when the data
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Figure A.5: Trail replication for lossy compression algorithms (lower is better), as a function
of compression ratio (higher ratios mean less reduction of cursor data points). Error bars
denote 95% confidence intervals.

was compressed by 60% or more in the lab data. RSN had worse replication accuracy for

the live data, where RSL and IDT performed better. From this, we can see that both

RSL and IDT seem to be better approaches for preserving the original cursor trail. For

the live data, RSL and IDT outperformed the others for compression ratios above 80%.

These results suggest that resampling techniques may be a convenient approach for replaying

cursor trails, when reproducing the original cursor data accurately is important.

When we look at the distance between compressed coordinates and original coordinates

only at points preceding a click (Figure A.6), all lossy compression techniques except TBP

performed well for compression ratios above 50% for the lab dataset. When the data was

compressed substantially, IDT significantly diverged and both RSL and PBP retained their

ability to reproduce the original cursor data during clicks for compression ratios below 10%.

On the live data, resampling techniques performed reasonably well for compression ratios

above 30%, with distances below 100 px. RSL had the shortest average distance, and thus

is the best compression algorithm for applications where reducing data size and reproducing

the original coordinates at clicks are both important goals. Overall, these experiments shows

that lossy compression techniques usually preserve important information for web analytics.
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Figure A.6: Trail replication at clicks for lossy compression algorithms (lower is better), as
a function of compression ratio (higher ratios mean less reduction of cursor data points).
Error bars denote 95% confidence intervals.

A.4 Summary

We looked at 10 compression algorithms, half of them lossless and the other half lossy.

Lossless compression algorithms are capable of reducing the data size while also reproduc-

ing the original cursor activity; we found that among lossless methods, LZW performed

well. However, lossy compression can offer greater gains in compression as well as improved

performance, at the expense of exactly replicating the original trail. For the same compres-

sion levels, the naive method of time-based polling replicated the original trail worse than

recently-developed methods. Piecewise linear interpolation and dispersion-threshold identi-

fication could reproduce the original trail better at the same levels of compression. Pause-

based polling (PBP), which was the method eventually used for remote cursor tracking in

this dissertation, showed the best client-side performance and trail replication. Overall, the

experiments evaluate multiple approaches to sampling cursor interactions, and teach us how

to build a better mousetrap.
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Appendix B

Gaze-Cursor Alignment in Subjects

Subject Sex Age
Inactive Examining Reading Action Click

Distance Time Distance Time Distance Time Distance Time Distance

1 F 46 188 px 68% 116 px 27% 45 px 0% 46 px 4.8% 49 px
2 M 56 201 px 65% 149 px 28% 133 px 0% 79 px 5.9% 73 px
3 F 35 165 px 47% 144 px 47% 167 px 2% 82 px 4.9% 75 px
4 M 47 162 px 61% 218 px 26% 214 px 6% 113 px 7.2% 106 px
5 F 31 246 px 45% 139 px 42% 134 px 6% 76 px 6.7% 89 px
6 M 44 175 px 59% 163 px 32% 211 px 1% 108 px 7.4% 101 px
7 M 57 144 px 60% 100 px 29% 93 px 6% 76 px 5.9% 81 px
8 F 47 309 px 63% 224 px 30% 143 px 3% 58 px 3.7% 43 px
9 F 50 262 px 56% 150 px 31% 146 px 8% 89 px 5.7% 100 px
10 M 59 180 px 65% 165 px 29% 209 px 1% 139 px 4.6% 126 px
11 M 50 247 px 50% 198 px 36% 256 px 4% 106 px 9.9% 81 px
12 F 39 236 px 29% 140 px 55% 125 px 5% 74 px 10.7% 77 px
13 F 45 177 px 55% 155 px 33% 204 px 4% 95 px 7.3% 71 px
14 M 50 206 px 49% 195 px 41% 177 px 2% 91 px 7.4% 93 px
15 F 38 294 px 68% 202 px 23% 168 px 2% 129 px 6.7% 88 px
16 F 26 152 px 61% 131 px 27% 118 px 2% 98 px 8.8% 84 px
17 F 46 218 px 55% 152 px 36% 145 px 4% 69 px 5.1% 65 px
18 M 50 245 px 58% 244 px 34% 251 px 2% 92 px 6.4% 116 px
19 F 50 185 px 55% 120 px 38% 142 px 2% 58 px 5.1% 46 px
20 M 39 370 px 44% 219 px 47% 140 px 3% 97 px 6.1% 70 px
21 M 38 146 px 39% 164 px 49% 139 px 1% 69 px 10.1% 59 px
22 M 47 216 px 69% 160 px 24% 173 px 3% 92 px 4.4% 71 px
23 F 46 218 px 50% 190 px 42% 196 px 1% 76 px 6.5% 64 px
24 F 48 224 px 61% 178 px 34% 89 px 0% 64 px 4.7% 47 px
25 F 54 228 px 56% 184 px 36% 173 px 1% 39 px 6.8% 26 px
26 F 44 166 px 32% 167 px 58% 116 px 1% 78 px 8.1% 109 px
27 F 28 161 px 58% 142 px 33% 112 px 0% 90 px 8.3% 52 px
28 F 51 259 px 56% 195 px 34% 242 px 2% 76 px 7.5% 72 px
29 F 41 218 px 79% 171 px 15% 148 px 1% 89 px 5.7% 119 px
30 M 48 279 px 50% 138 px 37% 87 px 5% 42 px 7.7% 38 px
31 M 59 192 px 58% 175 px 34% 162 px 3% 152 px 4.5% 133 px
32 F 53 236 px 61% 199 px 35% 77 px 0% 52 px 3.3% 77 px
33 M 60 418 px 62% 305 px 27% 319 px 3% 69 px 8.0% 105 px
34 F 47 245 px 59% 214 px 36% 160 px 1% 44 px 4.2% 34 px
35 M 44 187 px 73% 133 px 22% 167 px 1% 68 px 4.7% 85 px
36 F 37 290 px 76% 231 px 20% 147 px 1% 58 px 2.9% 56 px

Table B.1: Basic demographic information for each subject, the proportion of time spent
performing each cursor behavior, and the average distance between gaze and cursor while
performing that cursor behavior. Clicks are instantaneous events with no duration.


