
Extracting and Managing Structured Web Data

Michael John Cafarella

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Washington

2009

Program Authorized to Offer Degree: Computer Science and Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Michael John Cafarella

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Co-Chairs of the Supervisory Committee:

Oren Etzioni

Dan Suciu

Reading Committee:

Oren Etzioni

Alon Halevy

Dan Suciu

Date:

In presenting this dissertation in partial fulfillment of the requirements for the doctoral
degree at the University of Washington, I agree that the Library shall make its copies
freely available for inspection. I further agree that extensive copying of this dissertation is
allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S.
Copyright Law. Requests for copying or reproduction of this dissertation may be referred
to Proquest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346,
1-800-521-0600, to whom the author has granted “the right to reproduce and sell (a) copies
of the manuscript in microform and/or (b) printed copies of the manuscript made from
microform.”

Signature

Date

University of Washington

Abstract

Extracting and Managing Structured Web Data

Michael John Cafarella

Co-Chairs of the Supervisory Committee:
Professor Oren Etzioni

Computer Science and Engineering

Professor Dan Suciu
Computer Science and Engineering

The Web contains a large amount of structured data embedded in natural language text,

two-dimensional tables, and other forms. This “Structured Web” of data is vast, messy,

and diverse; it also promises new and compelling applications. Unfortunately, existing tools

such as search engines and relational databases ignore Structured Web data entirely.

This dissertation identifies four design criteria for a successful Structured Web manage-

ment system. Such systems are:

1. Extraction-Focused - They obtain structured data wherever it can be found.

2. Domain-Independent - They are not tied to one particular topic area.

3. Domain-Scalable - They can effectively manage many domains simultaneously.

4. Computationally-Efficient - They can handle the Web’s enormous size.

We also describe three working Structured Web management systems that observe these

criteria. TextRunner is an extractor for processing natural language Web text. WebTa-

bles extracts and provides applications on top of relations in HTML tables. Finally, Oc-

topus provides integration services over extracted Structured Web data. Together, these

three systems demonstrate that managing structured data on the Web is possible today,

and also suggest directions for future systems.

TABLE OF CONTENTS

Page

List of Figures . v

List of Tables . ix

Chapter 1: Introduction . 1

1.1 What is Structured Data? . 6

1.2 Challenges for Structured Web Data Tools . 8

1.3 General Approach . 9

1.3.1 Web-Scale Textual Extraction . 11

1.3.2 Table-Oriented Data Extraction and Mining 13

1.3.3 Data Integration for the Structured Web 15

1.3.4 An Aside: The Deep Web . 17

1.4 Technical Contributions . 18

1.5 Outline of the Dissertation . 20

Chapter 2: Background Discussion . 21

2.1 Research Background . 21

2.1.1 Structured Data Management . 21

2.1.2 Information Retrieval and the Web . 22

2.1.3 Information Extraction . 23

2.2 Related Projects . 24

2.2.1 KnowItAll . 24

2.2.2 CIMPLE . 25

2.2.3 YAGO and NAGA . 26

2.2.4 Freebase and DBPedia . 27

2.2.5 Purple SOX . 28

2.3 Conclusion . 29

i

Chapter 3: Web-Scale Textual Extraction . 30

3.1 Problem Overview . 31

3.2 Related Work . 33

3.2.1 Wrapper Induction . 33

3.2.2 Extraction Rule Learning . 35

3.2.3 KnowItAll . 35

3.2.4 Unrestricted Relation Discovery . 35

3.3 System Architecture . 36

3.3.1 Self-Supervised Learner . 37

3.3.2 Single-Pass Extractor . 41

3.3.3 Redundancy-Based Assessor . 43

3.3.4 Tying It All Together . 44

3.4 Experiments . 46

3.4.1 Output Quality . 46

3.4.2 Runtime Performance . 49

3.5 Conclusions . 50

Chapter 4: Table-Oriented Data Extraction and Mining 51

4.1 Problem Overview . 52

4.2 HTML Table Extraction . 57

4.2.1 The HTML Table Corpus . 57

4.2.2 Extractor Mechanics . 60

4.3 Attribute Correlation Statistics . 65

4.4 Relation Search . 67

4.4.1 Ranking . 69

4.4.2 Indexing . 73

4.5 ACSDb Applications . 75

4.5.1 Schema Auto-Complete . 76

4.5.2 Attribute Synonym-Finding . 78

4.5.3 Join Graph Traversal . 79

4.6 Experimental Results . 82

4.6.1 Table Extraction . 83

4.6.2 Relation Ranking . 86

4.6.3 Schema Auto-Completion . 87

4.6.4 Synonym-Finding . 88

ii

4.6.5 Join Graph Traversal . 89

4.7 Related Work . 90

4.8 Conclusions . 92

Chapter 5: Data Integration for the Structured Web 94

5.1 Problem Overview . 95

5.2 Octopus and its operators . 97

5.2.1 Data model . 98

5.2.2 Integrating Web Sources . 99

5.2.3 Integration operators . 102

5.2.4 Putting It All Together . 104

5.3 Algorithms . 105

5.3.1 SEARCH . 105

5.3.2 CONTEXT . 111

5.3.3 EXTEND . 113

5.4 Implementation At Scale . 116

5.5 Experiments . 118

5.5.1 Collecting Queries . 118

5.5.2 SEARCH . 119

5.5.3 CONTEXT . 122

5.5.4 EXTEND . 123

5.6 Related Work . 126

5.7 Conclusions . 127

Chapter 6: Conclusions and Future Work . 128

6.1 Contributions . 128

6.1.1 TextRunner Contributions . 129

6.1.2 WebTables Contributions . 129

6.1.3 Octopus Contributions . 130

6.2 Future Work . 130

6.2.1 TextRunner . 131

6.2.2 WebTables . 132

6.2.3 Octopus . 133

6.2.4 Multiple Extractors . 133

6.2.5 Extractor Execution Model . 135

iii

Bibliography . 137

iv

LIST OF FIGURES

Figure Number Page

1.1 A typical use of the table tag to describe relational data. The data here
has structure that is never explicitly declared by the author but is obvious
to a human observer, including “metadata” that consists of several typed
and labeled columns. The navigation bars at the top of the page are also
implemented using the table tag, but clearly do not contain relational-style
data. 2

1.2 A web page consisting of mainly natural language text, with no obvious rela-
tional table elements. Some sentences, such as the one highlit in the figure,
contain a fact-like assertion. It is easy to imagine populating a database
relation of scientists and birth information by reading a large number of doc-
uments and extracting facts of the type seen here. 3

1.3 Results of a keyword query search for “city population”, returning a relevance-
ranked list of databases. The top result contains a row for each of the most
populous 125 cities, and columns for “City/Urban Area,” “Country,” “Pop-
ulation,” “rank” (the city’s rank by population among all the cities in the
world), etc. The visualization to the right was generated automatically by
the system, and shows the result of clicking on the “Paris” row. The title
(“City Mayors. . . ”) links to the page where the original HTML table was
found. 4

1.4 The WebTables relation extraction pipeline. About 1.1% of the raw HTML
tables are true relations. 13

3.1 A sample page from Urbanspoon.com, and a good candidate for extraction
by a wrapper-induction system. 34

4.1 This is the same figure seen in Chapter 1, in Figure 1.1. A typical use of the
table tag to describe relational data. The relation here has a schema that
is never explicitly declared but is obvious to a human observer, consisting of
several typed and labeled columns. The navigation bars at the top of the
page are also implemented using the table tag, but clearly do not contain
relational-style data. The automatically-chosen WebTables corpus consists
of 41% true relations, and contains 81% of the true relations in our crawl.
(The raw HTML table corpus consists of 1.1% true relations.) 53

v

4.2 Frequency of raw HTML tables/relations of various row and column sizes.
The most frequently-seen table in the raw crawl (seen 3.8B times, accounting
for 27.32% of all tables) contains a single cell, and is represented in the plot
by the point at rows=1, cols=1. The green lines visible at the right-hand
edge indicate the “underside” of the 3D plot. 59

4.3 Frequency of high-quality recovered HTML tables/relations of various row
and column sizes. The plot shows no tables with fewer than 2 rows or 2
columns, and many fewer tables in general than plot in Figure 4.2. Also
note that there is much less variation with the number of rows than in the
raw plot; the high-quality plot varies mainly with the number of columns.
This observation matches the intuition that there should be relatively many
high-quality relations with few columns, and relatively few relations with
many columns; at the same time, the number of rows should be relatively
unimportant as an indicator of relation quality. 60

4.4 The WebTables relation extraction pipeline, first seen in Chapter 1, in
Figure 1.4. 61

4.5 Selected features used in relational ranking and header detection. Relational
Filtering requires statistics that help it distinguish relational tables, which
tend to contain either non-string data, or string data with lengths that do
not differ greatly. Header detection relies on both syntactic cues in the first
row and differences in data type and string length between the first row and
the remainder of each column. The string length measures help in detecting
a header even when the body of the column contains strings and thus does
not generate a type clash with the header. 63

4.6 Distribution of frequency-ordered unique schemas in the ACSDb, with rank-
order on the x-axis, and schema frequency on the y-axis. Both rank and
frequency axes have a log scale. 66

4.7 This is the same figure seen in Chapter 1, in Figure 1.3. Results of a WebTa-
bles keyword query for “city population”, showing a ranked list of databases.
The top result contains a row for each of the most populous 125 cities, and
columns for “City/Urban Area,” “Country,” “Population,” “rank” (the city’s
rank by population among all the cities in the world), etc. The visualization
to the right was generated automatically by WebTables, and shows the re-
sult of clicking on the “Paris” row. The title (“City Mayors. . . ”) links to the
page where the original HTML table was found. 67

4.8 Function näıveRank: it simply uses the top k search engine result pages
to generate relations. If there are no relations in the top k search results,
näıveRankwill emit no relations. 68

4.9 Function filterRank: similar to näıveRank, it will go as far down the search
engine result pages as necessary to find k relations. 69

vi

4.10 Function featureRank: score each relation according to the features in Ta-
ble 4.3. Rank by that score and return the top k relations. 70

4.11 The coherency score measures how well attributes of a schema fit together.
Probabilities for individual attributes are derived using statistics in the ACSDb. 72

4.12 The WebTables search system. The inverted table index is segmented by
term and divided among a pool of search index servers. A single front-end
search server accepts the user’s request, transmits it to all of the index servers,
and returns a reply. 73

4.13 The SchemaSuggest algorithm repeatedly adds elements to S from the overall
attribute set A. We compute attribute probabilities p by examining counts
in the ACSDb (perhaps conditioning on another schema attribute). The
threshold t controls how aggressively the algorithm will suggest additional
schema elements; we set t to be 0.01 for our experiments. 77

4.14 The SynFind algorithm finds all potential synonym pairs that have occurred
with C in the ACSDb and have not occurred with each other, then scores
them according to the syn function. The inequality comparison between
attributes a and b is a small optimization - for correctness, a and b simply
should not be identical. 80

4.15 ConstructJoinGraph creates a graph of nodes (N) and links (L) that
connect any two schemas with shared attributes. We only materialize the
locally-viewable portion, from a focal schema F ; this is sufficient to allow
the user access to any of its neighbors. The function takes focal schema F
and ACSDb database A as inputs. The input A consists of a series of pairs
(S, c), which describe a schema and its observed count. 81

4.16 A neighbor-clustered view of the join graph, from focal schema [last-modified,
name, size]. Schemas in the left-hand column share the last-modified at-
tribute with the focal schema; schemas in the center column share name, and
schemas at right share size. Similar schemas are grouped together in cluster
boxes. The annotation under each box describes the total number of schemas
and the theme of the cluster. 91

5.1 The screenshot to the left shows a region of the VLDB 2005 website; the
extracted table to the right contains the corresponding data. This table was
returned by Octopus after the user issued a Search command for vldb
program committee. In this case, the table was extracted from an HTML
list and the column-boundaries automatically recovered. 98

vii

5.2 A typical sequence of Octopus operations. The data integration operators
of Octopus are in upper-case type, while other operations in lower-case. The
user starts with Search, which yields a cluster of relevant and related tables.
The user selects two of these tables for further work. In each case, she removes
the rightmost column, which is schematically inconsistent and irrelevant to
the task at hand. On the left table she verifies that the table has been
split correctly into two columns, separating the name and the institution. If
needed, she may manually initiate an operator that will split a column into
two. She then executes the Context operator on each table, which recovers
the relevant VLDB conference year. Without this extra information, the two
Serge Abiteboul tuples would be indistinguishable after union. Finally, she
executes Extend to adorn the table with publication information for each
PC member. 100

5.3 The SimpleRank algorithm. 106
5.4 The SCP and tablescore algorithms. 107
5.5 The generic cluster algorithm framework. Possible implementations of dist() are

TextCluster, SizeCluster, and ColumnTextCluster. 110
5.6 The RVP algorithm. 112
5.7 The MultiJoin algorithm. Take particular note of the join score() function. The

getUniqueJoinSrcElts() function returns, for a given cluster, the set of distinct
cells from the original query column that elicited tables contained in the cluster. The
size of its output, when normalized by the size of column, measures the degree to
which a cluster “covers” data from the query column. 114

5.8 A comparison of the Context algorithms. Shows the percentage of tables
(y-axis) for which the algorithm returns a correct context term within the
top-k (x-axis) context terms. 124

viii

LIST OF TABLES

Table Number Page

1.1 The top-ranked results for an ExDB structured query, which asks for in-
formation about scientists, their inventions, and the years of their deaths.
The query is expressed in Datalog-like syntax: q(?scientist, ?invention,
?year-of-death) :- invented(?scientist, ?invention), died-in(?scientist,
<year>?year-of-death). These answers were computed by extracting data
from a crawled set of 90M Web pages. In the ExDB system, each extraction
has an associated probability of being true or false, as do tuples in the answer
set. Returned answers are sorted in descending order of probability. 5

3.1 Boolean heuristic tests that indicate good extractions, used by the Self-
Supervised Learner to construct a classifier training set. The Learner assumes
that an expensive full parse tree is available. The full hand-designed deci-
sion algorithm that employs these tests can be seen in Figure 3.3 of Banko’s
dissertation [5]. 38

3.2 A portion of the features used as input to the extraction classifier. Unlike
the heuristics in Table 3.1, none of these features require a linguistic parse in
order to be computed. Instead, they only require low-overhead operations.
Examples include regular expressions for testing capitalization, noun phrase
chunking (e.g., “light bulb” acts as a two-word noun), and part-of-speech
lookups (e.g., phonograph is a noun). The intuition is that these inexpensive
local features give much of the discriminatory power of a full parse tree at
much lower computational cost. 39

3.3 Ten randomly-chosen topics/domains/relations for comparing TextRunner
and KnowItAll. 47

3.4 Output quality results for TextRunner, compared to KnowItAll. Tex-
tRunner does not know the target domains in advance, unlike KnowItAll.
Nonetheless, TextRunner obtains an average error rate that is 33% lower
than KnowItAll’s, while extracting a near-equal number of correct tuples. . 47

4.1 Various types of HTML tables found in the crawl. Types are non-overlapping;
we only examine tables that were not eliminated by tests higher on the list.
The rate of other non-relational tables is estimated from a human-judged
sample. 58

ix

4.2 Frequency of raw tables and recovered relations at selected sizes, as a per-
centage of each dataset. 61

4.3 Selected text-derived features used in the search ranker. 74
4.4 Ten input attributes, each with the schema generated by the WebTables

auto-completer. 75
4.5 Partial result sets from the WebTables synonym-finder, using the same

attributes as in Table 4.4. 76
4.6 Test results for filtering true relations from the raw HTML table corpus. . . . 82
4.7 Test results for detecting a header row in true relations. We correctly detect

most of the true headers, but also mistakenly detect headers in a large number
of non-header relations. Incorporating ACSDb information improves both
precision and recall. 83

4.8 A relational table like the one pictured here, with multiple layers of meta-
data, will probably not be classified correctly by the WebTables extractor’s
relation filter. It would be possible to present this information in a more tra-
ditional format that WebTables could handle easily - this is the “pivot
table” representation. The example is drawn from Gray et al. [43] 84

4.9 Fraction of high-scoring relevant tables in the top-k, as a fraction of “optimal”
results. 87

4.10 Schema auto-complete’s rate of attribute recall for ten expert-generated test
schemas. Auto-complete is given three “tries” at producing a good schema. . 88

4.11 Fraction of correct synonyms in top-k ranked list from the synonym-finder. . 89

5.1 List of queries used. 119
5.2 Fraction of top-k sets that contain at least one “relevant” table. 120
5.3 Percentage of queries that have at least one table in top-k-sized cluster that is “very

similar” to the cluster center. The percentage should generally increase as k grows,
giving the algorithm more chances to find a good table. 122

5.4 Average user similarity scores between cluster center and cluster member, for clusters
of size k. Higher scores are better. The average score should generally decrease as k
increases, and the clustering algorithm must find additional similar tables. 122

5.5 Test queries for Extend, derived from results from queries in Table 5.1. 124

6.1 On the left, the most popular relation strings extracted by TextRunner. On
the right, the most popular topics for schemas from WebTables-extracted
relations. Even though we ran two domain-independent extractors on a large
general web crawl, the outputs are very different. 134

x

ACKNOWLEDGMENTS

A good doctoral dissertation should sprawl within a very deep focus. The debts of

gratitude one incurs in completing it are equally deep and much more sprawling.

I owe many thanks to my undergraduate professors at Brown University. I am grateful

not only for Andy van Dam’s years of teaching and advice, but also for his friendly insistence

that I pursue an academic career. Doing so might not have been possible without the help

of Ben Kimia and Philip Klein, who generously shared a research project with me when I

decided to leave industrial work.

Much of this dissertation would not have been possible if I had not learned to program

with some of the best in the business. I am especially thankful for the time I spent working

with Doug Cutting, Adam Doppelt, and Arthur Van Hoff, all of whom are superb engineers

and friends.

Google, Inc. graciously allowed me to publish the research I performed while employed

there, much of which is present in this dissertation. I am thankful to Magda Balazinska and

Efthi Efthimiadis for serving on my final exam committee.

The University of Washington has been a wonderful place to study, most of all because of

the people who work there. Faculty members Steve Gribble, Ed Lazowska, Hank Levy, and

Dan Weld were not my official academic advisors, but nonetheless have given me excellent

advice over the years. My fellow students Eytan Adar, Michele Banko, Doug Downey, and

Chris Ré have been great friends and collaborators.

This work would not have been possible without the help of three people. Alon Halevy

at Google taught me how to turn inchoate ideas into actual published research papers and

working systems. My thesis advisor Dan Suciu was an indispensable introductory guide to

the world of database research and helped to sharpen the technical discussions of my work.

My other thesis advisor, Oren Etzioni, taught me to write my first research papers, including

xi

how to frame a research question and how to evaluate the results. He also encouraged me to

“swing for the fences” with my research, and to not be content with small papers. Working

with Alon, Dan, and Oren has been hugely rewarding, both personally and professionally.

All three have been extremely generous with their time and support.

In short, it would be impossible for any student to ask for more than what they offered

me. The only way I can repay their help is to try to do the same for my own students in

the future.

That said, I am indebted most to my family - my parents, my brother Pete, my wife

Torri, and Charlie. They make it all worthwhile.

xii

DEDICATION

For Torri

xiii

1

Chapter 1

INTRODUCTION

A modern Web page often contains not just unstructured text but also a large amount of

structured data. Consider a page like the one depicted in Figure 1.1. The lower part of this

page contains an element that is very akin to a small relational database - it has a tuple-

oriented row for each US President and a dimension-oriented column for each President’s

name, party, etc. The author of the page has even added a domain-specific label for each

column. An interested Web user might examine this data and use it to compute the number

of Presidents drawn from each political party. Consider also the page in Figure 1.2, which

carries interesting factual assertions within natural language text, in this case, information

about Einstein. By looking at other similar pages, a human user could easily compile a

useful table of scientists and their birthdates. Unfortunately, there is no standard data tool

that allows users to perform either of these straightforward tasks.

Traditional search engines are extremely good at document-finding, but they are lim-

ited to simple relevance-ranking queries. They cannot process queries that yield non-URL

answers such as the name of a President, or involve multiple pieces of data from the same

page such as the number of Presidents in each party, or combine information from multiple

pages such as the set of all Presidents drawn from multiple countries. The search engines’

query interfaces force users to treat each Web page as a unitary block of text, which can

only be retrieved or not retrieved.

A relational database might appear to be a natural choice. However, such databases’

import facilities assume that the inputs are clean and relational: the imported data should

have an officially-declared relational schema, and the input data must abide by any con-

straints placed by the schema. But not even the cleanest HTML table on the Web can

be imported by a standard relational database: the table cells are noisy, with many being

empty or non-data-carrying; the metadata is declared only informally, often as simply the

2

first row in the table; and of course the Web page contains many non-data elements. Data

embedded in natural language text is even harder to obtain.

Further, relational databases make a number of assumptions about data scale that are

not appropriate to the Structured Web context. For example, a traditional system forces

users to refer to each relation by a unique human-understandable identifier. However, the

Web contains more than 150M high-quality relations derived from HTML tables alone (see

Section 4.2.1); no human being can be expected to remember so many unique names without

some kind of aid akin to search engines that help manage text-centric document URLs.

Figure 1.1: A typical use of the table tag to describe relational data. The data here has
structure that is never explicitly declared by the author but is obvious to a human observer,
including “metadata” that consists of several typed and labeled columns. The navigation
bars at the top of the page are also implemented using the table tag, but clearly do not
contain relational-style data.

This dissertation examines how to extract and manage the Structured Web, an automatically-

constructed structured version of information drawn from the Web. Given the Web’s

breadth and scope of coverage, we can also imagine it as a “database of everything.” Such

a dataset, combined with appropriate tools, promises a number of compelling applications.

3

Figure 1.2: A web page consisting of mainly natural language text, with no obvious re-
lational table elements. Some sentences, such as the one highlit in the figure, contain a
fact-like assertion. It is easy to imagine populating a database relation of scientists and
birth information by reading a large number of documents and extracting facts of the type
seen here.

For example:

• Highly-Expressive Web Search - Web searches and their results could be far more

sophisticated than the current keyword queries. For example, a user might ask for a

list of scientists, their inventions, and their years of death. Table 1.1 shows output for

that query from the prototype ExDB system [24], which derived structured answers

using natural language text from a 90M-page general Web crawl.

• Easy Data Analysis - Consider a spreadsheet user who would like to analyze some

data, say for public policy reasons. Spreadsheet software provides a huge amount of

4

Figure 1.3: Results of a keyword query search for “city population”, returning a relevance-
ranked list of databases. The top result contains a row for each of the most populous 125
cities, and columns for “City/Urban Area,” “Country,” “Population,” “rank” (the city’s
rank by population among all the cities in the world), etc. The visualization to the right
was generated automatically by the system, and shows the result of clicking on the “Paris”
row. The title (“City Mayors. . . ”) links to the page where the original HTML table was
found.

support for the mathematical side, but simply obtaining the relevant data can be a

large burden. It should be possible to search for all structured datasets as easily as we

can now find relevant unstructured text documents. Figure 1.3 depicts a sample query

processed by a prototype version of such a structured search engine, where the user

has typed the query city population. Instead of a ranked list of URLs, the system

has returned a ranked list of databases. The first hit, shown in the figure, contains

data about the 125 most-populous cities. The labeled columns contain information

on the city name, the country where the city can be found, the population, and so on.

Having issued just a single keyword query to find the data, the user could now easily

import this data into her spreadsheet for further analysis.

5

• Web Data Integration - The sheer amount of Web data makes it an enticing subject

for reuse and recombination. Consider the database of all program committee mem-

bers for an academic conference. This information generally exists on the Web, but

compiling it into a single database is tedious: a human being would probably use a

search engine to locate each of the conference’s year-specific Web sites, then manually

combine the PC member information found on each. Instead, the user of a Structured

Web-aware tool should be able to perform a simple union of PC member data found

across the different sites, entailing very little manual work.

scientist invention year-of-death probability

Kepler log books 1630 0.8

Heisenberg matrix mechanics 1976 0.8

Galileo telescope 1642 0.7

Newton calculus 1727 0.7

Table 1.1: The top-ranked results for an ExDB structured query, which asks for infor-
mation about scientists, their inventions, and the years of their deaths. The query is
expressed in Datalog-like syntax: q(?scientist, ?invention, ?year-of-death) :-
invented(?scientist, ?invention), died-in(?scientist, <year>?year-of-death).
These answers were computed by extracting data from a crawled set of 90M Web pages. In
the ExDB system, each extraction has an associated probability of being true or false, as
do tuples in the answer set. Returned answers are sorted in descending order of probability.

The thesis of this dissertation is that managing and accessing the Structured Web

poses unique difficulties which neither traditional database systems nor search engines ad-

dress. Moreover, we can successfully manage the Structured Web by designing management

tools that observe four critical design criteria: they should be extraction-focused, domain-

independent, domain-scalable and computationally-efficient.

This chapter provides an overview of why managing the Structured Web data is diffi-

cult, and how we propose to handle it. We start in Section 1.1 by defining some necessary

terminology. Section 1.2 describes several problems that distinguish Structured Web data

management from more traditional text or relational data management issues, and we out-

6

line our general approach in Section 1.3. We then briefly discuss how our approach is made

concrete in three distinct systems. Section 1.4 reviews our technical contributions. Finally,

we provide an overview of the dissertation’s general organization in Section 1.5.

1.1 What is Structured Data?

It is standard for database researchers to refer to data as either structured, semi-structured,

or unstructured. Unfortunately, this usage is often imprecise. Generally, structured data

refers to data expressed using the relational model; semi-structured data means XML data;

and unstructured data refers to documents such as text, Web pages, spreadsheets, and

presentations. Confusingly, semi-structured data is sometimes described as being contained

in XML documents; we will reserve the word “document” to describe a piece of unstructured

data.

These terms are unsatisfactory for a number of reasons. First, one might think that

semi-structured XML data is somehow less formally-defined than structured relational data,

but this is false. Indeed, it is also easy to give a formal definition for an unstructured

document (e.g., a text document is just a linear array of tokens drawn from the set of valid

words and punctuation symbols).

Second, an unsuspecting reader may think that unstructured data lacks a formally-

defined query language. But Web search queries are essentially Boolean selection queries

that could be expressed in SQL. It is possible (though arguably unwise) to implement a

search engine using a relational database.

Finally, it is tempting to believe these terms refer to whether the data is intended for

machine use (structured) or human consumption (unstructured) or somewhere in-between

(semi-structured). This usage is probably accurate to some extent - “unstructured” docu-

ments are often meant for human consumption. But a row in a structured relational database

can be very easy for a person to read, and unstructured spreadsheets often contain abstruse

statistical data.

There is one interpretation that appears to match general usage and is very relevant

to this dissertation. We suggest the terms structured, semi-structured, and unstructured

roughly describe the extent to which a dataset supports queries with domain-specific oper-

7

ations. (In this thesis, we will use the word domain in its non-mathematical sense, i.e., as

a synonym for topic.) For example, a very simple (structured) relational database about

employees might support the following SQL query:

SELECT employeeName, yearsOfEducation, yearsOfService WHERE

yearsOfEducation > 15 AND yearsOfService < 20

Writing such a query entails contributions from at least three different parties:

• The authors of the SQL language standard.

• The authors of the employee database schema, which includes concepts of employeeName,

yearsOfEducation and yearsOfService.

• The author of the query, who has supplied the overall logical structure and the con-

stants 15 and 20.

A traditional document-centric search engine is not sufficient to support the above query.

We could index this database with a search engine by first “flattening” the data into an

unstructured format: we simply write out all the contents to a series of text files, with one

tuple per file. We then use the search engine to index the resulting files. However, there

would be no way to express the above query - a search user could issue the query 15 20, but

this would simply return all documents (tuples) that contain those terms, without regard

to comparisons or the correct data attribute, i.e., yearsOfEducation vs yearsOfService.

The query language does not support comparison operators nor domain-specific notions like

the data attribute names. Search engine query languages support multiple topic-insensitive

operators (e.g., testing term presence, testing phrase presence, testing the site’s domain,

possibly testing whether two terms are NEAR each other, etc.) and multiple “fields” of the

data (such as the URL and the DNS domain mentioned earlier). But such systems do not

support fields relevant to each document’s actual subject.

Of course, it is possible to design a relational schema that hardly appears domain-

specific at all. Instead of a table with columns for employeeName, yearsOfEducation,

8

and yearsOfService, one could populate a three-column table with columns tupleid,

attrName, and value, spreading a single tuple’s data cross many rows. With such a design,

it would still possible to pose questions against domain-specific elements by rewriting the

user’s query; topic-specific knowledge would be embedded in the query-rewriting system

rather than the relational schema itself.

If structured data allows operations on domain-specific data elements, and unstructured

data does not, then one might imagine that just a fraction of semi-structured data elements

are domain-specific. Indeed, this is stereotypically the case for such canonical XML datasets

as health records, which have a mix of relational-style and textual components.

This interpretation also gives us crisp definitions for some other terms relevant to this

dissertation. The Structured Web is that portion of Web information that could usefully be

queried using a domain-sensitive representation (even if it is currently indexed using just a

search engine). For example, a list of upcoming musical tour dates should be part of the

Structured Web, but a poem would not be. An information extractor takes an unstructured

input and emits a more-structured representation of the information - that is, the extractor

adds domain-sensitivity to the representation. For example, an extractor transforms the

unstructured textual representation of musical tour dates into a structured, more-domain-

specific, relational version.

With these definitional tasks complete, we can now discuss the challenges entailed in

managing Structured Web data.

1.2 Challenges for Structured Web Data Tools

The Web is one of the most interesting and popular datasets ever assembled, covering a

vast number of topics from a huge array of contributors. At least in the areas of document

creation and distribution, the Web’s distinctive qualities of enormous scale and a lack of

central control, and the many document creators that those qualities engender, are now

commonly-accepted facts of life. For example, although the fact was once startling, it is

now taken for granted that erecting a Web site with global reach is inexpensive or free,

that the Web contains information on almost every topic imaginable, and that there is no

coordination among document-creators. However, note how remarkable these qualities are

9

when applied to structured data management:

• We cannot assume that people will publish data “cleanly.” It will often come in

unstructured and often casual forms: inside natural language text, embedded in doc-

uments, or expressed with only minimal gestures toward machine-understanding. A

traditional database, on the other hand, expects all “importable” data to be in one of

a handful of extremely clean and unambiguous forms.

• Web data is published in any way the publisher prefers, with no guarantees about the

data’s structure/schema or quality. Contrast this scenario to the case of traditional

relational data management, in which there is a centrally-designed schema that must

be observed. The designers of the schema certainly choose the data’s structural design,

e.g., what attributes may be expressed. They may choose to enforce data-quality

constraints, e.g., disallowing blank cells, or NULLs.

• The size and diversity of the Web audience means there will be a large amount of

crawlable structured data on almost any topic. In contrast, traditional databases are

difficult to access and focus heavily on a single domain at a time.

Most of these distinctions between traditional and Structured Web data management

generally pose new burdens for the Web-centric case. However, Structured Web management

is easier than traditional relational data management in at least one way: it is in general

not transactional. Thus much of the traditional database work on transactional safety and

performance is not applicable to the task at hand.

Transactions aside, the unique qualities of the Web pose several new challenges for

Structured Web systems. In Section 1.3 below, we discuss the three design criteria that

arise from these challenges, and how they are reflected in three different projects.

1.3 General Approach

The above-mentioned remarkable qualities of the Web - enormous scale with no central

control - which have become so commonplace in modern document management practices,

10

are in general not yet reflected in our structured data management tools. We believe that

managing Structured Web data requires four design criteria:

1. Extraction-focused, rather than data-loading-focused. People on the Web will pub-

lish data in many different messy ways. It is unreasonable to expect that all interesting

data will come in formats that are easy for relational databases to import, metadata

and all (such as comma-separated lists). Instead, we should use information extrac-

tion (IE) techniques, which consume unstructured text and output clean, structured

data. Extractors are not entirely universal - one may focus on text, another on tables,

and so on - but they should attempt to cover as much of the Web as possible.

2. Domain-independent, rather than sensitive to topic-specific data, rules, or schemas.

Our definitions above describe structured data as necessarily domain-dependent. But

the mechanisms that extract and query this structured Web data cannot have do-

main knowledge “baked in.” For IE systems, domain-independence means avoiding

extraction rules or training data that are tailored to a specific topic. For example,

an domain-dependent extractor that tries to recover corporate intelligence informa-

tion might look only for sentences that contain the verb “acquired.” Clearly, such an

extractor will be useless for the vast majority of Web content.

3. Domain-scalable, in the system’s ongoing operation. Most traditional structured

databases manage single-domain datasets. The domain’s metadata is not queryable -

it is instead the environment in which users interact with the system. For example,

relational databases assume that the user can easily name each table in the database

- the table names themselves are not queryable. However, the Structured Web has a

huge number of domains, each possibly with its own unique metadata. Users must be

able to operate over data without incurring per-domain burdens.

Domain-scalability may at first appear similar to domain-independence. The differ-

ence lies in whether a user of the system can not just extract or express data from

many domains, but also effectively perform operations over many domains. A domain-

scalable system must be domain-independent, but the reverse is not true.

11

4. Computationally-efficient, in non-traditional ways. Traditional database systems

have been successful at handling large numbers of tuples, and search engines can

handle large numbers of Web pages. But the Structured Web poses new efficiency

challenges. Many of these issues concern information extraction components, which

in the past have not often been designed for large document corpora. The explosion

in the number of domains may also pose a new computational problem that previous

systems have not needed to address.

Below, we describe how we applied these design considerations to three separate data

systems. The first is TextRunner, an extraction system that operates over very large

volumes of Web text. The second project, WebTables, extracts and then offers services

on top of Web-embedded HTML tables that carry tabular relational-style data. The final

project, Octopus, is focused relatively little on extraction and instead focuses on operations

over extracted data; it allows users to effectively integrate data derived from HTML tables

using WebTables, or from HTML lists.

1.3.1 Web-Scale Textual Extraction

TextRunner is an information extraction system that attempts to extract n-ary fact

triples from natural-language Web text. For example, a biographical Web page about

Einstein might yield [Einstein, was-born-in, 1875]. Textual fact extraction is not a

new idea, but previous textual extractors, such Agichtein and Gravano’s Snowball [1],

Brin’s DIPRE [18], and Etzioni et al.’s KnowItAll [39] have had various qualities that

make them unsuitable for processing all of the relations in a very large Web crawl; they

have required domain-specific rules or training data, or alternatively have been extremely

computationally expensive. TextRunner operates in three distinct steps:

1. Learning an Extraction-Detector. Using a small sample of the input corpus, a

computationally-expensive natural language parser, and some heuristics about what

makes a good extraction, TextRunner builds an efficient extraction-detector. For a

sample set of input sentences, TextRunner runs a parser on each, obtaining a full

parse tree. It then checks to see whether these parse trees match a set of heuristics

12

about linguistic forms that suggest fact tuples. For example, many fact-centric sen-

tences have two noun-phrases linked by a verb-phrase, as in, “Einstein was born in

1875.” TextRunner also obtains a set of inexpensively-computed features for the

sentence, such as simple part-of-speech tagging and noun phrase chunking. It uses

these heuristic-verdict / inexpensive-feature-vector pairs to train a classifier that uses

only these inexpensive features to distinguish good from bad extractions.

2. Single-Pass Extraction. TextRunner then runs the trained extraction-classifier

on every sentence in the entire corpus. Because the detector only requires inexpensively-

computed features, as opposed to a full parse, this step is computationally efficient. If

the classifier believes it has found a good extraction, it emits the resulting tuple and

sends it to the next step.

3. Redundancy-Based Assessment. Using a model introduced by Downey et al. [37],

TextRunner assigns a probability to each extraction based on how frequently it has

been seen. The more frequently an extraction is observed, the greater the probability

it is true.

TextRunner’s design is meant to observe the above-mentioned Structured Web data

design criteria. TextRunner is:

1. Extraction-focused. The main goal of TextRunner is to obtain all of the factual

statements currently embedded in natural language text. These are transformed from

unstructured text into a more-structured object/relation fact-triple model.

2. Domain-independent, as TextRunner requires no domain-specific extraction rules

or training data. Note that this requirement is not observed by many previous extrac-

tion systems. For example, the previously-mentioned Snowball [1] and DIPRE [18]

both require sample inputs, such as pairs of books and authors. The systems can

then grow the sample inputs by finding additional tuples. Wrapper induction systems

have required not just domain-specific training data, but website-specific data as well;

see, e.g., Kushmerick et al. [54] and Muslea et al. [66]. All of the rules and training

13

Raw Crawled Pages Raw HTML Tables Recovered Relations

Figure 1.4: The WebTables relation extraction pipeline. About 1.1% of the raw HTML
tables are true relations.

data used by TextRunner is not topical but linguistic in nature. The extraction

heuristics and the natural language parser are language-specific. There is also some

very weak linguistic tie to linguistic characteristics of the initial document sample.

3. Domain-scalable. TextRunner does not offer query facilities, whether domain-

scalable or not. But it definitely does not require that the extraction task be pa-

rameterized by the user with any domain-specific information, unlike other extraction

systems such as KnowItAll [39].

4. Computationally-efficient, as TextRunner avoids processing costs that scale with

the number of domains. It also avoids the high per-document computational costs

associated with using natural-language parsers at large scale.

We discuss TextRunner in additional detail in Chapter 3.

1.3.2 Table-Oriented Data Extraction and Mining

The WebTables project combines an information extractor for Web-embedded relational

data with several applications built on top of that data. As mentioned at the start of this

chapter, the HTML table tag is often used by Web authors to draw tabular structures in

a browser window as in Figure 1.1. About 1.1% of these tables are used to display data

that has tuple-oriented rows and dimension-oriented columns, as opposed to being used

for page navigation or other purposes. In these tuple-oriented cases, the page’s author is

14

essentially publishing a simple relational database. These databases are far simpler than the

transactional datasets managed by a traditional system such as Oracle or DB2. However, the

WebTables-derived databases are also far more numerous. The sheer number of extracted

databases allows WebTables to also build a number of novel applications on top of the

data.

Figure 1.4 shows a simplified version of the WebTables processing pipeline. We start

with a raw general Web crawl, then parse the HTML to find all of the raw HTML tables.

WebTables then uses a series of classifiers to perform relation recovery, which entails

distinguishing relational from non-relational tables, as well as detecting metadata in

the form of column labels when present. After extracting a large number of databases,

WebTables builds a number of interesting applications on top of the data: table search,

synonym-finding, schema-autocomplete, and others.

WebTables observes the Structured Web data design criteria in the following ways. It

is:

1. Extraction-focused, as it gathers structured relational data exclusively from extant

HTML-embedded table structures. An HTML table is undeniably a flawed vehicle for

expressing relational data: type information for data cells must be inferred, schema

constraints are unenforceable, and metadata is both optional and sometimes difficult

to detect. However, the qualities that make HTML tables difficult to process - the

lack of central controller to enforce quality, a huge audience of creators with diverse

ideas on how to design a structured database - are also what make them numerous

and diverse. WebTables uses a series of classifiers to distinguish relational from non-

relational tables, as well as detect when the author has inserted relevant metadata.

2. Domain-independent, as it requires no topic-specific information either when ex-

tracting structured data or when running applications on top of the resulting data.

WebTables’s extractor classifiers do not use any domain-specific features. It would

be possible to test a candidate table’s extracted schema against a dictionary of known

good schemas, but this approach obviously constrains us to whatever is in the dictio-

nary. Instead, the classifiers use only qualities that are present in every table, such as

15

the dimensions of the extracted tabular structures, the number of empty table cells,

and the inferred data element types. Downstream applications, such as table search

and attribute synonym finding, similarly require no domain-specific knowledge, rules,

or data.

3. Domain-scalable, as it allows the user to easily search for relevant data regardless

of domain.

4. Computationally-efficient, to the extent necessary. Most of the WebTables ex-

traction and application components involve batch-oriented computation that is linear

in the number of documents or tables being processed. Searching over the extracted

tables incurs costs similar to Web search engines. Any expensive algorithms should

be run only on small datasets, when possible.

Chapter 4 gives an in-depth description of WebTables, including its extraction pipeline

and the applications that we have built on top of the resulting data.

1.3.3 Data Integration for the Structured Web

Octopus is a system for integrating extracted Web data. The problem of data integra-

tion has existed for a long time in a traditional database setting, for example, when two

companies merge and must combine their employee databases. The scale and richness of

the Web make integration very tantalizing - for example, the user may want to compile a

database of all the program committee members who have ever served a given conference

such as VLDB. But integrating Structured Web data also poses several difficulties. The

relevant information exists, but is scattered across more than a dozen different sites and is

not customarily published in a formal way. Further, there are a huge number of potential

sources, none of which have formal metadata. Finally, there are complicated interactions

among data elements on a single Web page that Octopus must navigate. For example,

a VLDB Web page might enumerate its committee members using an HTML list, but the

year of the conference is likely to be elsewhere, perhaps in the page’s title.

16

The Octopus system offers a workbench-style environment for users to construct a novel

database from potentially dozens of source sites by issuing just two or three commands; the

user never has to manually visit the source sites, and those sites never have to publish

data in any kind of specialized format. The search command takes a user’s keyword query

as input, and returns clusters of relevant and structurally compatible extracted relations.

Relations in a single cluster are effectively the system’s candidates for union. The context

operator examines the Web text that surrounds extracted data in order to obtain additional

structured values. The extend operator is akin to the traditional join and adds extra

columns to a table with data that are related to existing tuples and relevant to a user-

indicated keyword.

Together, these operators enable a new and powerful way to repurpose existing Struc-

tured Web data while solving or sidestepping the new problems posed by that data. In

particular, Octopus solves these problems by observing the above-mentioned design crite-

ria. It is:

1. Extraction-focused, as Octopus uses only WebTables-induced tables and HTML

lists as its structured inputs. Table extraction is well-covered in our discussion of

WebTables in Section 4 below. HTML lists can be thought of as a form of HTML

table in which the column boundaries have been lost and must be automatically re-

covered; Octopus introduces algorithms for performing this recovery. In addition,

the Context operator retrieves data elements embedded in the text that surrounds

an extracted table in its source Web page, as in the VLDB conference case men-

tioned above. Context only makes sense in an environment where extracted data

predominates.

2. Domain-independent, at the time of extraction as well as the user’s application of

operators. First, the extraction-rooted components of Octopus (WebTables table

extraction, HTML list extraction, and the Context operator) rely exclusively on

domain-independent features such as string lengths and word-frequencies. Similarly,

the Search and Extend operators are designed to, respectively, retrieve/cluster

and join structured tables without access to reliable schema information. Note that

17

domain-independence can place a heavy computational and algorithmic burden. For

example, a traditional join operator might simply examine a well-designed schema

to see if two columns can be joined; our analogous operator, Extend, must apply

a statistical test to many potential target tables in order to find a high-quality join

between two columns.

3. Domain-scalable, throughout the application. As with WebTables, users are never

asked to address an extracted table by name. Rather, Octopus’s Search always

returns tables in response to a subject-matter keyword query. Further, the join-like

Extend operator does not take a named join table as would be common with a

relational database. It instead chooses a target join table based on a user-provided

keyword.

4. Computationally-efficient, although a handful of operator algorithms pose most of

the challenges. In these difficult cases, the algorithms must issue a huge number of

Web search queries; we reduce the number of necessary queries via approximation.

Chapter 5 gives a detailed overview of Octopus, especially its three novel operators

and the algorithms that implement them.

We can now move to an overview of the technical contributions of this dissertation.

First, however, it is helpful to briefly distinguish our Structured Web data from another

nontraditional source of structured data: the Deep Web.

1.3.4 An Aside: The Deep Web

It is easy to confuse the Structured Web with what is often called the Deep Web. The

Deep Web refers to the huge set of relational data stored in traditional databases that are

connected to the Web, with an HTML-based front end. Most of the data in the Deep Web is

not immediately crawlable, but is instead elicited by an HTTP form submission. Estimates

of the size of the Deep Web differ, but some place it at up to 500 times the size of the

traditional surface Web (see He et al. [45] and Madhavan et al. [59]). It is possible to

automatically reveal part of the Deep Web by computing and submitting a form.

18

Unlike the Deep Web, our Structured Web data is easily crawlable: no special form

submission is required. But, Structured Web elements typically involve substantial amounts

of extraction effort, which may or may not apply to Deep Web data. The Structured Web

is clearly distinct from the Deep Web when it comes to information extracted from natural

language text. In the case of extracted HTML tables, we can detect overlap by checking

whether an extracted table’s source URL is parameterized, thus suggesting arguments that

are passed to an application server and back-end Deep Web database. In our experiments,

described in Chapter 4, we found that at least 60% of our URLs are not parameterized.

1.4 Technical Contributions

Structured data is prevalent on the Web, but no current data system can make use of it:

search engines treat everything as unstructured text, and traditional databases make a num-

ber of assumptions (especially, but not only, around data import) that are not appropriate

for Structured Web data. This dissertation identifies four design criteria that are critical

for systems that successfully manage the Structured Web. They are: extraction-focused,

domain-independent, domain-scalable and computationally-efficient. A system that lacks

any of these four criteria will be unable to access most of the Structured Web, which is

generally published in unstructured formats, covers a huge array of topics, and is “large”

in surprising dimensions. We have applied these criteria to the design of three interesting

systems. Their technical contributions are as follows:

• TextRunner - We introduce the TextRunner open information extraction system

for obtaining tuples from natural language text on the Web. Unlike previous extraction

systems, TextRunner’s architecture allows it to operate without any domain-specific

extraction rules or training data. Further, it has complexity O(D), where D is the

number of documents processed; other systems have complexity that is the product of

the number of documents and topics, or even quadratic in the number of documents.

We show that when TextRunner is tested against a more traditional information ex-

traction system that requires a priori knowledge of the target relation, TextRunner

can obtain results with a 33% lower error rate on a set of ten relations. On a 9M-page

19

corpus that included 278,000 distinct relation strings, we show TextRunner offers a

speedup of four orders of magnitude compared to KnowItAll.

• WebTables - We describe the WebTables system, which extracts relational databases

from HTML tables, and then builds a number of novel data-centric applications on

top of the resulting data. By processing a very large Web crawl, WebTables is

thus able to obtain more than 125 million distinct databases - a collection that is

five orders of magnitude larger than any other corpus we are aware of. Based on the

large amounts of metadata we can recover from this corpus, we introduce attribute

occurrence statistics, which characterize the relationship between attribute labels ob-

served in the database corpus. These statistics enable a number of novel applications:

schema autocomplete, which suggests data attributes to novice database designers;

an attribute synonym tool that automatically finds synonymous attribute label pairs;

and others. We show experimentally that each of these applications give high-quality

results on a test set of queries.

• Octopus - We introduce a workbench-like system so a user can integrate Structured

Web sources with very little effort. Unlike previous systems, Octopus does not re-

quire a trained database administrator nor XML-formatted data nor hand-written

extractors. We introduce three integration operators - search, context, and ex-

tend. Unlike traditional database operators, Octopus operators are “soft” and with

different algorithmic implementations can yield high- or low-quality results. We pro-

vide multiple algorithmic implementations for each and demonstrate experimentally

that they are effective on an externally-generated set of test queries. For example,

with just a few Octopus clicks, we were able to integrate five distinct source tables

from three distinct websites to create a single output database, which contained 243

tuples; 223 of these were completely correct. The inputs were never intended for reuse;

indeed, some were many years old.

20

1.5 Outline of the Dissertation

The next chapter provides a brief background description of three areas of research rel-

evant to this dissertation: information extraction, Web text processing, and traditional

data management. These are all huge areas of work, so we necessarily focus on areas of

the literature where they have intersected to some degree. Chapters 3, 4, and 5 cover the

above-mentioned TextRunner, WebTables, and Octopus systems in detail. We discuss

future work and conclude in Chapter 6. Together, these chapters present a coherent set of

research contributions and a vision for future work on the Structured Web.

Parts of this dissertation have appeared in other venues. I have had student collaborators

in all of these publications, but I was the “lead” researcher for all but the TextRunner

project with Michele Banko [6]. In that work, we were peer collaborators, though with

different areas of focus. In TextRunner-related chapters I will discuss primarily my own

contributions, distinguishing our work where appropriate. Banko continued to work sepa-

rately on TextRunner in later publications [7, 8] and in her doctoral dissertation [5]. The

TextRunner-specific material in Chapter 3 appeared in the IJCAI conference in 2007 [6].

WebTables was first described in a WebDB paper in 2008, and later the same year in a

longer VLDB paper [22, 23]. The Octopus work appears in the 2009 VLDB conference [21].

Finally, many of the ideas for future work first appeared in CIDR papers from 2007 [24]

and 2009 [19].

21

Chapter 2

BACKGROUND DISCUSSION

Research into structured data on the Web is a relatively new development, published

across AI, database, and Web-oriented venues. In addition, this work requires navigating

three relevant and very large bodies of work: traditional structured database management,

Web and information retrieval work, and more recent information extraction efforts. In

this chapter, we provide background and context for the research in this dissertation. In

Section 2.1 below, we give a very quick summary of these three areas of work for readers

who may be unfamiliar with one or more of them. Then in Section 2.2, we take a closer look

at more recent systems that involve structured data on the Web, including discussions of

how they relate to the systems and design criteria that make up this dissertation. Finally,

we conclude in Section 2.3.

2.1 Research Background

There are three large areas of research relevant to the Structured Web data management

we pursue in this dissertation. They include traditional structured database management,

information retrieval, and information extraction. In this section, we provide an extremely

brief overview of each area, and encourage readers to examine citations where appropriate.

2.1.1 Structured Data Management

Business data management is one of the oldest computer applications, and indeed mecha-

nized business data management predates electronic computers entirely. The oldest working

system that is a recognizably “modern” database may be IBM’s IMS, released in 1968. The

system is discussed in Stonebraker and Hellerstein’s overview [78]. Academic database re-

search found its first home in the SIGMOD database conference, which started in 1975.

SIGMOD grew out of the SIGFIDET workshops, which originated in 1970.

22

Database research from the 1960s to the 1980s were marked by strong debates over

the best way to represent and model data. Candidates included IMS’ Hierarchical model,

the network-based CODASYL model [28], and Chen’s entity-relationship model [26]. By

far the most successful, however, was the relational model first proposed by Codd [29].

The relational model, which stores data in a series of two-dimensional tables, was able

to represent many common datasets more naturally than other models. All of the most

successful commercial systems of the 1980s and 1990s - including Oracle and IBM’s DB2 -

were based on the relational model. Other models have been suggested, but the relational

model has retained its broad popularity, incorporating some modifications over the years,

such as user-defined functions. As discussed in Chapter 1, today the phrase “structured

data” almost always refers to relational data.

One critical element of a relational database is its domain-specific schema. The relational

schema describes what the dataset will contain - which fields, with which types, under which

constraints. It is impossible to load data into a relational database without first describing

the database’s schema.

Hellerstein et al. [47] provide an excellent architectural overview of a modern relational

database management system.

2.1.2 Information Retrieval and the Web

Information retrieval is the second large research area and focuses on finding unstructured

text documents within a large corpus. Early retrieval systems from the 1960s, 1970s, and

1980s existed primarily outside of public view - they were used at universities, newspapers,

governments, and similar institutions. As an area of academic study, the first SIGIR con-

ference was held in 1978, having grown out of a workshop of the same name, founded in

1971.

IR systems in the early days were quite different from the Web search engines we use

today. Bourne and Hahn give a useful overview of these early systems [15]. Due to expensive

hardware and lack of large electronic document sets, corpus sizes tended to be very, very

small by today’s standards. Most systems indexed just document metadata such as titles,

23

rather than full texts. However, the basic shape of today’s systems could be seen - IR

systems took user search queries (generally Boolean ones) and returned a list of hits on

the managed document set. They did not require any domain-specific information, as did

database systems. Probably the most notable academic advances from this earlier period

were the vector-space document model and the tf-idf scoring mechanism [74].

The popularization of the Web in the mid-1990s, and the search engines that accompa-

nied it, brought substantial changes to the field. First, the huge corpus sizes made ranking

of results, as opposed to strictly Boolean searching, much more important than it had

been previously. Second, partially also due to lower hardware costs, full-text indexing be-

came popular and expected. Finally, the Web’s hypertext graph added an extra source of

non-textual information for ranking purposes; algorithms on this graph became a popular

academic topic for many years, e.g., Kleinberg [52], Page et al. [68], and Pirolli et al. [70].

Information retrieval is extremely relevant to this dissertation in at least one way - a

modern search engine is the only truly popular piece of software that even attempts to

process all of the content on the Web. However, the field has historically ignored domain-

specific structured information. Thus we find that while Web-centric IR informs our work

at the architectural level, it remains largely silent on structured data questions.

2.1.3 Information Extraction

Information extraction (IE) has been an active area of research since at least the early

1990s, when interest in IE grew out of the DARPA Message Understanding Conferences [80].

Muslea provides a good survey of early work, which focused primarily on traditional textual

forms [65]. Example applications include gathering corporate intelligence or extracting facts

from news articles, as in Riloff [73].

The first attempt to extract information from Web pages appears to be the Webfoot

system in 1997 [77], and many systems soon followed. Brin’s DIPRE project [18] took

as input a user-given “seed” 2-tuple (e.g., “Of Mice and Men”, “John Steinbeck”) and

generated extraction patterns that allowed it to obtain additional examples from downloaded

Web pages. The Snowball [1] system worked in a similar fashion, adding new methods for

24

generating extraction patterns.

The Web has several unusual qualities that were already somewhat present in these early

systems. First, the Web is large and topically diverse, so it demands domain-independent

techniques; DIPRE and Snowball required small but real domain-specific user inputs to

obtain a large database. Some of these early systems handled the Web’s scale and relative

low quality only indirectly, by using search engines to obtain useful input documents. In

most cases, authors of these early systems simply did not address computational efficiency

at all.

2.2 Related Projects

Recently there has been a large amount of relevant research into some aspect of the Struc-

tured Web. A system may draw heavily on one or more of the above-listed bodies of work,

but each tries to address an issue particular to data on the Web. We describe these projects

below, with some commentary on their relationships to the contributions of this dissertation.

2.2.1 KnowItAll

Etzioni et al.’s KnowItAll system [39, 40] performs information extraction from natural

language Web text. Its main technique is to apply domain-parameterized extraction patterns

to Web pages. For example, the existence of phrases like Y such as X and X is a Y provide

some evidence that X is a hypernym of Y. When parameterized with a class Y, KnowItAll

can then find all examples of Y on the Web. It operates by first using a search engine to

find a large number of relevant documents, downloading the documents, and running the

extraction phrases over these downloaded documents. Finally, it uses the search engine to

compute how often each extraction appears, and thresholds out those extractions that have

a low PMI-IR score.

KnowItAll is an extractor, not a full Structured Web management system. Extracting

information from text requires a textual relation (domain) name, though not domain-specific

rules or training data. Each new extraction task must be parameterized by a new domain

name. Thus it is probably most accurate to say that KnowItAll is domain-independent,

25

but not domain-scalable - whoever runs it must explicitly provide a domain name for each

execution.

It is not very computationally-efficient. For the single-domain case, Cafarella et al.’s

KnowItNow system [20] obtained substantial speedups. In any plausible Web system, the

set of domains to be extracted will be substantial, making any system that relies on per-

domain execution terribly slow. We compare KnowItAll with the TextRunner system

in Chapter 3.

2.2.2 CIMPLE

DeRose et al.’s CIMPLE system [31] is a data integration system tailored for Web use, being

designed to construct “community web sites.” For example, the CIMPLE DBLife site [32] is

a compilation of information about the database research community, including researchers,

their papers, conferences, and so on. There are several commercial Web sites that would

arguably make good targets for CIMPLE, such as Metacritic.com, which compiles movie

and other media reviews from multiple independent sources.

A CIMPLE site consists of a series of human-chosen data sources, hand-designed in-

formation extractors, and engineered mappings between data schemas. CIMPLE tools are

designed to assist when possible, but it is still expected that a trained administrator will

spend a relatively large amount of time designing each site. After the initial setup, the site

is kept up-to-date largely automatically.

CIMPLE uses a data-centric model of Web content in order to construct each community

web site: information extractors consume unstructured pages and emit structured, domain-

specific data. However, unlike the approach we have taken in all three projects in this

dissertation, CIMPLE requires substantial administrator interaction to write an extractor

for a given domain, although the needed effort may be lessened by approaches such as the

iFlex system [75]. CIMPLE also requires the administrator to design each output website.

Thus, while CIMPLE is extraction-focused, it has heavy per-domain administrative costs

that render it only partially domain-independent. CIMPLE provides some assistance to

the administrator in finding good data sources, given an initial seed set; thus CIMPLE is

26

somewhat domain-scalable. Published work on the system does not address computational

efficiency issues.

2.2.3 YAGO and NAGA

The YAGO information extraction system, due to Suchanek et al. [79], produces a very

high-quality ontology of objects consisting of is-a and 13 other fixed binary relations. For

example, the object Paris is in the FamilyNameOf relation along with Priscilla Paris,

and in the Means relation along with Paris, France. It extracts the ontology from Word-

Net [63] and the structured parts of Wikipedia, such as the specialized “list pages” that

assign type labels to other Wikipedia entries. It does not attempt to process Web pages in

general, and does not even attempt to extract information from Wikipedia article content -

it focuses only on the Wikipedia list construct. The main contribution of the YAGO work

is that it can use Wikipedia information to populate an (admittedly limited) ontology with

a large number of objects while retaining high quality.

The system does not attempt to process unstructured sources directly, but can be ex-

tended using a more traditional textual information extraction system. The authors showed

that the domain-specific Leila extraction system could be used to add HeadquarteredIn

links to the existing YAGO dataset.

YAGO is not a full Structured Web management system, and does not truly fulfill any

of our design criteria. It does not attempt to operate at any serious scale, and it is limited

to a tiny number of binary relations. Its input is highly specialized, so it is only barely

extraction-focused.

However, YAGO suggests a route for extracting the Structured Web quite unlike the one

we have pursued in this dissertation. The system begins with highly-structured inputs, and

then can adorn the resulting data with unstructured extractions. In contrast, the extractors

in our TextRunner and WebTables projects use no a priori information at all about

relevant relations or data items. It is intriguing to imagine a Structured Web extractor that

starts with a YAGO ontology at its core, expanding to a full domain-independent dataset

by obtaining Web text on each known object, extracting information from each page. It is

27

somewhat reminiscent of work by Mansuri and Sarawagi [61], who increased the size of a

preexisting relational database with text extractions, using the already-structured data to

guide future extraction.

Kasneci et al. extend the YAGO work with NAGA [49, 50], a query system that operates

over the extracted information. NAGA allows users to pose structured queries against the

extracted ontology. Query-writers can use regular expressions to refer to data objects, so it

is not necessary to know the precise name of a desired item. NAGA will also use information

from a background corpus of text documents to assist in ranking its query results.

We can think of the combined YAGO-NAGA system as somewhat domain-scalable,

because of NAGA’s flexibility in finding items in its potentially-massive dataset. NAGA’s

authors do not discuss its computational efficiency. It appears that a combined YAGO-

NAGA system can model and query any number of domains, but without a proposed and

evaluated extractor, it is hard to say whether the system is domain-independent.

2.2.4 Freebase and DBPedia

Metaweb’s Freebase system [14] is a “wiki”-style collaborative structured database, designed

primarily for human updates. Unlike traditional structured databases but like the Struc-

tured Web, Freebase covers a broad range of general-interest topics, roughly similar to the

topics contained in Wikipedia. It offers both a user-friendly Web interface as well as a

structured query language called MQL.

Although Freebase data is highly-structured, it does not conform to the relational model:

the basic unit in Freebase is a typed object, which can contain attribute/value pairs or links

to other Freebase objects. This graph-based system draws on features of several different

data models studied in the database literature, in particular the entity-relation model [78].

Even though Freebase has been designed for updates by a community of human beings, a

large amount of its current data has been extracted from Wikipedia and added by Metaweb.

This extraction mechanism lives “outside” the official Freebase system.

The DBPedia project [4] is roughly similar, though with a more explicit reliance on

extracted data, in particular Wikipedia information. It also includes data generated by the

28

above-mentioned YAGO system. DBPedia stores everything as RDF triples.

These systems have ambitions to be “general-purpose” structured databases, roughly

along the same lines as our vision for the Structured Web as described in Chapter 1. They are

extraction-focused, although in Freebase’s case the extraction mechanism is not an inherent

part of the system design. Their query systems are domain-independent, but DBPedia uses

a series of domain-specific extractors (and Freebase’s system is not documented). Freebase

relies on per-domain data type designs contributed by users, whereas DBPedia extracts

them from Wikipedia and other sources.

Neither system attempts to manage data from the entire Web, but instead uses just a

subset (e.g., Wikipedia data). Their query systems are not documented, so it is impossible

to say anything about their computational efficiency. By adopting an admirable object-

finding interface that takes a keyword query and returns candidate data objects; and by

avoiding a query system that takes per-domain information to operate effectively, Freebase

is highly domain-scalable. DBPedia offers something similar - text search over the RDF

store to make object-finding easier.

2.2.5 Purple SOX

Bohannon et al.’s proposed Purple SOX extraction management system [13] is designed to

run a large number of Web extractors at very large scale. In particular, Purple SOX offers

extractor developers a number of features. First, it offers a declarative extractor language

that can be enhanced with developer-defined operators; this declarative language can also

be executed and optimized automatically, much as SQL can be. Second, it keeps extensive

lineage information for each extracted fact, so a developer can debug the output dataset.

Finally, it maintains a score to represent the system’s belief that a given extraction is

true, which score can be adjusted using a variety of information sources (including socially-

contributed information). The output of Purple SOX is an RDF-like triple store.

Purple SOX is clearly extraction-focused, though not domain-independent or domain-

scalable - its entire goal in supporting developer-friendly features is to lower the bar to

human-generated domain-specific information extractors. Purple SOX has not yet been

29

completed and evaluated, so it is impossible to say whether its declarative extraction system

will be computationally efficient.

2.3 Conclusion

There has been an explosion of interest in managing Structured Web data, combining work

from several different areas of research. All of the systems discussed here have the goal of

being as comprehensive as the Web, and they share many qualities in common. They claim

to be computationally scalable, although there is little published information about their

techniques or results. All of them (except, perhaps, Purple SOX) acknowledge that a user

interacting with vast amounts of structured data cannot be expected to uniquely identify

each data item, and thus offer assistance for locating data and/or relevant Web pages.

There is one way in which the systems differ strongly, and that is how they plan to pop-

ulate their datasets. KnowItAll is focused entirely on automated domain-independent

extraction, for a single domain at a time. Purple SOX and CIMPLE rely heavily on an

administrator or developer. Freebase appears to want its user population to type in facts

by hand, but in practice also relies heavily on what seem to be dataset-tailored extrac-

tors. YAGO/NAGA and DBPedia, meanwhile, rely on domain-dependent extractors; the

published work on these systems does not offer any ideas on how to eventually process all

information on the Web.

The work in this dissertation offers a solution for acquiring that is different from all

of the above systems, that of using domain-independent information extraction. In the

next Chapter, we will discuss our first domain-independent extractor, TextRunner, which

operates over natural language text crawled from the Web.

30

Chapter 3

WEB-SCALE TEXTUAL EXTRACTION

Natural language text makes up a large and important portion of information on the

Web, and extracting structured data from text should be a critical part of any Structured

Web system. Unfortunately, traditional textual information extraction projects have gener-

ally attempted to gather data for specific predefined topics, using as input relatively small

and homogeneous corpora. For example, an extractor might obtain the locations and times

of academic seminars from a set of departmental email announcements. Changing the tar-

get domain has usually meant a substantial amount of work for a human, who must create

new extraction rules or training data. Further, previous systems have often computation-

ally scaled poorly with either the number of documents or the number of target topics. In

short, previous textual extraction efforts have generally failed our design criteria of domain-

independence, domain-scalability, and computational efficiency, and thus are not suitable

for processing a Structured Web of billions of documents and a vast number of domains.

This chapter introduces TextRunner, an Open Information Extraction system that is

domain-independent, domain-scalable and computationally-efficient. Most of the informa-

tion in this chapter can be found in Banko, Cafarella et al. [6], a project in which Michele

Banko and myself were the lead researchers. My contributions centered on TextRunner’s

architectural differences with previous IE systems, whereas Banko worked mainly on the

NLP-based heuristics and features and the analysis of fact quality. This chapter will thus

focus primarily on the system’s architectural advantages. However, TextRunner cannot

be understood without NLP-related details and an examination of the extraction quality

and so we also discuss work done primarily by Banko where appropriate. We also separately

cite her work on TextRunner if done outside the scope of our collaboration.

Unlike previous IE systems, TextRunner processes its input corpus in a single pass,

without any per-domain training data or human guidance. Also, TextRunner is designed

31

to have a complexity linear in the number of input documents, with a low constant factor,

making it appropriate for processing input corpora of billions of Web pages. We show that

on a test set of domains, our system can reduce extraction error by 33% when compared

to KnowItAll, a high-quality non-open IE system mentioned previously. In addition, we

demonstrate that TextRunner can process all of the domains in a corpus in several orders

of magnitude less time than KnowItAll. By running it on a corpus of 9M Web pages,

we were able to obtain 1M concrete facts. These attributes make TextRunner a valuable

system for processing the portion of the Structured Web data embedded in natural language

text.

3.1 Problem Overview

The large volumes of text on the Web, and the large number of topics that are covered

by that text, pose a serious challenge to information extraction systems. IE projects have

traditionally been applied to relatively small corpora, focusing on a small number of do-

mains. They have generally required extensive human input for each domain, scaled poorly

with the size of the corpus, and often suffered from brittle output quality when run over

heterogeneous document collections. In all of these qualities, previous IE systems have been

thoroughly inappropriate for processing text on the Structured Web, with its huge number

of documents and a large and unknown number of topics.

Traditional IE systems’ need for domain-specific hand-crafted data (whether in the form

of training data, or extraction rules, or simply the target topic name) has implications

for our Structured Web criteria. Many such systems are not domain-independent - they

can only extract data for a single subject matter, or they require per-topic training data.

Others may be domain-independent, but are not domain-scalable because they require a

small amount of human input for each topic processed, even if just the topic name itself.

These qualities relating to processing many domains can lead to problems with computa-

tional efficiency. First, while the number of topics on the Web is hard to state concretely, it

is undoubtedly large; as we describe in Section 3.4 below, we found 278,085 distinct relation

strings (e.g., born-in) in a 9M-page Web crawl. Compiling hand-made data for each of

these strings would be extremely burdensome, perhaps prohibitively so. At any rate, even

32

enumerating the target topics in advance undermines one of our goals with the Structured

Web, which is to not just manage structured data that we know is on the Web, but to

discover new topics as well.

Even in cases where it is possible to acquire human-created data for each topic, running

the system on the entire Web’s worth of topics now makes the overall extraction step scale

with the number of domains, in addition to the extraction mechanism’s existing complexity.

Thus, if we treat the number of topics T as a parameter to consider in complexity analysis,

then a single-domain extractor that is linear in the number of documents D goes from

O(D) to O(D ∗T). If we treat the number of topics as large but fixed, then a single-domain

extractor’s algorithmic complexity stays at O(D) but with an enormous added constant

factor.

Traditional IE systems’ heavy reliance on linguistic techniques has two ill effects. First,

many linguistic technologies, such as dependency parsers and named-entity recognizers, are

generally very computationally-heavyweight. These techniques were designed primarily for

running over relatively small corpora (say, a set of newspaper articles), which obviously

does not hold on the Web. This adds a high constant-time factor to the extractor’s overall

complexity. Second, these linguistic systems were themselves trained on relatively small

and homogeneous text collections, so they can fail at higher rates when processing Web

documents, which are diverse in type and in quality.

To avoid all of these problems, in this chapter we introduce TextRunner, an Open

Information Extraction system that takes just the downloaded Web corpus as input, makes

a single pass over that input, and emits extracted structured tuples as output. It takes

no per-domain data of any kind. It is also designed to use only relatively low-overhead

linguistic tools. In so doing, TextRunner meets our Structured Web criteria of domain-

independence, domain-scalability, and computationally-efficiency. And as an extractor, it is

of course extraction-focused.

Our goal for a textual extractor is to take a corpus of text as input and yield a set of

accurate triples, each of the form t = (ei, r, ej). In this tuple ei and ej represent real-world

entities and r represents a binary relation that links the entities together. For example,

the phrase “Einstein was born in Germany” might give rise to (Einstein, was-born-in,

33

Germany). In this case, Einstein and Germany are entities, while the relation was-born-in

links them together.

Other possible examples include (Edison, invented, phonograph), (Paris, is-capital-of,

France), and so on. The relation r is the topic or domain of the extracted tuple. It is easy

to imagine extracting not just binary relations, but 3-ary or n-ary ones, and emitting an

appropriately larger tuple. E.g., we might obtain (Einstein, was-born-in, Germany, 1875).

We focus only on binary relations, and thus 3-ary tuples, in this work.

The decision about whether or not to fix T for the sake of complexity analysis depends

on assumptions about the input corpus. If the set of interesting relations can be identified

easily ahead of time and is relatively small, then T can be fixed without any problem. If

the set of relations grows rapidly over time, it may be more useful to retain T as part of

the complexity analysis.

In the next section we will discuss in detail a number of previous IE projects and describe

why none of them meet our needs for the Structured Web. Then in Section 3.3 we describe

the TextRunner architecture in detail. We evaluate the system in Section 3.4, and then

conclude in Section 3.5.

3.2 Related Work

There has been a substantial amount of research into textual information extraction, a few

of which we describe here. As will become clear, we are unaware of any system that is both

domain-independent, domain-scalable, and computationally-efficient.

3.2.1 Wrapper Induction

Wrapper-induction is a popular research area that attempts to extract structured tuples

from text which is sometimes (confusingly) called semi-structured, although this sense of

the word has nothing to do with XML data. A wrapper is a function that consumes semi-

structured text and emits a structured extraction; wrapper-induction studies how to create

these wrappers automatically or semi-automatically. Semi-structured text is generally text

that has been generated algorithmically using information from a backend database. Ex-

amples might include product listings at Amazon.com that arise from a product database,

34

Figure 3.1: A sample page from Urbanspoon.com, and a good candidate for extraction by
a wrapper-induction system.

or a list of available flights at Southwest.com that is backed by a reservations database.

Figure 3.1 shows another example, a portion of a restaurant listing from Urbanspoon.com;

in this case, a successful wrapper-induction system might obtain a tuple (University-Zoka,

206-527-0990, University-District), for the restaurant’s name, phone number, and

neighborhood. Examples of work in this area include projects by Kushmerick et al. [54],

and Muslea et al. [66], among others.

Wrapper-induction methods in general require new training data for each new domain

or target website. For example, given a training set of restaurant-name/phone-number pairs

which match entries on the Urbanspoon.com website, it may be possible to learn the site’s

general HTML templates that are used to format display restaurant names and phone-

numbers. By using the learned templates, the system can then extract information from

many novel pages on the site. Each topic requires a hand-made set of training data, so the

induction systems can learn the relevant site-specific templates.

Thus, wrapper-induction methods are inappropriate for the entire Structured Web in

two related ways. First, they are not fully domain-independent, as they require training

data for every distinct target topic. Second, even if we had this data, we would still need

to invoke the system T times. Assuming T is not fixed, we obtain a time complexity of at

35

least O(D ∗T). Thus, wrapper-induction fails the computational efficiency criterion as well.

3.2.2 Extraction Rule Learning

Extraction rule learning systems are roughly similar to some wrapper-induction meth-

ods, but can work on natural language text. Examples include the previously-mentioned

DIPRE [18] and Snowball [1] systems. The goal of such systems is to take a small struc-

tured database as input, then expand the dataset using information extracted from Web

text. These systems work by first locating examples of the current database tuples in Web

pages, then learning linguistic patterns that appear to relate the fields of each tuple. For

example, given a small dataset of company/headquarters pairs, an extraction rule learner

might induce X’s headquarters in Y, where X and Y are the extracted items.

The weaknesses of such an approach should be clear. Although these systems can process

natural language text, they still require hand-made training data for each new topic, thus

giving an algorithmic complexity of at least O(D ∗ T) when T is not fixed. Such systems

are neither domain-independent nor computationally-efficient. It is not clear how domain-

scalability applies to these systems.

3.2.3 KnowItAll

Etzioni et al.’s KnowItAll system [39] was discussed in Chapter 2. However, it must

be modified to extract all of the topics in a corpus, not simply the one given by the user.

In such a scenario, KnowItAll is invoked once for each domain, and must process all of

the corpus documents for each invocation. Such an execution model yields an algorithmic

complexity of O(D ∗ T) if the number of topics is an input to the system. If the number of

topics is fixed, then KnowItAll obtains an algorithmic complexity of O(D), but with a

huge constant-time factor.

3.2.4 Unrestricted Relation Discovery

The work that comes the closest to TextRunner is probably that of Shinyama and

Sekine [76], on “unrestricted relation discovery.” Unlike most other efforts, their system

36

is not topic-specific - it processes the entire corpus at once. Unfortunately, it uses a number

of computationally-heavyweight linguistic components. Worse, it entails a document clus-

tering step that requires time O(D2). So while Shinyama and Sekine’s system does satisfy

domain-independence, it is not even close to being computationally-efficient enough for the

entire Web corpus.

As the above discussions should show, there has been not yet been a textual extractor that

fits our requirements for textual Structured Web processing. In the next section, we discuss

the architecture that allows TextRunner to meet them.

3.3 System Architecture

This section describes TextRunner’s overall architecture, which allows us to meet the

above-mentioned criteria. Recall that the goal is to start with a large Web crawl as input

and extract as many accurate fact triples as possible.

There are three main components to the system:

1. The Self-Supervised Learner generates a classifier that labels an input candidate

extraction triple as “good” or “bad.” The Self-Supervised Learner takes as input

just a small “training” portion of the crawled corpus; it does not require any human

annotation of the input. In order to train its output classifier, the Learner must build

a training set from its input training corpus, using the linguistic heuristics listed in

Table 3.1 to obtain a “good” or “bad” label for each extraction in the training corpus.

Because these heuristics require a full linguistic parse, they are fairly computationally

intensive. However, the overall runtime impact of this stage is relatively small because

relatively few documents are parsed.

2. The Single-Pass Extractor goes through each sentence in the entire input crawl,

generating all candidate extractions for each sentence, then applying the previously-

trained classifier to classify candidate as “good” or “bad.” The inputs to this classifier,

a large sample of which are listed in Table 3.2, are lexical and syntactic features of

the candidate extraction and its source sentence. These features are very inexpensive

37

to compute, as they do not require a linguistic parse. Bad extractions are discarded;

good tuples make it to the next step of processing.

3. The Redundancy-Based Assessor uses a tuple’s frequency of extraction in order

to compute a probability that the tuple is true. The probabilistic model we use is

due to Downey et al. [37]. Any tuple with probability under a certain threshold is

discarded.

We can now examine each of these components in turn. With each section below, we

also discuss a small running example of how TextRunner eventually comes to emit the

tuple (Edison, invented, phonograph).

3.3.1 Self-Supervised Learner

The goal of the Self-Supervised Learner is to create a classifier that will be applied to

the entire TextRunner input corpus by the Single-Pass Extractor. This classifier takes a

candidate tuple extraction and its source sentence as input and emits a simple “good”/“bad”

verdict, describing whether the tuple is an accurate extraction from the text.

One way to build TextRunner would be to perform a deep linguistic parse of each

sentence in the entire input crawl, inducing an extraction candidate from every plausible

combination of entity and relation strings in the resulting parse. (For example, Edison and

phonograph are both nouns and thus likely entity strings while the verb invented is a likely

relation.) TextRunner could then test to see if the parsed sentence meets certain hard-

coded domain-independent linguistic criteria that tend to describe a high-quality extraction.

For example, if the two entities are not in the same clause, the extraction is not likely to

be useful. Table 3.1 below lists the heuristics that would be appropriate when evaluating

a candidate extraction. Depending on what the linguistic heuristics indicate, the system

could emit “good” or “bad” as appropriate.

Unfortunately, because deep linguistic parsers have tended to be extremely computa-

tionally intensive, running the above system on the entire Web would be very burdensome.

Further, as mentioned previously, these parsers have tended to be brittle when running on

38

The number of sentence tokens is not unreasonably large

The relation string contains a verb

The two entities appear at the same level of the parse tree

The two entities’ lowest common parse tree ancestor is a clause

The left-hand entity is the clause subject

The left-hand entity is not the object of a prepositional phrase

The two entities do not belong to different clauses

The right-hand entity is not the object of a prepositional phrase

If the right-hand entity is the object of a prepositional phrase,

it serves one of a handful of semantic roles regarding time, place, etc..

Table 3.1: Boolean heuristic tests that indicate good extractions, used by the Self-Supervised
Learner to construct a classifier training set. The Learner assumes that an expensive full
parse tree is available. The full hand-designed decision algorithm that employs these tests
can be seen in Figure 3.3 of Banko’s dissertation [5].

the kind of non-standard text that is very common on the Web.

Rather than use the parser directly, we will instead use it to generate a training set for a

Naive Bayes classifier (NBC). This classifier takes as input a series of lexical and syntactic

features that can be computed over a candidate extraction and its source sentence. These

features give some evidence as to whether an extraction candidate is accurate or not. For

example, a capitalized entity string may indicate that it is a proper noun and thus a strong

candidate for a legal entity. A large sample of which is shown in Table 3.2, which are very

inexpensive to compute. The output of the NBC is the same simple “good”/“bad” verdict

as the heuristics-driven approach described above.

TextRunner runs the parser (due to Klein and Manning [51]) on several thousand

randomly-drawn sentences from the corpus. Each of these sentences yields at least one

extraction candidate. For each candidate/sentence pair, we compute the heuristic-driven

label and the inexpensive feature vector. We then use these labeled vectors to train the

NBC. The parser is computationally expensive, but running it on a fixed-size input does not

39

The number of tokens in the relation string

The part-of-speech sequence in the relation string

The number of stopwords in the relation string

The punctuation sequence in the relation string

Whether the left-hand (right-hand) entity is a proper noun

Whether the left-hand (right-hand) entity is capitalized

The part-of-speech for the word to the left of the left-hand entity

The part-of-speech for the word to the right of the right-hand entity

Table 3.2: A portion of the features used as input to the extraction classifier. Unlike
the heuristics in Table 3.1, none of these features require a linguistic parse in order to be
computed. Instead, they only require low-overhead operations. Examples include regular
expressions for testing capitalization, noun phrase chunking (e.g., “light bulb” acts as a
two-word noun), and part-of-speech lookups (e.g., phonograph is a noun). The intuition is
that these inexpensive local features give much of the discriminatory power of a full parse
tree at much lower computational cost.

contribute to either TextRunner’s algorithmic complexity or substantially to its practical

running length. This can be seen in our experimental results, in which TextRunner spends

an average of 0.036 CPU seconds per input sentence, even though a parser takes an average

of 3 seconds per sentence.

By applying heuristics only to linguistically-derived features, the self-supervised learner

step avoids using topic-specific data of any kind. It is, however, heavily reliant on NLP

systems, so this step would not translate easily to languages where NLP technology may

not be available.

The use of a small portion of the corpus for training the classifier could in theory pose

a problem if it does not linguistically reflect the overall corpus. For example, imagine if

the training corpus documents were drawn mainly from scientific articles while the overall

corpus was mainly Web documents. It is possible that certain linguistic features could be

present in the training corpus but absent in the overall corpus, and vice versa. If this were

true, it would yield a very strange and ineffective classifier for the next TextRunner step.

40

To minimize this possibility, we draw training sentences wholly at random from the overall

corpus.

The Naive Bayes classifier has two advantages. First, because such classifiers are resistant

to noise in the training data, and because we are using a wide variety of lightweight features,

the classifier should be comparatively better at handling mis-parses than simply examining

the raw parse tree. Second, NBC systems are very quick to execute; the output of this

step will enable us to efficiently process the entire corpus. It is easy and natural to fix the

number of tokens in a natural language sentence to a relatively small constant, so choosing

an NBC approach over the original parser-only approach gives a constant-factor, though

substantial, speedup.

Running the NBC over the entire corpus text is the subject of the next section.

In-Depth Example

The input to the Self-Supervised Learner is a small section of the Web crawl, which is then

used to construct a training set for the output classifier. Building a high-quality training

set is the main challenge of this stage. Let us examine two sentences that might be found

in the corpus: “Edison invented the phonograph” and “Von Neumann met Einstein’s wife

while teaching in New Jersey.”

For each sentence, the Learner considers all possible tuple extractions. For each ex-

traction, it computes a feature vector and uses heuristics to classify the extraction as good

or bad. For example, the extraction (Edison, invented, phonograph) and the parse tree

for “Edison invented the phonograph” demonstrates a typical subject-verb-object pattern,

indicating a good extraction. For the sake of this example, assume that the overall set of

parse-tree heuristics marks this extraction as good.

In contrast, consider the extraction (Von Neumann, met, New-Jersey) and the parse

tree for “Von Neumann met Einstein’s wife while teaching in New Jersey.” The extraction

has two objects that cross a clause boundary in the parse tree, matching a heuristic that

indicates a bad extraction. Assume that this extraction is marked as bad.

We now have the verdicts for each of these sentences, and only have to compute the

41

inexpensive features for each. For example, we test whether the entity objects are proper

nouns (true in all four cases here), count the number of tokens in each relation string (3

for was-born-in, 1 for met), and count the number of stopwords in each relation string (2

for was-born-in, 0 in met). The resulting vectors of features and verdicts, one for each

sentence in the small corpus sample, forms the training set for our Naive Bayes classifier.

TextRunner uses this training set to create the classifier and then moves to the next

stage.

3.3.2 Single-Pass Extractor

Once the self-supervised learner has emitted the classifier, we can process the entire corpus.

TextRunner makes a single pass over the input corpus, breaking the text into sentences.

For each sentence, the single-pass extractor performs the following steps:

1. Run a part-of-speech tagger and noun-phrase chunker over the sentence. These

lightweight steps help us identify each of the sentence’s entities. These two com-

ponents, drawn from the OpenNLP toolkit, are computationally lightweight. Part-of-

speech tagging and noun phrase chunking can be performed with high accuracy across

topics and languages (as in Brill and Ngai [17] and Ngai and Florian [67]), so we can

handle diverse material from the Web crawl effectively. For each word in a noun-phrase

chunk, we also receive a probability that the word is part of the noun-phrase.

2. Compute all tuple extraction candidates from the sentence by finding all entity pairs

plus the relation text string that falls between them.

3. Simplify the candidate by removing non-essential phrases and tokens. For example,

the relation definitely developed is transformed to developed.

4. Throw out extraction candidates where the constituent entities have very low proba-

bility

5. Test the candidate with the previously-trained NBC, using lightweight features men-

tioned in the previous section. Discard extraction candidates that are classified as

42

“bad.”

6. Append to a file all of the extracted tuples that have survived.

Because the average number of sentences per Web page does not change greatly over

time or with repeated executions of TextRunner, we can say that the above sequence of

steps is executed O(D) times, where D is the number of crawled documents. For a sentence

of k extracted entities, there are a maximal number of
(k

2

)
candidate tuples; in practice,

real sentences contain few entities and many of the maximal set of candidate tuples fail to

pass the above-listed tests. At any rate, as mentioned in the last section, it is reasonable

to limit the number of tokens in a valid sentence and thus give fix the number of candidate

tuples per sentence. Part-of-speech tagging and noun phrase chunking are not expensive

operations, but their runtimes are also fixed by placing a limit on the sentence size. Thus,

we can consider there to be a constant number of candidates per input sentence, and the

overall complexity of the single-pass extractor to be O(D).

Note that this step relies heavily on the trained classifier and some linguistic tools, but

it requires no domain-specific data or human assistance.

By the end of the single-pass extractor we have obtained large number of tuples that we

believe are accurate. However, given the diversity of Web text and our imperfect linguistic

methods, it is inevitable that some inaccurate tuples have been retained. The next step is

designed to further refine extraction quality.

In-Depth Example

Using the Naive Bayes Classifier from the previous step, we can now issue a good/bad verdict

for each candidate extraction in the entire corpus. For example, after breaking the text at

sentence boundaries, assume that we are faced with three sentences: “Edison invented the

phonograph,” “Edison reinvented Mankind,” and “Morgan was frustrated with the progress

of Edison’s work.”

For each of these sentences, we follow the same steps: find any candidate extractions,

compute the inexpensive feature vector mentioned above, and then classify the extraction

43

as good or bad using the NBC. For “Edison invented the phonograph” and the extraction

(Edison, invented, phonograph), the resulting lightweight feature vector will probably

elicit a “good” verdict from the NBC.

The sentence “Edison reinvented Mankind” contains the tuple (Edison, reinvented,

Mankind). Despite this tuple’s questionable worth and accuracy, it has many of the same

features as a good extraction and probably also earns a “good” verdict from the classifier.

The sentence “Morgan was frustrated with the progress of Edison’s work” and the tuple

(progress, of, Edison’s work) has some negative lightweight features, e.g., a relation

string that consists of just a single stopword. Thus, we can imagine it receives a “bad”

verdict from the classifier.

This step thus allows the first two extractions to pass to the third and final stage, while

throwing away the third extraction. After applying the classifier to every sentence and

extraction in the corpus, TextRunner can execute the final step.

3.3.3 Redundancy-Based Assessor

TextRunner is able to generate a trustworthy probability for each extracted tuple using

Downey et al.’s URNS method based on frequency of extraction. The intuition behind this

system is that true tuples will appear in many sources and thus be repeatedly extracted; in

contrast, false or incorrectly-extracted tuples will appear only rarely and thus be extracted

infrequently. Using this method to find probabilities for the extracted tuples requires that

we first compute how many times each unique extraction was obtained. TextRunner

performs some simple normalization of extracted tuples, dropping unnecessary adjectives

and adverbs (e.g., converting the relation was originally developed by to was developed by).

The main contribution of the URNS model is not just to emit a probability that increases

with observed extraction frequency, but to compute a probability that is also accurate. It is

a “balls-and-urns” combinatorial model, in which a single textual extraction is modeled as

a draw of a labeled ball from the urn. A labeled ball may represent a correct or an incorrect

extraction. An information extraction system uses the model to determine the probability

that an extraction is correct, given that it was observed k times in n draws from the urn. An

44

urn is parameterized by the set of unique correct labels C, the set of unique error labels L,

and a function num(b) that gives the number of balls with a label b. With these parameters

and an observed k, n, and b, it is possible to compute the probability that b ∈ C.

On the Web the model’s parameters cannot be known ahead of time - for example, it is

difficult or impossible to say how many correct extraction labels there are. Downey et al.

estimate them using an expectation-maximization algorithm.

Having computed a probability for each tuple, we apply a threshold to remove tuples

that do not meet a minimal level of plausibility. For the work described in this chapter, we

chose a minimal probability of 0.8.

Prior to running the assessor, we sort the raw extracted tuples in order to convert them

into a set of unique tuples with frequency counts. This adds a time complexity element of

O(T logT), where T is the number of raw extracted tuples.

In-Depth Example

There were two unique tuples from our running example that survived the previous step:

(Edison, invented, phonograph) and (Edison, reinvented, Mankind). There is no neces-

sary normalization for either tuple.

We imagine that the first tuple, (Edison, invented, phonograph), is commonplace on

the Web and appears hundreds of times. When this count is entered into the probabilistic

frequency model, we obtain a probability well above the 0.8 threshold. In contrast, for

the sake of this experiment we can say that the tuple (Edison, reinvented, Mankind) is

repeated just a single time, and so receives a probability well under 0.8.

Hence, the third and final TextRunner step will emit (Edison, invented, phonograph)

as a valid extraction, but not (Edison, reinvented, Mankind).

3.3.4 Tying It All Together

We have now seen how TextRunner can extract information from all of the topics in a

corpus of text while remaining domain-independent. By focusing only on linguistically-based

heuristics and frequency-counts to distinguish good from bad extractions, we avoid requiring

45

any domain-specific data. By using a Naive Bayes system, it also skips the brittleness

associated with many NLP deep parses.

We can also see how TextRunner satisfies the computational efficiency criterion -

the runtime of TextRunner is the sum of the second and third steps, O(D + T logT)

(or simply O(D) with a huge hidden constant). Because there is no interaction with the

user - TextRunner is a batch job that takes the Web as its only input - interface-driven

domain-scalability appears not to apply here.

The TextRunner design also has a number of limitations. First, it is strongly language-

dependent. For example, TextRunner currently requires a full parser, part-of-speech

tagger, and noun phrase chunker for the target language. Only the absolutely most-popular

languages enjoy full linguistic technology support, so TextRunner may not be able to run

over many interesting natural languages. Worse, the extraction-quality heuristics and the

lightweight lexico-syntactic features may need to be rewritten for each new target language.

Rewriting these heuristics may not even be possible - for example, a language in which

the subject of each sentence is rarely or never named will be difficult for TextRunner

to process. Addressing the issues surrounding alternate languages is a rich area for future

work, which we discuss in Chapter 6.

Second, this strong tie to the source language limits TextRunner’s expressiveness even

in English, a language that lacks for nothing in terms of NLP technology support. Although

all of our examples so far have focused on triples, it would be useful if TextRunner could

easily obtain tuples of much greater cardinality. For example, instead of (Edison, invented,

phonograph), we might have (Edison, invented, phonograph, 1879, Menlo Park). There is

nothing in the TextRunner design that prevents it from extracting such high-cardinality

tuples, and indeed we have successfully collected some from the Web crawl. However, as the

number of extractable data items increases, so does the complexity of the English language

sentence needed to express them.

By requiring that all extractions appear within a single sentence, we practically limit

the complexity of the data items that TextRunner even attempts to extract. For tuples

of high-enough cardinality, there will be very few or no appropriate sentences on the Web.

Non-linguistic extraction regimes (such as wrapper-induction systems) are not limited to

46

what English commonly puts into a sentence. Alternatively, it may be possible to extract

data that spans multiple sentences, at the cost of increased difficulty in tracking objects

and facts across sentence boundaries.

Even with these limitations, it is still an open question whether TextRunner’s ar-

chitecture can actually obtain high-quality results. This issue is the subject of the next

section.

3.4 Experiments

To evaluate TextRunner’s output quality, we compared it to the above-mentioned Know-

ItAll, a modern unsupervised Web extraction system that still requires per-domain infor-

mation from the user. We also evaluated the standalone accuracy of TextRunner’s output.

Finally, because one of the main goals with TextRunner is to obtain a computationally-

efficient text extraction system, we examined its runtime performance.

3.4.1 Output Quality

One way to evaluate TextRunner’s domain-independent output is to compare it with

a domain-dependent system, such as KnowItAll. KnowItAll requires that a human

contribute at least the name of each target domain (relation) it attempts to extract. We

ran both KnowItAll and TextRunner on the same corpus of 9M crawled Web pages.

KnowItAll requires that we enumerate the target domains prior to execution. We

randomly chose 10 relations (listed in Table 3.3) that were found in at least 1,000 sentences

in the corpus. We manually removed vague relations such as “includes.”

Table 3.4 shows the average error rates for each system, and the total number of cor-

rect extractions for each. TextRunner achieves an average error rate that is 33% lower

than KnowItAll, while finding a near-equal number of correct extracted tuples. Most of

TextRunner’s improvement over KnowItAll comes from being able to better identify

the “endpoints” of each relation string. Thus, even when we know the targets a priori,

the TextRunner open IE system has better output quality than the closed KnowItAll

system.

47

X acquired Y

X graduated from Y

X is author of Y

X is based in Y

X studied Y

X studied at Y

X was developed by Y

X was formed in Y

X was founded by Y

X worked with Y

Table 3.3: Ten randomly-chosen topics/domains/relations for comparing TextRunner and
KnowItAll.

Average Error Rate Correct Extractions

TextRunner 12% 11,476

KnowItAll 18% 11,631

Table 3.4: Output quality results for TextRunner, compared to KnowItAll. Tex-
tRunner does not know the target domains in advance, unlike KnowItAll. Nonetheless,
TextRunner obtains an average error rate that is 33% lower than KnowItAll’s, while
extracting a near-equal number of correct tuples.

48

A second way to evaluate output quality is simply to evaluate the entire set of TextRun-

ner outputs, without pre-choosing the target topics. We randomly selected four hundred

tuples from the overall 11.3M output set to manually test by three different human judges.

The judges examined each tuple and answered several questions:

• Is the tuple’s relation string “well-formed?” I.e., is there some pair of entities that

could possibly be valid for the relation string? For example, specializes-in is a

well-formed relation, whereas of-securing is not. Of the 11.3M output tuples, 9.3M

have a well-formed relation.

• If the relation is well-formed, do the tuple’s entities plausibly fit with the relation/topic

(even if falsely)? For example, (Fred, dogcatcher) is a plausible pair of entities for

was-elected. The entity pair (29, company) is not. Of the 9.3M well-formed relation

tuples, 7.8M have well-formed entities.

• Of the tuples that pass the above two steps, the judges found that 80.4% are correct.

• If both of the above tests are passed, is the tuple concrete or abstract? A concrete

tuple is one where the truth of the statement can be grounded in the present entities,

e.g., (Einstein, was-born-in, Germany). An abstract tuple might be (Einstein,

invented, theory). Abstract tuples may initially appear worthless, but they could be

used for ontology learning or some similar model-learning task. The judges found that

14% of tuples with well-formed relations and entities are concrete, with the remainder

being abstract.

• The concrete tuples were correct 88.1% of the time, whereas abstract tuples were

correct 79.2% of the time.

We thus see that not only does TextRunner’s output compare favorably to a more

traditional closed IE system when tested on a controlled set of topics. TextRunner also

retains high output quality across tuples that are selected at random, a quality that is very

useful when attempting to extract all of the topics on the Structured Web.

49

In separate work, Banko found that extra redundancy had a small but real impact on

extraction quality [5]. Extracted tuples with at least two appearances in a different general

Web crawl had precision of 84.3%, while tuples that appeared at least 5 times had precision

86.9%, tuples of frequency 50 or higher had precision of 88.8%, and tuples of frequency

200 or higher had precision 92.3%. Further, there is some evidence that when using high-

quality corpora (e.g., Wikipedia) it is possible to obtain high precision extractions without

any repetitions at all.

3.4.2 Runtime Performance

Even superb output quality is not useful to us unless we can run it at very large scale. We

evaluated runtimes of TextRunner and KnowItAll using a small cluster of 20 nodes,

on the same corpus of 9M Web pages.

Running TextRunner on our test corpus extracted every relation and took a total of 85

CPU hours to complete. KnowItAll, meanwhile, required 6.3 CPU hours for each relation

(domain). There may be some application scenarios in which we know the set of target

relations ahead of time; in these cases, it may be advantageous to choose KnowItAll.

However, it only takes 14 targets before TextRunner is the faster choice.

When processing the Structured Web, we assume we do not know the set of relations

ahead of time. After running TextRunner on the test corpus, we found 278,085 distinct

relation strings among extracted tuples that enjoy high probability and at least 10 distinct

source sentences in the corpus. If these relations make up the target set, then we estimate

that KnowItAll would take 1,751,400 CPU hours to complete; in this case, TextRunner

is four orders of magnitude faster.

Of course, not all of these relations are actually distinct topics. Banko’s later work [5]

estimated there to be 10,000-20,000 textual relations, based on the number of entries in

hand-crafted resources such as WordNet [63]. If we assume there are 10,000 relations, then

the KnowItAll running time is still 63,000 CPU hours; that is two orders of magnitude

larger than the TextRunner time.

50

3.5 Conclusions

We introduced TextRunner, a natural-language-text information extraction system that

is domain-independent and domain-scalable and can obtain all of its extractions in a single

pass over the input corpus. In doing so, TextRunner achieves a performance advantage

over competing systems of several orders of magnitude, while retaining comparable or better

extraction quality, and thus showing that TextRunner is computationally-efficient as well.

Although TextRunner performs admirably in its goal of domain-independence, it has

a serious weakness which this dissertation does not address in depth. It is strongly language-

dependent. TextRunner currently requires a full parser, part-of-speech tagger, and noun

phrase chunker for the target language. Only the absolutely most-popular languages enjoy

full linguistic technology support, so TextRunner may not be able to run over many

interesting natural languages. Worse, the extraction-quality heuristics and the lightweight

lexico-syntactic features are somewhat language-dependent, and may need to be rewritten

for each new target language. Rewriting these heuristics may not even be possible - for

example, a language in which the subject of each sentence is rarely or never named will be

difficult for TextRunner to process. Addressing issues surrounding alternate languages is

a rich area for future work, which we discuss in Chapter 6.

Despite these weaknesses, TextRunner meets our design criteria for natural language

text on the Structured Web. In the next chapter, we move beyond text to Web-embedded

tabular structures.

51

Chapter 4

TABLE-ORIENTED DATA EXTRACTION AND MINING

One notable form of data on the Structured Web is that of HTML tables. The HTML

table tag can be used to present a two-dimensional relational-style data table. Because each

such relational table has its own “schema” of typed and possibly-labeled columns, it can be

considered a small structured database. The scale of the Web enables us to collect a massive

number of individual databases - from 14.1 billion raw HTML tables from a general-purpose

crawl our WebTables system extracted roughly 154M tables with high-quality relational

data. The resulting corpus of databases is larger than any other corpus we are aware of, by

at least five orders of magnitude.

In this chapter we describe the WebTables system for processing table-oriented data

from the Structured Web.1 As with the TextRunner system, WebTables is extraction-

focused, relying entirely on data that is already extant. We present a domain-independent,

domain-scalable, and computationally-efficient extraction technique for obtaining this huge

and largely-untapped set of structured databases.

We also explore several fundamental questions about managing them. First, what are

good techniques for searching through a massive number of structured datasets? To answer

this question, we develop new techniques for keyword search over a corpus of tables, and

show that they can achieve substantially higher relevance than solutions based on a tradi-

tional search engine. Second, what additional power can be derived by analyzing such a

huge collection of databases? We introduce a new object derived from the database corpus:

the attribute correlation statistics database (ACSDb) that records corpus-wide statistics on

co-occurrences of schema elements. In addition to improving search relevance, the ACSDb

makes possible several novel applications: schema auto-complete, which helps a database

designer to choose schema elements; attribute synonym finding, which automatically com-

1Much of this work was done while the author was at Google, Inc.

52

putes attribute synonym pairs for schema matching; and join-graph traversal, which allows

a user to navigate between extracted schemas using automatically-generated join links.

Together, these contributions - a method for extraction, a search system, and novel

applications built on top of the data - demonstrate that table-oriented data is an important

and feasible component of any Structured Web system.

4.1 Problem Overview

Even Web documents that are thought of as purely textual can contain large amounts of

relational data. For example, the Web page shown in Figure 4.1 (and shown previously in

Section 1.3.2) contains a table that lists American presidents.2 The table has four columns,

each with a domain-specific label and type (e.g., President is a person name, Term as

President is a date range, etc) and there is a tuple of data for each row. This Web page

essentially contains a small relational database that could be managed with Oracle or DB2,

even if it lacks the explicit metadata traditionally associated with a database.

The first major research question addressed by WebTables is how to best recover

relational tables even though they are intermixed with HTML tables being used for page

layout or other non-relational reasons. As mentioned above, by running the WebTables

extractor over a large Web crawl, we are able to obtain a set of relational databases that

is five orders of magnitude larger than any other collection that we are aware of (due to

Wang et al. [84]).

The scale of this collection motivates two additional research questions: (1) what are

computationally-efficient, domain-independent, and domain-scalable) techniques for search-

ing within such a collection of tables, and (2) is there additional power that can be derived

by analyzing such a huge corpus? The extractor plus answers to these two questions form

the contributions of the WebTables system.

Table search is a critical component in effectively addressing all of the distinct databases

recovered by WebTables. Of course, today SQL is the most popular method for querying

a structured relational database. However, a traditional relational system assumes that the

2http://www.enchantedlearning.com/history/us/pres/list.shtml

53

Figure 4.1: This is the same figure seen in Chapter 1, in Figure 1.1. A typical use of the
table tag to describe relational data. The relation here has a schema that is never explicitly
declared but is obvious to a human observer, consisting of several typed and labeled columns.
The navigation bars at the top of the page are also implemented using the table tag, but
clearly do not contain relational-style data. The automatically-chosen WebTables corpus
consists of 41% true relations, and contains 81% of the true relations in our crawl. (The
raw HTML table corpus consists of 1.1% true relations.)

set of relation names is fairly small; although it is possible to find relational systems that

have thousands of tables, even tens of thousands would be a startling number. Users of a

traditional data management system are expected to uniquely name each interesting table,

and so WebTables’s massive set of extracted relations would place an huge burden on the

database user attempting to find just the right one. The difference in difficulty between

finding a table in a traditional relational database and finding one in WebTables’s data is

akin to the difference between finding a file on a single computer and finding a file anywhere

on the Web.

We thus believe that managing a large corpus of relational databases has many more

similarities to Web search than it does to traditional relational query processing. Therefore,

54

WebTables has a component to perform relation ranking, i.e., to sort relations by rel-

evance in response to a user’s keyword search query. Note that researchers like Agrawal et

al. [2] and Hristidis and Papakonstantinou [48] have also studied the quite-different prob-

lem of keyword ranking for tuples within a single database. We also believe solving the

relation ranking problem has utility beyond just extracted HTML tables: large collections

of spreadsheets and non-HTML-table Web relations should also benefit.

WebTables must thus solve the new problem of ranking millions of individual databases,

each with a separate schema and set of tuples. Relation ranking poses a number of difficulties

beyond web document ranking: relations contain a mixture of structural and related “con-

tent” elements with no analogue in unstructured text; relations lack the incoming hyperlink

anchor text that helps traditional search; and PageRank-style metrics for page quality are

useless when tables of widely-varying quality can be found on the same web page. Finally,

relations contain text in two dimensions and so many cannot be efficiently queried using

the standard inverted index.

We describe a ranking method that combines table-structure-aware features (made pos-

sible by the index) with a novel query-independent table coherency score that makes use of

corpus-wide schema statistics. We show that this approach gives a substantial improvement

in search quality over a näıve approach based on traditional search engines.

Finally, to demonstrate the power of WebTables’s corpus, we also describe the attribute

correlation statistics database, (ACSDb), which is a set of statistics about schemas in the

corpus. In addition to improving WebTables’s ranking, we show that we can leverage the

ACSDb to offer unique solutions to schema-level tasks. First, we describe an algorithm

that uses the ACSDb to provide a schema auto-complete tool to help database designers

choose a schema. For example, if the designer inputs the attribute stock-symbol, the

schema auto-complete tool will suggest company, rank, and sales as additional attributes.

Unlike set-completion (e.g., Google Sets) that has been investigated in the past, schema

auto-complete looks for attributes that tend to appear in the same schema (i.e., horizontal

completion).

Second, we use the ACSDb to develop an attribute synonym finding tool that automat-

ically computes pairs of schema attributes that appear to be used synonymously. Synonym

55

finding has been considered in the past for text documents, e.g., by Lin and Pantel [55]. but

finding synonyms among database attributes comprises a number of novel problems. First,

databases use many attribute labels that are nonexistent or exceedingly rare in natural

language, such as abbreviations (e.g., hr for home run) or non-alphabetic sequences (e.g.,

tel-#); we cannot expect to find these attributes in either thesauri or natural text. Second,

the context in which an attribute appears strongly affects its meaning; for example, name

and filename are synonymous, but only when name is in the presence of other file-related

attributes. If name is used in the setting of an address book, it means something quite dif-

ferent. Indeed, two instances of name will only be synonymous if their co-attributes come

from the same domain. We give an algorithm for automatically detecting synonymy that

uses real-world labels and incorporates coattribute context information. It finds synonyms

with very high accuracy; for example, our synonym-finder takes an input domain and gives

an average of four correct synonym pairs in its first five emitted pairs.

Third, we show how to use the ACSDb for join-graph traversal. This tool can be used

to build a “schema explorer” of the massive WebTables corpus that would again be useful

for database designers. The user should be able to navigate from schema to schema using

relational-style join links (as opposed to standard hypertext links that connected related

documents).

Our extracted tables lack explicit join information, but we can create an approximation

by connecting all schemas that share a common attribute label. Unfortunately, the result-

ing graph is hugely “busy”; a single schema with just two or three attributes can link to

thousands of other schemas. Thus, our set of schemas is either completely disconnected

(in its original state) or overly-connected (if we synthesize links between attribute-sharing

schemas). It would be more useful to have a graph with a modest number of meaning-

ful links. To address this problem, we introduce an ACSDb-based method that clusters

together related schema neighbors.

All of the above tools are examples of how web-scale data can be used to solve problems

that are otherwise very hard. They are similar in spirit to recent efforts on machine trans-

lation such as Brants et al. [16], that leverage huge amounts of data. The distinguishing

feature of the ACSDb is that it is the first time such large statistics have been collected

56

for structured data schema design. We note that the idea of leveraging a large number of

schemas was initially proposed by Madhavan et al. [56] for improving schema matching.

Our work is distinguished in that we consider a corpus that is several orders of magnitude

larger, and we leverage the corpus more broadly. Our synonym finder can be used for

schema matching, but we do not explore that here.

As mentioned in Section 1.3.4, it is easy to confuse the data we manage with WebTables

and the deep web. The WebTables system considers HTML tables that are already

surfaced and crawlable. The deep web refers to content that is made available through

filling HTML forms. The two sets of data overlap, but neither contains the other. There

are many HTML tables that are not behind forms (only about 40% of the URLs in our

corpus are parameterized), and while some deep-web data is crawlable, the vast majority of

it is not (or at least requires special techniques, such as those described by He et al. [46]).

In contrast to the work we describe in this chapter, deep web research questions focus

on identifying high quality forms and automatically figuring out how to query them in a

semantically meaningful fashion. In addition to HTML tables and the deep web, there are

many kinds of structure on the Web, including tagged items, ontologies, XML documents,

spreadsheets, and even extracted language parses. Madhavan et al. [58] discuss some of

these forms. In this chapter we will only consider the table tag.

This chapter focuses on how to extract the table corpus, how to provide search-engine-

style access to this huge volume of structured data, and on the ACSDb and its applications.

We do not study how to match or integrate the table data, which we save for Chapter 5.

The remainder of this chapter is organized as follows. We start by covering the table

extraction pipeline and our basic model of table-embedded data in Section 4.2. We use

Section 4.3 to describe the ACSDb. In Section 4.4, we describe how to rank tables in

response to keyword query on WebTables. Section 4.5 covers our three novel ACSDb

applications: schema auto-complete, attribute synonym finding, and join-graph discovery.

We present experimental evaluations in Section 4.6, discuss related work in Section 4.7, and

finally conclude in Section 4.8.

57

4.2 HTML Table Extraction

This section covers our techniques for HTML table extraction, which distill the original raw

HTML tables into a much smaller set of high-quality relations. Most HTML tables are used

for page layout, form layout, or other non-relational data presentation (such as “property

sheet” lists that focus on a single data item); these non-relational tables must be filtered

out. Further, even the correctly-detected relations lack explicit metadata such as column

labels and types. WebTables detects this metadata when it is embedded in the HTML.

In order to better understand the extraction task, we start by characterizing the raw

crawled HTML table corpus. We then move onto the extractor mechanics.

4.2.1 The HTML Table Corpus

We applied an HTML parser to a multi-billion-page crawl of the English-speaking web to

obtain about 14.1B instances of the table tag. Presenting relational-style data is perhaps

the most “obvious” use of the tag, but non-relational uses are far more numerous.

A few use cases make up the bulk of all HTML tables and are easy to detect:

• Extremely small tables are those with fewer than two rows or two columns. We assume

that these tables carry no interesting relational information.

• Many tables are embedded inside HTML forms and are generally used for visual layout

of user input fields.

• Some tables are used to draw a calendar onscreen, and consist of nothing but a column

for each day of the week and a number in each cell.

We wrote parsers that reliably find each of these use cases. As seen in Table 4.1, these

three table types make up more than 88% of the HTML tables in our raw corpus.3 Any

web-embedded relations must be found in the remaining portion.

3Remarkably, 0.88% of all HTML tables in our raw crawl (more than 122M) are “no-ops,” containing
zero rows and zero columns.

58

Table type % total count

Extremely small 88.06 12.34B

HTML forms 1.34 187.37M

Calendar 0.04 5.50M

Obviously non-relational, total 89.44 12.53B

Other non-relational (est.) 9.46 1.33B

Relational (est.) 1.10 154.15M

Table 4.1: Various types of HTML tables found in the crawl. Types are non-overlapping;
we only examine tables that were not eliminated by tests higher on the list. The rate of
other non-relational tables is estimated from a human-judged sample.

However, even this remainder consists primarily of non-relational tables. These non-

relations include tables used for page layout, tables with an enormous number of blank cells,

tables that are really simple lists presented in two dimensions, and “property sheets” that

consist of attribute value pairs for a single data entity (e.g., MySpace personal preference

lists). Unlike the HTML forms and calendars listed above, it is difficult to automatically

detect these non-relational types. Two tables may have identical HTML structure, but

only one may contain good relational data. Nor can traditional tests for relational well-

formedness (e.g., testing whether a table obeys schema constraints, or testing a schema to

see whether it is in a certain normal form) be applied here. Not only is there no explicit

metadata associated with the tables, many traditional relational constraints (e.g., foreign

key constraints) make no sense in the web-publishing scenario.

Answering whether a table contains relational data usually means understanding the

table’s data, and thus is unavoidably one of human judgment. So we asked two human

judges to examine a sample of the remaining tables and mark each as relational or non-

relational. The results, seen in Table 4.1, show that 10.4% of the tables in the remainder

are classified as relational (1.1% of the original raw crawl), meaning our 14B-table crawl

contains roughly 154M high-quality relations. While the percentage is relatively small, the

59

Figure 4.2: Frequency of raw HTML tables/relations of various row and column sizes. The
most frequently-seen table in the raw crawl (seen 3.8B times, accounting for 27.32% of all
tables) contains a single cell, and is represented in the plot by the point at rows=1, cols=1.
The green lines visible at the right-hand edge indicate the “underside” of the 3D plot.

vast number of tables in our crawl means that the resulting set of relations is still enormous.

Figures 4.2 and 4.3 show the relative number and sizes of tables in the crawl. The

first figure shows the frequency of the raw HTML tables, and the second figure shows the

frequency of the extracted relations obtained from the raw corpus by the extractor described

below in Section 4.2.2.

Table 4.2 compares a few selected pieces of data from Figures 4.2 and 4.2. Note that

tables with between 2 and 9 columns make up 55% of the raw corpus, but more than 93%

of the recovered relations; as intuition would suggest, there are relatively few high-quality

relations with a very large number of attributes. In contrast, there is a much greater

diversity of row counts among the recovered relations.

60

Figure 4.3: Frequency of high-quality recovered HTML tables/relations of various row and
column sizes. The plot shows no tables with fewer than 2 rows or 2 columns, and many fewer
tables in general than plot in Figure 4.2. Also note that there is much less variation with the
number of rows than in the raw plot; the high-quality plot varies mainly with the number
of columns. This observation matches the intuition that there should be relatively many
high-quality relations with few columns, and relatively few relations with many columns;
at the same time, the number of rows should be relatively unimportant as an indicator of
relation quality.

Having described the set of relational tables that are available via HTML, we can now

turn to the actual extraction mechanism.

4.2.2 Extractor Mechanics

Recovering relations from the raw HTML tables consists of two steps. First, WebTables

attempts to filter out all non-relational tables. Second, WebTables attempts to recover

embedded metadata (in the form of attribute labels) for the now-filtered relations (such as

61

Cols Raw % Recovered %

0 1.06 0

1 42.50 0

2-9 55.00 93.18

10-19 1.24 6.17

20-29 0.19 0.46

30+ 0.02 0.05

Rows Raw % Recovered %

0 0.88 0

1 62.90 0

2-9 33.06 64.07

10-19 1.98 15.83

20-29 0.57 7.61

30+ 0.61 12.49

Table 4.2: Frequency of raw tables and recovered relations at selected sizes, as a percentage
of each dataset.

Raw Crawled Pages Raw HTML Tables Recovered Relations

Figure 4.4: The WebTables relation extraction pipeline, first seen in Chapter 1, in Fig-
ure 1.4.

the first row in the table in Figure 4.1). The extraction pipeline is pictured in Figure 4.4.

More formally, the goal of the extractor is to obtain a corpus, R, of databases, where

each database is a single relation. For each relation, R ∈ R, we have the following:

• the url Ru and offset Ri within the page from which R was extracted. Ru and Ri

uniquely define R.

• the schema, RS , which is an ordered list of attribute labels. For example, the table in

Figure 4.1 has the attributes RS = [President,Party, . . .]. One or more elements of

RS may be empty strings (e.g., if the table’s schema cannot be recovered).

62

• a list of tuples, RT . A tuple t is a list of data strings. The size of a tuple t is always

|RS |, though one or more elements of t may be empty strings.

Relation Filtering

After applying the hand-written filters described above, we can treat relational filtering as

a machine learning classification problem, similar to the work of Wang and Hu [84]. We

asked two human judges to classify a large number of HTML tables as relational or not.

We paired these classifications with a set of automatically-extracted features for each table

(listed in Figure 4.5(a)) to form a supervised training set for a statistical learner.

Like Wang and Hu, our features describe the table’s layout as well as datatypes in each

column. Table layout qualities include, for example, the number of rows in the table, the

number of columns, the number of empty cells (or NULLs), the average cell string length,

and so on. The motivation behind these features is that high-quality relational tables tend

to have certain statistics in common: say, relatively few empty cells. WebTables discovers

each column’s datatype by examining whether almost all of the values in a single column

observe the same type (e.g., integer or date). If so, then the column appears to be well-typed;

we imagine a relational table probably consists mainly of many well-typed columns.

In order to remain domain-independent, we do not use techniques that rely on specific

values in the tables. This approach is unlikely to work with a large diversity of data tuples,

and indeed it showed almost no gains beyond the techniques above, when attempted by

Wang and Hu on a relatively small dataset of several thousand tables.

Only results that our classifier declares to be relational will make it into downstream

applications; good relations that are labeled as non-relational will be discarded. Non-

relations that are incorrectly labeled as relational are imperfect but acceptable, as there

is still a chance that the downstream WebTables application will be able to handle a

bad table. So, we tuned the relational classifier to give very high recall at the cost of

lower precision. Our experiments in Section 4.6 show that we can recover the estimated

set of 154M relations with acceptable precision, and with recall that is comparable to other

domain-independent Web extraction systems.

63

rows

cols

% rows w/mostly NULLS

cols w/non-string data

cell strlen avg. µ

cell strlen stddev. σ

cell strlen µ
σ

(a) Relational Filtering

rows

cols

% cols with lower-case in row 1

% cols with punctuation in row 1

% cols with non-string data in row 1

% cols with non-string data in body

% cols with type clashes between row 1 and body

% cols with |len(row 1)− µ| > 2σ

(i.e., where first row’s strlen is more than

2 standard deviations from average)

% cols with σ ≤ |len(row 1)− µ| ≤ 2σ

(i.e., where first row’s strlen is between

1 and 2 standard deviations from average)

% cols with σ > |len(row 1)− µ|

(i.e., where first row’s strlen is less than

1 standard deviation from average)

(b) Header Detection

Figure 4.5: Selected features used in relational ranking and header detection. Relational
Filtering requires statistics that help it distinguish relational tables, which tend to contain
either non-string data, or string data with lengths that do not differ greatly. Header detec-
tion relies on both syntactic cues in the first row and differences in data type and string
length between the first row and the remainder of each column. The string length measures
help in detecting a header even when the body of the column contains strings and thus does
not generate a type clash with the header.

Metadata Recovery

Even the correctly-filtered relations still lack formal metadata. However, attribute names

and types in a good relation will often be obvious to a human observer (sometimes because

labels are directly embedded in the HTML). WebTables is only concerned with metadata

as far as it consists of these per-attribute labels. Attribute labels are very inexpressive com-

pared to the the metadata that is standard in a traditional relational database. However,

64

much of the standard relational metadata applies only to multiple-relation databases, e.g.,

foreign-key constraints. Moreover, many of the single-table constraints in relational meta-

data would be too restrictive if applied to WebTables data, which we assume will always

be somewhat dirty, even when recovered correctly. For the title of each extracted relation

we currently use the title of the HTML page where the table was found; an interesting topic

for future work is to compute a relevant synthetic human-readable title for each relation.

Recovering the metadata is still quite difficult, even when limited to these labels.

High-quality labels for each column can have a number of good downstream effects in

WebTables. In the context of the relation-ranking query tool, good labels allow relations

to appear correctly on-screen, labels improve rank quality, and labels are helpful when

applying structured data services (such as XML export or data visualization). Further,

good labels allow for the very existence of the ACSDb, a collection of statistics about

schema attributes that we describe in Section 4.3.

There are two cases to consider for meta-data recovery. In the first case, there is already a

“header” row in the table with column labels. However, this header is difficult to distinguish,

as relations often contain alphabetic string data. A relational column contains strings either

because its intended type really is string, or because the column was intended to have a

different type (say, numeric), but includes a few stray strings as a side-effect of HTML

extraction (e.g., a column might contain a misplaced copyright notice). Based on a hand-

marked sample, we believe that 71% of the true relations have a header row.

To obtain the metadata contained in header rows, we developed the Detect classifier

that declares whether a relational header is present or not. Detect uses the features listed in

Figure 4.5(b), trained on approximately six thousand hand-marked samples by two separate

judges. The two most heavily-weighted features for header-detection are the number of

columns and the percentage of columns with non-string data in the first row.

The second case covers the remaining 29% of true relations, where the data is good but

there is no header row. In these cases, we can only hope to synthesize column labels that

make sense. We tested an algorithm called ReferenceMatch, which attempted to create

synthetic column labels by matching the contents of an unlabeled column to a separate

dataset where we already know a correct label. For example, an anonymous column that

65

contains Casablanca, Vertigo, and other movies may match find a large number of entries

to a preexisting movie database, allowing us to apply the movie label. Unfortunately, we

found extremely few tables with clean enough string data to match our controlled database

of 6.8M tuples in 849 separate domains. For now, synthetic schema generation is still an

area for future work.

As seen in the experimental results in Section 4.6, Detect is quite successful at recovering

header-embedded metadata, especially when combined with the ACSDb that we describe

next.

4.3 Attribute Correlation Statistics

The sheer size of our corpus also enables us to compute the first large-scale statistical

analysis of how attribute names are used in schemas, and to leverage these statistics in

various ways.

The ACSDb lists each unique set of attributes S found in the corpus of relations, along

with a count that indicates how many relations contain the given S. We assume two schemas

are identical if they have the same set of attributes (regardless of their order). The ACSDb

A is a set of pairs of the form (S, c), where S is a schema of a relation in R, and c is the

number of relations in R that have the schema S.

Extracting the ACSDb given the corpus R of extracted relations is straightforward,

as described below. Note that a given domain name can only provide one count toward

a single schema, preventing a single site with many tables from swamping the schema

statistics. (The seenDomain collection of sets stores all of the observed domain names that

have ever contributed a count toward a given schema.)

Function createACS(R):

A = {}

seenDomains = {}

for all R ∈ R do

if getDomain(R.u) /∈ seenDomains[R.S] then

seenDomains[R.S].add(getDomain(R.u))

66

Figure 4.6: Distribution of frequency-ordered unique schemas in the ACSDb, with rank-
order on the x-axis, and schema frequency on the y-axis. Both rank and frequency axes
have a log scale.

A[R.S] = A[R.S] + 1

end if

end for

In order to guarantee that each attribute and each schema has nontrivial support, we

removed all attributes and schemas that appear only once. The remaining data allowed

us to compute an ACSDb with 5.4M unique attribute names and 2.6M unique schemas.

Unsurprisingly, a relatively small number of schemas appear very frequently, while most

schemas are rare (see the distribution of schemas in Figure 4.6).

The ACSDb is simple, but it allows us to compute the probability of seeing various

attributes in a schema. For example, p(address) is simply the sum of all counts c for pairs

whose schema contains address, divided by the total sum of all counts. We can also detect

relationships between attribute names by conditioning an attribute’s probability on the

presence of a second attribute. For example, we can compute p(address|name) by counting

all the schemas in which “address” appears along with “name,” then normalizing by the

counts for seeing “name” alone. As we will see in Sections 4.4.1 and 4.5, we can use these

simple probabilities to build several new and useful schema applications.

67

Figure 4.7: This is the same figure seen in Chapter 1, in Figure 1.3. Results of a WebTables
keyword query for “city population”, showing a ranked list of databases. The top result
contains a row for each of the most populous 125 cities, and columns for “City/Urban Area,”
“Country,” “Population,” “rank” (the city’s rank by population among all the cities in the
world), etc. The visualization to the right was generated automatically by WebTables,
and shows the result of clicking on the “Paris” row. The title (“City Mayors. . . ”) links to
the page where the original HTML table was found.

We next describe the WebTables relation search system, which uses features derived

from both the extracted relations and from the ACSDb. Afterwards, in Section 4.5, we

will discuss ACSDb applications that are more broadly applicable to traditional database

tasks. Indeed, we believe the ACSDb will find many uses beyond those described in this

chapter.

4.4 Relation Search

Even the largest corpus is useless if we cannot query it. The WebTables search engine

allows users to rank relations by relevance, with a search-engine-style keyword query as

input. As discussed in Section 4.1 above, most relational database expect a human being

to uniquely address each table, placing a heavy cognitive burden on users when the number

of distinct tables grows large. Thus, because WebTables manages more than a hundred

68

million relations, relation search is a crucial part of making WebTables domain-scalable.

Figure 4.12 shows the WebTables search system architecture, with the index of tables

split across multiple back-end servers. As with a web document search engine, WebTables

generates a list of results (which is usually much longer than the user wants to examine).

Unlike most search engines, WebTables results pages are actually useful on their own, even

if the user does not navigate away. Figure 4.7 shows a sample results page for the query

“city population.” The structured nature of the results allows us to offer search services

beyond those in a standard search engine.

1: Function naiveRank(q, k):

2: let U = urls from web search for query q

3: for i = 0 to k do

4: emit getRelations(U [i])

5: end for

Figure 4.8: Function näıveRank: it simply uses the top k search engine result pages to
generate relations. If there are no relations in the top k search results, näıveRankwill emit
no relations.

One exciting area of structure-driven services is in the area of data visualization. WebTa-

bles does not make any research contributions in this area yet, but it can currently create

a query-appropriate visualization by testing whether the tuples R.T contain a column of

geographic placenames. We test the column by checking each cell against a hand-crafted

geographic database; if more than 95% of the cells are present in the database, then we mark

the column as geographic. If the column is so marked, WebTables will place all of each

tuple’s data at the correct locations on the map (see, e.g., the “Paris” tuple in Figure 4.7).

The user can also manually choose a visualization. In the future we hope to construct a

general and completely automated tool that suggests appropriate visualizations based on

the statistical relationship between table columns. Finally, WebTables search also offers

traditional structured operations over search results, such as selection and projection.

Of course, none of these extensions to the traditional search application will be useful

69

1: Function filterRank(q, k):

2: let U = ranked urls from web search for query q

3: let numEmitted = 0

4: for all u ∈ U do

5: for all r ∈ getRelations(u) do

6: if numEmitted >= k then

7: return

8: end if

9: emit r; numEmitted+ +

10: end for

11: end for

Figure 4.9: Function filterRank: similar to näıveRank, it will go as far down the search
engine result pages as necessary to find k relations.

without good search relevance. In the section below we present different algorithms for

ranking individual databases in relation to a user’s query. Unfortunately, the traditional

inverted text index cannot support these algorithms efficiently, so in Section 4.4.2 we also

describe additional index-level support that WebTables requires.

4.4.1 Ranking

Keyword ranking for documents is well-known and understood, and there has been sub-

stantial published work on keyword access to traditional relational databases. But keyword

ranking of individual databases is a novel problem, largely because no one has previously

obtained a corpus of databases large enough to require search ranking.

Web-extracted relations pose a unique set of difficult ranking challenges. Relations do

not exist in a domain-specific schema graph, as with relational keyword-access systems

(e.g., DBXplorer [2], DISCOVER [48]). Page-level features like word frequencies apply

ambiguously to tables embedded in the page. Even a high-quality page may contain tables

of varying quality; consider a page that has several good relations as well as a page-layout

70

table that is incorrectly believed to be relational.

However, relations also have special features that may make ranking easier. Most tables

have schema elements that provide good, if partial, summaries of the subject matter. Rows

often put key-like values in the first column; for example, a row about the city Paris will

usually but the string “Paris” in the leftmost column. Finally, good relations tend to be

amenable to human-consumption: there are relatively few empty cells, and the number

of columns is reasonably small. All of these qualities suggest features that are useful in

ranking.

To rank our extracted WebTables relations, we created a series of ranking functions

of increasing complexity, listed in Figures 4.8, 4.9, 4.10, and 4.11. Each of these functions

accept as input a query q and a top-k parameter k. Each invokes the emit function to

return a relation to the user.

1: Function featureRank(q, k):

2: let R = set of all relations extracted from corpus

3: for r ∈ R do

4: let score(q, r) = combination of per-relation features in Table 4.3

5: end for

6: sort r ∈ R by descending order of score(q, r)

7: for i = 0 to k do

8: emit R[i]

9: end for

Figure 4.10: Function featureRank: score each relation according to the features in Ta-
ble 4.3. Rank by that score and return the top k relations.

The first, näıveRank, simply sends the user’s query to a search engine and fetches

the top-k pages. It returns extracted relations in the URL order returned by the search

engine. If there is more than one relation extracted per page, we return it in document-

order. If there are fewer than k extracted relations in these pages, näıveRank will not go

any deeper into the result list. Although very basic, näıveRank roughly simulates what

71

a modern search engine user must do when searching for structured data. As we will see

in the experimental results in Section 4.6.2, using this algorithm to return search results is

not very satisfactory.

Algorithm filterRank is similar to näıveRank, but slightly more sophisticated. It will

march down the search engine results until it finds k relations to return. The ordering

is the same as with näıveRank. Because search engines may return many high-ranking

pages that contain no relational data at all, even this basic algorithm can be a large help

to someone performing a relation search.

Figure 4.10 shows featureRank, the first algorithm that does not rely on an existing

search engine. It uses the relation-specific features listed in Table 4.3 to score each extracted

relation in our corpus. It sorts by this score and returns the top-k results.

We numerically combined the different feature scores using a linear regression estimator

trained on more than a thousand (q, relation) pairs, each scored by two human judges.

Each judge gave a pair a quality score between 1 and 5. The features from Table 4.3

include both query-independent and query-dependent elements that we imagined might

describe a relevant relation. Cues to a relevant relation include rough indicators of relation

quality (e.g., the number of rows, columns, and empty cells) and indicators of the relation’s

direct relevance to the search terms (e.g., the number of hits on the relation’s metadata,

the number of hits to the leftmost column, and the number of hits on the table’s cells).

The two most heavily-weighted features for the estimator are the number of hits in each

relation’s schema, and the number of hits in each relation’s leftmost column. The former

fits our intuition that attribute labels are a strong indicator of a relation’s subject matter.

The latter seems to indicate that values in the leftmost column may act something like a

“semantic key,” providing a useful summary of the contents of a data row.

The final algorithm, schemaRank, is the same as featureRank, except that it also

includes the ACSDb-based schema coherency score, which we now describe.

Intuitively, a coherent schema is one where the attributes are all tightly related to one

another in the ACSDb schema corpus. For example, a schema that consists of the attributes

“make” and “model” should be considered highly coherent, and “make” and “zipcode” much

less so. Schema coherency is defined formally in Figure 4.11. Because the coherency score

72

1: Function cohere(R):

2: totalPMI = 0

3: for all a ∈ attrs(R), b ∈ attrs(R), a 6= b do

4: totalPMI = totalPMI + PMI(a, b)

5: end for

6: return totalPMI/(|R| ∗ (|R| − 1))

1: Function pmi(a, b):

2: return log(p(a,b)
p(a)∗p(b))

Figure 4.11: The coherency score measures how well attributes of a schema fit together.
Probabilities for individual attributes are derived using statistics in the ACSDb.

is query-independent, it can serve as a measure of a standalone schema’s quality. Thus it is

very useful as a component of table ranking. It is also possible to use the score to improve

metadata recovery; this technique is described in Section 4.6.1.

The core of the coherency score is a measure called Pointwise Mutual Information (or

PMI), which is often used in computational linguistics and web text research, and is designed

to give a sense of how strongly two items are related. (See works by Church and Hanks [27],

Etzioni et al. [39], and Turney [82].) PMI will be large and positive when two variables

strongly indicate each other, zero when two variables are completely independent, and

negative when variables are negatively-correlated. pmi(a, b) requires values for p(a), p(b),

and p(a, b), which in linguistics research are usually derived from a text corpus. We derive

them using the ACSDb corpus.

The coherency score for a schema s is the average of all possible attribute-pairwise PMI

scores for the schema. By taking an average across all the PMI scores, we hope to reward

schemas that have highly-correlated attributes, while not overly-penalizing relations with a

single “bad” one. Note that the coherency score is query-independent.

We will see in Section 4.6.2 that schemaRank performs the best of our search algo-

rithms.

73

...

Search Index Servers

WebTable Search Server

User Web Browser

Figure 4.12: The WebTables search system. The inverted table index is segmented by
term and divided among a pool of search index servers. A single front-end search server
accepts the user’s request, transmits it to all of the index servers, and returns a reply.

To complete our discussion, we now describe the systems-level support necessary to im-

plement the above algorithms. Unfortunately, the traditional inverted index cannot support

operations that are very useful for relation ranking.

4.4.2 Indexing

Traditional search engines use a simple inverted index to speed up lookups, but the standard

index cannot efficiently retrieve all the features listed in Table 4.3.

Briefly, the inverted index is a structure that maps each term to a sorted posting list

of (docid, offset) pairs that describe each occurrence of the term in the corpus. When the

search engine needs to test whether two search terms are in the same document, it simply

steps through the terms’ inverted posting lists in parallel, testing to see where they share a

docid. To test whether two words are adjacent, the search engine also checks if the words

74

rows

cols

has-header?

of NULLs in table

document-search rank of source page

hits on header

hits on leftmost column

hits on second-to-leftmost column

hits on table body

Table 4.3: Selected text-derived features used in the search ranker.

have postings at adjacent offset values. The offset value may also be useful in ranking: for

example, words that appear near the top of a page may be considered more relevant.

Unlike the “linear text” model that a single offset value implies, WebTables data exists

in two dimensions, and the ranking function uses both the horizontal and vertical offsets to

compute the input scoring features. Thus, we adorn each element in the posting list with

a two-dimensional (x, y) offset that describes where in the table the search term can be

found. Using this offset WebTables can compute, for example, whether a single posting

is in the leftmost column, or the top row, or both.

Interestingly, the user-exposed search query language can also take advantage of this

new index style. WebTables users can issue queries that include various spatial operators

like samecol and samerow, which will only return results if the search terms appear in

cells in the same column or row of the table. For example, a user can search for all tables

that include Paris and France on the same row, or for tables with Paris, London, and

Madrid in the same column.

75

Input attribute Auto-completer output

name name, size, last-modified, type

instructor instructor, time, title, days, room, course

elected elected, party, district, incumbent, status, opponent, description

ab ab, h, r, bb, so, rbi, avg, lob, hr, pos, batters

stock-symbol stock-symbol, securities, pct-of-portfolio, num-of-shares,

mkt-value-of-securities, ratings

company company, location, date, job-summary, miles

director director, title, year, country

album album, artist, title, file, size, length, date/time, year, comment

sqft sqft, price, baths, beds, year, type, lot-sqft, days-on-market, stories

goals goals, assists, points, player, team, gp

Table 4.4: Ten input attributes, each with the schema generated by the WebTables auto-
completer.

4.5 ACSDb Applications

The ACSDb is a unique dataset that enables several novel pieces of database software, ap-

plicable beyond the recovered relations themselves. In this section we describe three separate

problems, and present an ACSDb-based solution for each. First, we show how to perform

schema autocomplete, in which WebTables suggests schema elements to a database de-

signer. Synonym discovery is useful for providing synonyms to a schema matching system;

these synonyms are more complete than a natural-language thesaurus would be, and are

far less expensive to generate than human-generated domain-specific synonym sets. Finally,

we introduce a system for join-graph traversal that enables users to effectively browse the

massive number of schemas extracted by the WebTables system.

All of our techniques rely on attribute and schema probabilities derived from the ACSDb.

Similar corpus-based techniques have been used successfully in natural language processing

(e.g., Brants et al. [16] and various techniques described by Schütze and Manning [60]) and

information extraction (such as KnowItAll [39]). However, we are not aware of any simi-

76

Input context Synonym-finder outputs

name e-mail|email, phone|telephone, e-mail address|email address,

date|last-modified

instructor course-title|title, day|days, course|course-#, course-name|course-title

elected candidate|name, presiding-officer|speaker

ab k|so, h|hits, avg|ba, name|player

stock-symbol company|company-name, company-name|securities, company|option-price

company phone|telephone, job-summary|job-title, date|posted

director film|title, shares-for|shares-voted-for, shares-for|shared-voted-in-favor

album song|title, song|track, file|song, single|song, song-title|title

sqft bath|baths, list|list-price, bed|beds, price|rent

goals name|player, games|gp, points|pts, club|team, player|player-name

Table 4.5: Partial result sets from the WebTables synonym-finder, using the same at-
tributes as in Table 4.4.

lar technique applied to the structured-data realm, possibly because no previous database

corpus has been large enough.

4.5.1 Schema Auto-Complete

Inspired by the word and URL auto-complete features common in word-processors and web

browsers, the schema auto-complete application is designed to assist database users when

designing a novel relational schema. We focus on schemas consisting of a single relation.

The user enters one or more domain-specific attributes, and the schema auto-completer

guesses the rest of the attribute labels, which should be appropriate to the target domain.

The user may accept all, some, or none of the auto-completer’s suggested attributes.

For example, when the user enters make, the system suggests model, year, price,

mileage, and color. Table 4.4 shows ten example input attributes, followed by the output

schemas given by the auto-completer.

We can say that for an input I, the best schema S of a given size is the one that

77

1: Function SchemaSuggest(I, t):

2: S = I

3: while p(S − I|I) > t do

4: a = maxa∈A−Sp(a, S − I|I)

5: S = S ∪ a

6: return S

7: end while

Figure 4.13: The SchemaSuggest algorithm repeatedly adds elements to S from the overall
attribute set A. We compute attribute probabilities p by examining counts in the ACSDb
(perhaps conditioning on another schema attribute). The threshold t controls how aggres-
sively the algorithm will suggest additional schema elements; we set t to be 0.01 for our
experiments.

maximizes p(S − I|I). The probability of one set of attributes given another set can be

easily computed by counting attribute cooccurrences in the ACSDb schemas.

It is possible to find a schema using a greedy algorithm that always chooses the next-

most-probable attribute, stopping when the overall schema’s probability goes below a thresh-

old value. (See Figure 4.13 for the formal algorithm.) A greedy approach is not guaranteed

to find the maximal schema, but it does offer good interaction qualities - once an attribute

has been accepted, it is added to I and cannot be “retracted.” In contrast, consider an

algorithm that attempts to present a ranked list of schemas sorted strictly by overall prob-

ability. Any user examining such a sorted list could find that schemas ranked nearby may

not have anything at all in common.

The greedy approach is weakest when dealing with attributes that occupy two or more

strongly-separated domains. For example, consider the “address” attribute, which appears

in multiple domains (e.g., real-world street addresses as well as IP addresses) so the most-

probable response may be inappropriate for the user’s intended subject area a large amount

of the time. In such situations, it might be better to present several thematic options to

the user, as we do in “join graph traversal” described below in Section 4.5.3.

78

4.5.2 Attribute Synonym-Finding

An important part of schema matching is finding synonymous column labels. Unfortunately,

obtaining a high-quality set of label synonyms can be burdensome. The ACSDb allows

us to automatically find attribute strings synonyms from WebTables’s large volume of

schema data.

The synonym-finder takes a set of context attributes, C, as input. It must then compute

a list of attribute pairs P that are likely to be synonymous in schemas that contain C. For

example, in the context of attributes album, artist, the ACSDb synonym-finder outputs

song/track. Of course, our schemas do not include constraints nor any kind of relationship

between attributes other than simple schema-co-membership.

Our algorithm is based on a few basic observations: first, that synonymous attributes

a and b will never appear together in the same schema, as it would be useless to duplicate

identical columns in a single relation (i.e., it must be true that the ACSDb-computed

probability p(a, b) = 0).

Second, if it is true that p(a, b) = 0, the two attributes may never cooccur either because

they are completely substitutable (i.e., synonymous) or because they are independent and

simply never happened to appear together. If p(a)p(b) is high, then the likelihood of a and

b failing to cooccur through simple chance is lower.

Finally, we observe that two synonyms will appear in similar contexts: that is, for a and

b and a third attribute z /∈ C, p(z|a,C) ∼= p(z|b, C).

We can use these observations to describe a syn score for attributes a, b ∈ A, with

context attributes C:

syn(a, b) =
p(a)p(b)

ε+ Σz∈A(p(z|a,C)− p(z|b, C))2

The value of syn(a, b) will naturally be higher as the numerator probabilities go up

and there is a greater “surprise” with p(a, b) = 0 at the same time that p(a)p(b) is large.

Similarly, the value of syn(a, b) will be high when the attributes frequently appear in similar

contexts and thereby drive the denominator lower.

Although our current system requires that p(a, b) = 0, this constraint may be too ag-

gressive. It may be sufficient simply that p(a, b) be very small in comparison to p(a)p(b).

79

Examining the quality and synonym-yield tradeoffs between the strict p(a, b) = 0 constraint

and a more relaxed version is a subject for future work.

Our SynFind algorithm (see Figure 4.14) takes a context C as input, ranks all possible

synonym pairs according to the above formula, and returns pairs with score higher than

a threshold t. There are a few reasons the number of considered pairs does not grow to

enormous size. First, the algorithm only considers attributes that appear with all members

of the set C, so as C grows, the set of pairs to be scored should shrink. Second, the syn()

function is commutative, so SynFind saves time by only considering attribute pairs where a

is lexigraphically less than b. Third, the limited size of each schema and the distribution of

data within schemas limits the potential number of pairs; in our data, even the most-popular

attribute (name) cooccurs with only 62,000 other attribute labels. Finally, the definition for

syn() makes it easy to throw away pairs that are likely to have a very low score, e.g., those

in which at least one attribute has a very low marginal probability. This allows us to save

a huge amount of time if we are willing to retrieve just the top-k pairs.

Table 4.5 lists synonyms found by WebTables for a number of input contexts.

4.5.3 Join Graph Traversal

The library of schemas extracted by WebTables should be very helpful to a schema de-

signer looking for advice or examples of previous work. Unfortunately, there is no explicit

join relationship information in the schemas we extract, so WebTables must somehow

create it artificially. The goal is not to “reproduce” what each schema’s designers may have

intended, but rather to provide a useful way of navigating this huge graph of 2.6M unique

schemas. Navigating the schemas by join relationship would be a good way of describ-

ing relationships between domains and is a well-understood browsing mode, thanks to web

hypertext.

We construct the basic join graph (N ,L) by creating a node for each unique schema, and

an undirected join link between any two schemas that share a label. Thus, every schema

that contains name is linked to every other schema that contains name. We describe the

basic join graph construction formally in Figure 4.15. We never materialize the full join

80

1: Function SynFind(C, t):

2: R = []

3: A = all attributes that appear in ACSDb with all members of C

4: for a, b ∈ A s.t. a < b do

5: if (a, b) /∈ACSDb then

6: // Score candidate pair with syn function

7: if syn(a, b) > t then

8: R.append(a, b)

9: end if

10: end if

11: end for

12: sort R in descending syn order

13: return R

Figure 4.14: The SynFind algorithm finds all potential synonym pairs that have occurred
with C in the ACSDb and have not occurred with each other, then scores them according
to the syn function. The inequality comparison between attributes a and b is a small
optimization - for correctness, a and b simply should not be identical.

81

graph at once, but only the locally-viewable portion at a focal schema F .

1: Function ConstructJoinGraph(A, F):

2: N = {}

3: L = {}

4: for (S, c) ∈ A do

5: N .add(S)

6: end for

7: for (S, c) ∈ A do

8: for attr ∈ F do

9: if attr ∈ S then

10: L.add((attr,F ,S))

11: end if

12: end for

13: end for

14: return N ,L

Figure 4.15: ConstructJoinGraph creates a graph of nodes (N) and links (L) that connect
any two schemas with shared attributes. We only materialize the locally-viewable portion,
from a focal schema F ; this is sufficient to allow the user access to any of its neighbors. The
function takes focal schema F and ACSDb database A as inputs. The input A consists of
a series of pairs (S, c), which describe a schema and its observed count.

A single attribute generally links to many schemas that are very similar. For example,

size occurs in many filesystem-centric schemas: [description, name, size], [description,

offset, size], and [date, file-name, size]. But size also occurs in schemas about

personal health ([height, size, weight]) and commerce [price, quantity, size]. If

we could cluster together similar schema neighbors, we could dramatically reduce the “join

graph clutter” that the user must face.

We can do so by creating a measure for join neighbor similarity. The function attempts

to measure whether a shared attribute D plays a similar role in its schemas X and Y . If D

serves the same role in each of its schemas, then those schemas can be clustered together

82

true class Precision Recall

relational 0.41 0.81

non-relational 0.98 0.87

Table 4.6: Test results for filtering true relations from the raw HTML table corpus.

during join graph traversal.

neighborSim(X,Y,D) =
1

|X||Y |
Σa∈X,b∈Y log(

p(a, b|D)
p(a|D)p(b|D)

)

The function neighborSim is very similar to the coherency score in Figure 4.11. The

only difference is that the probability inputs to the PMI function are conditioned on the

presence of a shared attribute. The result is a measure of how well two schemas cohere,

apart from contributions of the attribute in question. If they cohere very poorly despite

the shared attribute, then we expect that D is serving different roles in each schema (e.g.,

describing filesystems in one, and commerce in the other), and thus the schemas should be

kept in separate clusters. Note that normalizing the output of a log function here is not an

ideally-principled approach, but gave good results in practice. In the future we would like

to experiment with more cleanly-defined measures.

Clustering is how neighborSim helps with join graph traversal. Whenever a join graph

user wants to examine outgoing links from a schema S, WebTables first clusters all of

the schemas that share an attribute with S. We use simple agglomerative clustering with

neighborSim as its distance metric. When the user chooses to traverse the graph to a

neighboring schema, she does not have to choose from among hundreds of raw links, but

instead first chooses one from a handful of neighbor clusters.

4.6 Experimental Results

We now present experimental results for extraction, relation ranking and for the three

ACSDb applications.

83

Detector header? Precision Recall

Detect
has-header 0.79 0.84

no-header 0.65 0.57

Detect-ACSDb
has-header 0.89 0.85

no-header 0.75 0.80

Table 4.7: Test results for detecting a header row in true relations. We correctly detect
most of the true headers, but also mistakenly detect headers in a large number of non-
header relations. Incorporating ACSDb information improves both precision and recall.

4.6.1 Table Extraction

Recall that table extraction consists of two stages: filtering out non-relational tables, and

recovering metadata for each relation that passes the filter.

Filtering

We asked human judges to classify six thousand HTML tables as relational or not. We then

trained a rule-based classifier using the extracted features listed in Table 4.5(a), using the

WEKA package [85]. We cross-validated the trained classifier by splitting the human-judged

data into five parts, using four parts for training and the fifth for testing. We trained five

different classifiers, rotating the testing set each time, and averaged performance numbers

from the resulting five tests.

Table 4.6 shows the results. As mentioned previously, we tuned the training procedure to

favor recall over precision, hoping that downstream applications will “cover our mistakes.”

The rule-based classifier retains 81% of the truly relational tables, though only 41% of the

output is relational. These results mean we retain about 125M of the 154M relations we

believe exist in the raw crawl, at a cost of sending 271M tables downstream. Our filter thus

raises the “relational concentration” from 1.1% in the raw HTML table corpus up to 41%

It is interesting to examine the ways in which our relational filtering mechanism failed.

Tables that are misclassified by the filter fall into a handful of categories:

84

Year/Color

1994 1995

Model Black White ’94 total Black White ’95 total Grand Total

Chevy 50 40 90 85 115 200 290

Ford 50 10 60 85 75 160 220

Grand Total 100 50 150 170 190 360 510

Table 4.8: A relational table like the one pictured here, with multiple layers of metadata,
will probably not be classified correctly by the WebTables extractor’s relation filter. It
would be possible to present this information in a more traditional format that WebTables
could handle easily - this is the “pivot table” representation. The example is drawn from
Gray et al. [43]

• Ambiguous Tables are somewhat unclear even to humans whether they should

be called relational or not. For example, judges disagreed about tables that were

technically well-formed relations but which has a huge number of empty cells may.

This group of close calls is a difficult category to improve on.

• Unusual Layout Tables contain far more empty cells than is customary for a high-

quality relation, usually for graphical layout purposes. Our filter usually takes high

numbers of empty cells as a sign of low relational quality. While this signal is usually

reliable, there are a number of tables where it is perverse. We might be able to avoid

this problem by using a more complicated “visual model” of the table, estimating

when a cell is empty for visual-layout reasons as opposed to data-quality reasons.

• Model Mismatch Tables are too complicated or otherwise unexpected for our filter

to process. We assume that all tables are simply two-dimensional grids, with possibly

a single row of metadata. However, consider Table 4.8. First, there are many values

that span multiple columns, making some cells appear misleadingly “empty,” and thus

lower our estimate of the table’s relational quality. Second, this table has multiple

rows of metadata, all but one of which the WebTables relational filter will interpret

85

as actual data. By misinterpreting metadata as data values, there will appear to

be several columnar type clashes, again lowering the chances of deciding that this

is a relational database. In other words, the WebTables model of how HTML

tables describe relational data (2D, with a single row of metadata) is too simplistic to

accurately describe the relation in this example.

While some of these errors are probably unavoidable (e.g., the ambiguous tables), re-

ducing errors in other categories, especially model-based errors, seems to be quite feasible

and is a promising area for future work.

All remaining experiments in this paper use the output relations from this classifier.

Metadata Recovery

Recovering metadata entails first detecting when there is a header for the relation, and then

generating a synthetic header when the raw HTML does not give one.

We created two different header-detectors. The first, Detect, uses the features from

Figure 4.5(b), as described in Section 4.2.2. The second, Detect-ACSDb, also incorporates

the ACSDb-derived coherency score from Figure 4.11. Previously used to measure the

quality of competing tables’ schemas during relation ranking quality, the coherency score

should also be able to serve as a “bad metadata-extraction detector.” A false positive during

metadata recovery will lead to a real data row being interpreted as a set of label attributes.

We expect that an arbitrarily-chosen row of data from the table will receive a relatively low

coherency score, so a bad coherency score may lead Detect-ACSDb to detect no metadata

at all.

We took the filtered output from the previous stage, and marked a large sample of 1000

relations as either has-header, no-header, or non-relational (in case of a mistake made by

the relational filter). We then used all of the has-header or no-header relations to train and

test our rule-based classifier, again using five-fold cross-validation (as above).

Table 4.7 shows the results. Unlike the relational-filtering case, there is no obvious

recall/precision bias we should impose. As we expected, we can improve the performance

of header-detection by including the schema coherency score. Both precision and recall are

86

good for metadata recovery, and are consistent with other published extraction results (e.g.,

Agichtein et al. [1] and Etzioni et al. [39]).

4.6.2 Relation Ranking

We evaluated the WebTables ranking algorithms described in Section 4.4.1: näıveRank,

filterRank, featureRank, and schemaRank.

Just as with the training set described in Section 4.4, we created a test dataset by

asking two human judges to rate a set of one thousand (query, relation) pairs from 1

to 5 (where 5 denotes a relation that is perfectly relevant for the query, and 1 denotes a

completely irrelevant relation). We divided the pairs over a workload of 30 queries. For

featureRank and schemaRank, which incorporate a series of clues about the relation’s

relevance to the query, we chose feature weights using a trained linear regression model

(again from the WEKA package [85]).

We composed the set of query, relation pairs by first sending all the queries to

näıveRank, filterRank, featureRank, and schemaRank, and recording all the URLs

that they emitted. We then gathered all the relations derived from those URLs, and asked

the judges to rate them. Obviously it is impossible for human judges to consider every

possible relation derived from the web, but our judges did consider all the “plausible” rela-

tions - those generated by any of a number of different automated techniques. Thus, when

we rank all the relations for a query in the human-judged order, we should obtain a good

approximation of the “optimal” relation ranking.

We will call a relation “relevant” to its query if the table scored an average of 4 or higher

by the judges. Table 4.9 shows the number of relevant results in the top-k by each of the

rankers, presented as a fraction of the score from the optimal human-judged list. Results

are averaged over all queries in the workload.

There are two interesting points about the results in Table 4.9. First, Rank-ACSDb

beats Näıve (the only solution for structured data search available to most people) by

78-100%. Second, all of the non-Näıve solutions improve on the optimal solution as k

increases, suggesting that we are doing relatively well at large-grain ranking, but more

87

poorly at smaller scales.

k Näıve Filter Rank Rank-ACSDb

10 0.26 0.35 0.43 0.47

20 0.33 0.47 0.56 0.59

30 0.34 0.59 0.66 0.68

Table 4.9: Fraction of high-scoring relevant tables in the top-k, as a fraction of “optimal”
results.

4.6.3 Schema Auto-Completion

Output schemas from the auto-completion tool are almost always coherent (as seen with

the sample outputs from Table 4.4), but it would also be desirable if they cover the most

relevant attributes for each input. We can evaluate whether the tool recalls the relevant

attributes for a schema by testing how well its outputs “reproduce” a good-quality test

schema.

To generate these test schemas, we found six humans who are familiar with database

schemas and gave them only the single-attribute input contexts listed in Tables 4.4. We

then asked the human judges to create an attribute list (i.e., a schema) for each of ten

inputs. For example, when given the prompt company, one user responded with ticker,

stock-exchange, stock-price. We retained all the attributes that were suggested at least

twice. The resulting test schemas contained between 3 and 9 attributes.

We then compared these test schemas against the schemas output by the WebTables

auto-completion tool when given the same inputs. We allowed the auto-completion tool to

run multiple times; after the algorithm from Section 4.5.1 emitted a schema S, we simply

removed all members of S from the ACSDb, and then reran the algorithm. We gave the

auto-completion tool three “tries” for each input.

Table 4.10 shows the fraction of the input schemas that WebTables was able to re-

produce. By its third output, WebTables reproduced a large amount of all the test

88

Input 1 2 3

name 0 0.6 0.8

instructor 0.6 0.6 0.6

elected 1.0 1.0 1.0

ab 0 0 0

stock-symbol 0.4 0.8 0.8

company 0.22 0.33 0.44

director 0.75 0.75 1.0

album 0.5 0.5 0.66

sqft 0.5 0.66 0.66

goals 0.66 0.66 0.66

Average 0.46 0.59 0.62

Table 4.10: Schema auto-complete’s rate of attribute recall for ten expert-generated test
schemas. Auto-complete is given three “tries” at producing a good schema.

schemas except one,4 and it often did well on its first output. Giving WebTables mul-

tiple tries allows it to succeed even when an input is somewhat ambiguous. For example,

the WebTables schema listed in Table 4.4 (its first output) describes filesystem contents.

But on its second run, WebTables’s output contained address-book information (e.g.,

office, phone, title); the test schema for name contained exclusively attributes for the

address-book domain.

4.6.4 Synonym-Finding

We tested the synonym-finder’s accuracy by asking it to generate synonyms in ten different

areas. We gave the system the single-attribute input contexts listed in Table 4.5 - the

same attributes discussed in the previous section. For example, when given instructor,

4No test designer recognized ab as an abbreviation for “at-bats,” a piece of baseball terminology. WebTa-
bles gave exclusively baseball-themed outputs.

89

the synonym-finder emitted course-title / title, course-name / course-title, and

so on. The synonym-finder’s output is ranked in descending order of quality. An ideal

ranking would present a stream of only correct synonyms, followed by only incorrect ones; a

poor ranking will mix them together. We consider only the accuracy of the synonym-finder

and do not attempt to assess its overall recall. We asked a human judge to declare whether

each given synonym pair is accurate or not.

The results in Table 4.11 show that the synonym-finder’s ranking is very good, with an

average of 80% accuracy in the top-5. The average number of correct results declines as the

rank increases, as expected.

Input 5 10 15 20

name 1.0 0.8 0.67 0.55

instructor 1.0 1.0 0.93 0.95

elected 0.4 0.4 0.33 0.3

ab 0.6 0.4 0.33 0.25

stock-symbol 1.0 0.6 0.53 0.4

company 0.8 0.7 0.67 0.5

director 0.6 0.4 0.26 0.3

album 0.6 0.6 0.53 0.45

sqft 1.0 0.7 0.53 0.55

goals 1.0 0.8 0.73 0.75

Average 0.8 0.64 0.55 0.5

Table 4.11: Fraction of correct synonyms in top-k ranked list from the synonym-finder.

4.6.5 Join Graph Traversal

Most clusters in our test set (which is generated from a workload of 10 focal schemas)

contained very few incorrect schema members. Further, these “errors” are often debatable

90

and difficult to assess reliably. It is more interesting to see an actual portion of the clustered

join graph, as in Figure 4.16. In this diagram, the user has visited the “focal schema”:

[last-modified, name, size], which is drawn at the top center of the diagram. The user

has applied join graph clustering to make it easier to traverse the join graph and explore

related schemas.

By definition, the focal schema and its neighbor schemas share at least one attribute.

This figure shows some of the schemas that neighbor [last-modified, name, size]. Neigh-

bors connected via last-modified are in the left-hand column, neighbors via name are in

the center column, and neighbors who share size are at the right.

Every neighbor schema is part of a cluster. (We have annotated each cluster with the

full cluster size and the rough subject area that the cluster seems to capture.) Without

these thematic clusters in place, the join graph user would have no reasonable way to sort

or choose through the huge number of schemas that neighbor the focal schema.

In Figure 4.16, most of the schemas in any given cluster are extremely similar. However,

there is one schema (namely, the [group, joined, name, posts] schema) that has been

incorrectly allocated to its cluster. This schema appears to be used for some kind of online

message board, but has been badly placed in a cluster of retail-oriented schemas.

4.7 Related Work

A number of authors have studied the problem of information extraction from a single

table, though most have not tried to do so at scale. Gatterbauer et al. [42] attempted

to discover tabular structure without the HTML table tag, through cues such as onscreen

data placement. Their approach could make a useful table extractor for WebTables. Chen

et al. [25] tried to extract tables from ASCII text. Penn et al. [69] attempted to reformat

existing web information for handheld devices. Like WebTables, they had to recognize

“genuine tables” with true two-dimensional semantics (as opposed to tables used merely for

layout). Similarly, as discussed in Section 4.1, Wang and Hu [84] detected “good” tables

with a classifier, using features that involved both content and layout. They operated on

a corpus of just over ten thousand pages and found a few thousand true relations. Zanibbi

et al. [90] offered a survey of table-parsing papers, almost all focused on processing a single

91

Figure 4.16: A neighbor-clustered view of the join graph, from focal schema
[last-modified, name, size]. Schemas in the left-hand column share the last-modified
attribute with the focal schema; schemas in the center column share name, and schemas at
right share size. Similar schemas are grouped together in cluster boxes. The annotation
under each box describes the total number of schemas and the theme of the cluster.

table. None of the experiments we found involved corpora of more than a few tens of

thousands of tables.

We are not aware of any other effort to extract relational tables from the web at a scale

similar to WebTables. The idea of leveraging a corpus of schemas was first suggested by

Halevy et al. [44]. Madhavan et al. [56] considered collections of 40-60 schemas in known

domains extracted from various sources, and showed that these schemas can be used to

improve the quality of automatically matching pairs of disparate schema. As part of that,

the authors used statistics on schema elements similar to ours.

92

We do not know of any work on automated attribute-synonym finding, apart from simple

distance metrics used as part of schema matching systems (e.g., Dhamankar et al. [33],

Madhavan et al. [57], Madhavan et al. [56], and Rahm and Bernstein [71]). There has been

some work on corpus-driven linguistic synonym-finding in the machine learning community.

Pantel and Lin [55] found predicate-like synonyms (e.g., is-author-of ∼= wrote) from text

by examining statistics about use of objects (e.g., Mark Twain, book) near the synonym

candidates; there is no natural analogue to these objects in a relational schema setting.

Turney [82] used language cooccurrence statistics from the Web to answer standardized-

test-style synonym questions, but relies on word-proximity statistics that seem inapplicable

to structured data. Cong and Jagadish [89] used data statistics and notions of schema-graph-

centrality to create a high-quality summary of a very complicated relational schema graph,

but this was designed to apply to an existing highly-engineered schema, not a synthetically-

produced graph as in our join traversal problem.

A number of tools have taken advantage of data statistics, whether to match schemas

(Dhamankar et al. [33] and Doan et al. [34]), to find dependencies (Bell and Brockhausen [9]

and Wong et al. [87]), or to group into tables data with many potentially-missing values

(Cafarella et al. [24] and Miller and Andritsos [64]). All of these systems rely on the dataset

to give cues about the correct schema. We believe a hybrid of the ACSDb schema data

and these data-centric approaches is a very promising avenue for future work.

4.8 Conclusions

We described the WebTables system, which is the first large-scale attempt to extract,

manage, and leverage the relational information embedded in HTML tables on the Web.

Self-evidently extraction-focused, WebTables also has a domain-independent extraction

mechanism and a domain-scalable table search mechanism.

We demonstrated that current search engines do not support such search effectively.

Finally, we showed that the recovered relations can be used to create what we believe is

a very valuable data resource, the attribute correlation statistics database. We applied the

ACSDb to a number of schema-related problems: to improve relation ranking, to construct

a schema auto-complete tool, to create synonyms for schema matching use, and to help users

93

in navigating the ACSDb itself. All of these applications are domain-independent.

Now that we can extract and manage tables for the Structured Web, we can turn to

combining them in new and interesting ways. That is the subject of the next chapter.

94

Chapter 5

DATA INTEGRATION FOR THE STRUCTURED WEB

In previous chapters we demonstrated how to extract multiple type of Structured Web

data, and in the case of tabular data, how to search and perform operations over it. With

such massive and diverse data available, recombining and repurposing the data is a very

tantalizing idea. For example, we could compile an authoritative list of conference program

committee members from data on many years’ worth of websites. However, integrating data

from the Structured Web raises several challenges that are not addressed by current data

integration systems or mashup tools. First, due to the vastness of the corpus, a user can

never know all of the potentially-relevant databases ahead of time, much less write a wrapper

or mapping for each one; the source databases must be discovered during the integration

process, making the system domain-scalable. Second, the data is usually not published

cleanly; the integration system must be extraction-focused and domain-independent. Finally,

it must computationally efficient.

This chapter describes Octopus, a system that combines search, extraction, data clean-

ing and integration, and enables users to create new data sets from those found on the

Structured Web.1 The key idea underlying Octopus is to offer the user a set of best-effort

operators that automate the most labor-intensive tasks. For example, the Search oper-

ator, which has some similarities to the table search application from WebTables, takes

a search-style keyword query and returns a set of relevance-ranked and similarity-clustered

structured data sources on the Web; the Context operator helps the user specify the se-

mantics of the sources by inferring attribute values that may not appear in the source itself,

and the Extend operator helps the user find related sources that can be joined to add

new attributes to a table. Octopus executes some of these operators automatically, but

always allows the user to provide feedback and correct errors. We describe the algorithms

1Much of this work, like WebTables, was done while the author was at Google, Inc.

95

underlying each of these operators and experiments that demonstrate their efficacy and

computational scalability. All of these operators process tabular data that was extracted

using the WebTables system from Chapter 4, as well as tabular data derived from HTML

lists.

The result is a system that brings much of the power of traditional data integration,

focused on limited domains and relatively few users, to the much broader dataset and

userbase of the Web.

5.1 Problem Overview

There is enormous potential in combining and repurposing the data on the Structured Web.

In principle, we could approach this challenge as a data integration problem, but at a bigger

scale. In fact, some tools exist today for lightweight combination of sources found on the

Web, such as Microsoft’s Popfly [62] and Yahoo Pipes [88]. However, these tools and the

traditional data integration approach fall short in several ways.

First, simply locating relevant data sources on the Web is a major challenge. Traditional

data integration tools assume that the relevant data sources have been identified a priori.

With Structured Web data, domain-scalability is a critical concern; clearly, it is unreasonable

to ask humans to know about each of hundreds of millions of data sources without some

kind of aid. Thus, we need a system that integrates well with search and presents the user

with relevant structured sources.

Second, and perhaps obviously, Structured Web data sources must be extracted before

they can be processed. Traditional systems and Web tools that assume XML-formatted

inputs assume datasets that are already reasonably clean and ready to be used. On the

Web, assuming XML data hugely limits the number of possible data sources, and thus the

usefulness of the overall data integration tool. Hence, our system needs to be extraction-

focused and domain-independent.

There is an added dimension to information extraction that applies in the data integra-

tion setting, and amounts to a third failing of traditional approaches. The semantics of Web

data are often implicitly tied to the source Web page and must be made explicit prior to

integration. For example, there are multiple tables on the Web with VLDB PC members,

96

but the year of the conference is in the Web page text, not the table itself. In contrast,

traditional data integration systems assume that any extra data semantics are captured by

a set of hand-made semantic mappings, which are unavailable for a generic data source on

the Web. Thus, our system must be able to recover any relevant and implicit columns for

each extracted data source.

Data integration systems are customarily run on relational databases that have large

numbers of tuples, but comparatively few tables and schema elements. Because the number

of distinct potential data sources is so large, our solution must pay attention to computa-

tional efficiency.

There is one final distinction between traditional data integration and the kind of Struc-

tured Web-centric system we propose here. Data integration systems have been tailored for

the use case in which many similar queries are posed against a federation of stable data

sources. In contrast, our aim is to support a more Web-centric use case in which the query

load consists of many transient tasks and the set of data sources is constantly changing.

Indeed, a particular set of sources may be combined just once. It may be useful to apply

an integration repeatedly to a single data source, but it is not necessary. The overriding

assumption is that a user will simply perform each “online” integration as needed. Hence,

our system cannot require the user to spend much time on each data source.

From the user’s perspective, Octopus integrations are onetime transient operations

that are the product of a graphical user interface. However, under the covers user inter-

actions with Octopus produce declarative GLAV-style mappings that could in principle

be exported to a more formal integration system, executed multiple times, or used toward

other ends.

This chapter describes Octopus, a system that combines search, extraction, data clean-

ing, and integration, and enables users to create new data sets from those found on the

Web. The key idea underlying Octopus is to offer the user a set of best-effort operators

that automate the most labor-intensive tasks. For example, the Search operator takes a

search-style keyword query and returns a set of relevance-ranked and similarity-clustered

structured data sources on the Web. The Context operator helps the user specify the

semantics of the sources by inferring attribute values that may not appear in the source

97

itself. The Extend operator helps the user find related sources that can be joined to add

new attributes to a table. Octopus executes some of these operators automatically, but

always allows the user to provide feedback and correct errors. The choice of operators in

Octopus has a formal foundation in the following sense: each operator, as reflected by its

intended semantics, is meant to recover some aspect of source descriptions in data integra-

tion systems. Hence, together, the operators enable creating integrations with a rich and

well-defined set of descriptions.

This chapter describes the overall Octopus system and its integration-related operators.

Octopus also has a number of extraction-related operators that we do not discuss. The

specific contributions of this chapter are:

• We describe the operators of the Octopus system and how it enables data integration

from Web sources.

• We consider in detail the Search, Context, and Extend operators and describe

several possible algorithms for each. The algorithms explore the tradeoff between

computational overhead and result quality.

• We evaluate the system experimentally, showing high-quality results when run on a

test query load. We evaluate most system components using data gathered from a

general Web audience, via the Amazon Mechanical Turk.

We provide an overview of Octopus and give definitions for each of the operators in

Section 5.2. We describe the algorithms for implementing the operators in Section 5.3.

Sections 5.4 and 5.5 describe our implementation and experiments, and evaluate the algo-

rithmic tradeoffs on an implemented system. Finally, we discuss related work in Section 5.6,

and conclude in Section 5.7.

5.2 Octopus and its operators

We begin by describing the data that is manipulated by Octopus in Section 5.2.1, and

then provide the formal motivation for our operators in Section 5.2.2. In Section 5.2.3 we

define the Octopus operators.

98

Figure 5.1: The screenshot to the left shows a region of the VLDB 2005 website; the
extracted table to the right contains the corresponding data. This table was returned by
Octopus after the user issued a Search command for vldb program committee. In this
case, the table was extracted from an HTML list and the column-boundaries automatically
recovered.

5.2.1 Data model

Octopus manipulates relations extracted from Web pages. The system currently uses

WebTables-derived tables as well as HTML lists; but in principle it can operate on data

obtained from any information extraction technique that emits relational-style data. For

example, we might compile a two-column born-in relation from multiple TextRunner

tuple extractions. We process HTML lists using techniques from Elmeleegy et al. [38].

Each extracted relation is a table T with k columns. As with WebTables, there are

no strict type or value constraints on the contents of a single column in T . However, the

goal of each extraction subsystem is for each table T should “look good” by the time the

user examines the relation. A high-quality relation tends to have multiple domain-sensitive

columns, each appearing to observe appropriate type rules. That is, a single column will

tend to contain only strings which depict integers, or strings which are drawn from the same

domain (e.g., movie titles). Of course, the data tables may contain extraction errors as well

as any factual errors that were present in the original material.

99

Each relation T also preserves its extraction lineage - its source Web page and location

within that page - for later processing by Octopus operators such as Context. A single

portion of crawled HTML can give rise to only a single table T .

To give an idea for the scale of the data available to Octopus, we found 3.9B HTML

lists in a portion of the Google Web crawl. For tables, we estimated in Chapter 4 that 154M

of 14B extracted HTML tables contain high-quality relational data, which is a relatively

small percentage, slightly more than 1%. However, while HTML tables are often used for

page layout, HTML lists appear to be used fairly reliably for some kind of structured data;

thus we expect that a larger percent of them contain good tabular data. By a conservative

estimate, our current Octopus prototype has at least 200M source relations (154M of them

from WebTables) at its disposal.

5.2.2 Integrating Web Sources

To provide the formal motivation for Octopus’s operators, we first imagine how the prob-

lem would be solved in a traditional data integration setting. We would begin by creating

a mediated schema that could be used for writing queries. For example, when collect-

ing data about program committees, we would have a mediated schema with a relation

PCMember(name, institution, conference, year).

The contents of the data sources would be described with semantic mappings. For

example, if we were to use the GLAV approach (described in Friedman et al. [41]) for

describing sources on the Web, the pages from the 2008 and 2009 VLDB web sites might

be described as follows:

VLDB08Page(N,I) ⊆ PCMember(N,I,C,Y), C=”VLDB”, Y=2008

VLDB09Page(N,I) ⊆ PCMember(N,I,C,Y), C=”VLDB”, Y=2009

Now if we queried for all VLDB PC members:

q(name, institution, year) :- PCMember(name, institution, ”VLDB”, year)

then the query would be reformulated into the following union:

100

inria
...grenoble

...pisa

serge abiteboul
michel adiba

antonio albano

split

SEARCH("vldb program committee")
serge abiteboul, inria

michel adiba, ...grenoble
antonio albano, ...pisa

le chesnay inria
carnegie...
etz zurich

serge abiteboul
anastassia aila...
gustavo alonso

france
usa

switzerland

CONTEXT
inria

...grenoble
...pisa

serge abiteboul
michel adiba

antonio albano

1996
1996
1996

CONTEXT
inria

carnegie...
etz zurich

serge abiteboul
anastassia aila...
gustavo alonso

2005
2005
2005

union
inria

...grenoble
...pisa
inria

carnegie...
etz zurich

serge abiteboul
michel adiba

antonio albano
serge abiteboul

anastassia aila...
gustavo alonso

1996
1996
1996
2005
2005
2005

EXTEND(c=1, "publications")
inria

...grenoble
...pisa
inria

carnegie...
etz zurich

serge abiteboul
michel adiba

antonio albano
serge abiteboul

anastassia aila...
gustavo alonso

1996
1996
1996
2005
2005
2005

"Large Scale P2P Dist..."
"Exploiting bitemporal..."
"Another Example of a..."
"Large Scale P2P Dist..."

"Efficient Use of the Query..."
"A Dynamic and Flexible..."

inria
carnegie...
etz zurich

serge abiteboul
anastassia aila...
gustavo alonso

project(c=3)

Figure 5.2: A typical sequence of Octopus operations. The data integration operators
of Octopus are in upper-case type, while other operations in lower-case. The user starts
with Search, which yields a cluster of relevant and related tables. The user selects two
of these tables for further work. In each case, she removes the rightmost column, which is
schematically inconsistent and irrelevant to the task at hand. On the left table she verifies
that the table has been split correctly into two columns, separating the name and the
institution. If needed, she may manually initiate an operator that will split a column into
two. She then executes the Context operator on each table, which recovers the relevant
VLDB conference year. Without this extra information, the two Serge Abiteboul tuples
would be indistinguishable after union. Finally, she executes Extend to adorn the table
with publication information for each PC member.

q’(name, institution, 2008) :- VLDB08Page(name, institution),

q’(name, institution, 2009) :- VLDB09Page(name, institution)

However, as we pointed out earlier, our data integration tasks may be transient or one-

time affairs, and the number of data sources is very large. Therefore doing some kind of

elaborate offline integration ahead of time, or otherwise preparing the data source descrip-

tions in advance is infeasible. Our operators are designed to help the user effectively and

101

quickly combine data sources by automatically recovering different aspects of an implicit

set of source descriptions. (Of course, the recovered source descriptions will not have the

nice human-understandable names we use in the examples in this chapter.)

Finding the relevant data sources is an integral part of performing the integration.

Specifically, Search initially finds relevant data tables from the myriad sources on the Web;

it then clusters the results. Each cluster yielded by the Search operator corresponds to a

mediated schema relation, e.g., the PCMember table in the example above. Each member

table of a given cluster is a concrete table that contributes to the cluster’s mediated schema

relation. Members of the PCMember cluster correspond to VLDB08Page, VLDB09Page, and

so on.

The Context operator helps the user to discover selection predicates that apply to the

semantic mapping between source tables and a mediated table, but which are not explicit in

the source tables themselves. For example, Context recovers the fact that VLDB08Page has

a year=2008 predicate even though this information is only available via the VLDB08Page’s

embedding Web page. Context only requires a single concrete relation, along with its

lineage, to operate on.

These two operators are sufficient to express semantic mappings for sources that are

projections and selections of relations in the mediated schema. The Extend operator

will enable us to express joins between data sources. Suppose the PCMember relation

in the mediated schema is extended with another attribute, adviser, recording the Ph.D

adviser of PC members. To obtain tuples for the relation PCMember we now have join the

tables VLDB08Page and VLDB09Page with other relations on the Web that describe adviser

relationships.

The Extend operator will find tables on the Web that satisfy that criterion. I.e., it will

find tables T such that:

PCMember(N,I,C,Y, Ad) ⊆ VLDB08Page(N,I), T(N,Ad), C=”VLDB”, Y=2008

or

PCMember(N,I,C,Y, Ad) ⊆ VLDB09Page(N,I), T(N,Ad), C=”VLDB”, Y=2009

102

Note that the adviser information may come from many more tables on the Web. At

the extreme, each adviser tuple may come from a different source.

It is important to keep in mind that unlike traditional relational operators, Octopus’s

operators are not defined to have a single correct output for a given set of inputs. Conse-

quently, the algorithms we present in Section 5.3 are also best-effort algorithms. On a given

input, the output of our operators cannot be said to be “correct” vs “incorrect,” but instead

may be “high-quality” vs “low-quality.” In this way, the Octopus operators are similar

to traditional Web search ranking, or to the match operator in the model management

literature, e.g., Bernstein [11].

In principle, Octopus can also include cleaning operators such as data transformation

and entity resolution, but we have not implemented these yet. Currently, with the operators

provided by Octopus, the user is able to create integrations that can be expressed as select-

project-union and some limited joins over structured sources extracted from the Web.

5.2.3 Integration operators

This chapter focuses on the three integration-related operators of Octopus: Search, Con-

text and Extend. We now describe each one.

Search

The Search operator takes as input an extracted set of relations S and a user’s keyword

query string q. It returns a sorted list of clusters of tables in S, ranked by relevance to q.

In our case, the set of relations can be considered all the tabular relations recovered from

the Structured Web.

A relevance ranking phase of Search allows the user to quickly find useful source re-

lations in S and is evaluated in a similar fashion to relevance in web search. A secondary

clustering step allows the user to find relations in S that are similar to each other. In-

tuitively, tables in the same cluster can be described as projections and selections on a

single relation in the mediated schema, and are therefore later good candidates for being

unioned. Tables in a single cluster should be unionable with few or no modifications by the

103

user. In particular, they should be identical or very similar in column-cardinality and their

per-column attribute labels. Octopus will present in a group all of the tables in a single

cluster, but the user actually applies the union operation, removing tables or adjusting them

as needed.

The output of Search is a list L of table sets. Each set C ∈ L contains tables from

S. A single table may appear in multiple clusters C. The Search operator may sort L for

both relevance and diversity of results. As in web search, it would be frustrating for the

user to see a large number of highly-ranked clusters that are only marginally different from

each other.

Context

Context takes as input a single extracted relation T and modifies it to contain additional

columns, using data derived from T ’s source Web page. For example, the extracted ta-

ble about 2009 VLDB PC members may contain attributes for the member’s name and

institution, but not the year, location, or conference-name, even though this infor-

mation is obvious to a human reader. The values generated by Context can be viewed as

the selection conditions in the semantic mappings first created by Search.

The Context operator is necessary because of a design idiom that is very common to

tabular Structured Web data. Data values that hold for every tuple are generally “projected

out” and added to the Web page’s surrounding text. Indeed, it would be very strange to

see a Web-embedded relation that has 2009 in every single tuple; instead, the 2009 value

simply appears in the page’s title or text. Consider that when a user combines several

extracted data tables from multiple sources, any PC members who have served on multiple

committees from the same institution will appear as duplicated tuples. In this scenario,

making year and location explicit for each tuple would be very valuable.

Extend

Extend enables the user to add more columns to a table by performing a join. Extend

takes as input a column c of table T , and a topic keyword k. The column c contains a set

104

of values drawn from T , e.g., a list of PC member names. k describes a desired attribute

of c to add to T , e.g., the “publications” that correspond to each name. Extend returns

a modified version of T , adorned with one or more additional columns whose values are

described by k.

Extend differs from traditional join in one very important way: any new columns added

to T do not necessarily come from the same single source table. It is more accurate to think

of Extend as a join operation that is applied independently between each row of T and

some other relevant tuple from some extracted table; each such tuple still manages to be

about k and still satisfies the join constraint with the row’s value in c. Thus, a single

Extend operation may involve gathering data from a large number of other sources. Note

that join can be distributed over union and therefore Octopus has the flexibility to consider

individual sources in isolation.

Finally, note that k is merely a keyword describing the desired new column. It is not a

strict “schema” requirement, and it is possible to use Extend to gather data from a table

that uses a different label from k or no label at all. Hence, we are not requiring the user to

know any mediated schema in advance. This decision reflects again the domain-scalability

we believe is critical to any Structured Web tool. The user can express her information

need in whatever terminology is natural to her.

5.2.4 Putting It All Together

Octopus operators provide a “workbench”-like interactive setting for users to integrate

Web data. From the user’s perspective, each application of an operator further refines a

working set of relations on the screen. We can also think of each operator as modifying

an underlying semantic mapping that is never explicitly shown, but the on-screen data set

reflects this mapping to the user.

In addition to the three data-integration oriented Octopus operators, the system allows

users to make “manual” changes to the tables and hence to the semantic mappings. For

example, if the user disagrees with Search’s decision to include a table in a cluster she

can simply delete the table from the cluster. Other currently supported operations include

105

selection, projection, column-add, column-split, and column-rename. However, the architec-

ture and user interaction are flexible and therefore we can add other data cleaning and

transformation operators as needed.

Figure 5.1 shows two tables in a single Search cluster after the user has issued a re-

quest for vldb program committee. Figure 5.2.2 shows the application’s state in the form

of a transition diagram, taking as input the user’s decision to execute one of the integra-

tion operators. In short, an interactive session with Octopus involves a single Search

followed by any combination of Context, Extend, and other cleaning and transformation

operators. It is important to note, as illustrated in Figure 5.1, that different sequences of

operator invocations will be appropriate depending on the data at hand. For example, if

the user starts with a table of US cities, she may want to apply the Extend operator before

the Context to first add mayor data to the table, and then recover the year in which the

data was collected.

5.3 Algorithms

In this section we describe a series of algorithms that implement the Octopus operators.

The utility of a user’s interaction with Octopus largely depends on the quality of the re-

sults generated by Search, Context, and Extend. We propose several novel algorithms

for each operator, and describe why the current state of the art techniques do not suffice.

None of our operator implementations are time-consuming in the sense of traditional algo-

rithmic complexity, but some require data values (e.g., word usage statistics) that can be

burdensome to compute and pose some problems for computational efficiency. We further

address computational issues in Section 5.4 below. We evaluate both result quality and

runtime performance for each algorithm in Section 5.5.

5.3.1 SEARCH

The Search operator takes a keyword query as input and returns a ranked list of table

clusters. There are two challenges in implementing Search. The first is to rank the tables

by relevance to the user’s query, and the second is to cluster other related tables around

the top-ranking Search results.

106

1: function SimpleRank(keywords):

2: urls = searchengine(keywords) //in search-engine-rank order

3: tables = []

4: for url ∈ urls do

5: for table ∈extract tables(url): //in-page order do

6: tables.append(table)

7: end for

8: end for

9: return tables

Figure 5.3: The SimpleRank algorithm.

Ranking

A strawman state-of-the-art algorithm for ranking is to leverage the ranking provided by

a search engine. The SimpleRank algorithm, seen in Figure 5.3 simply transmits the

user’s Search text query to a traditional Web search engine, obtains the URL ordering,

and presents extracted structured data according to that ordering. For pages that contain

multiple tables, SimpleRank ranks them according to their order of appearance on the

page.

SimpleRank has several weaknesses. First, search engines rank individual whole pages,

so a highly-ranked page that contains highly-relevant raw text can easily contain irrelevant

or uninformative data. For example, a person’s home page often contains HTML lists that

serve as navigation aids to other pages on the site. Another obvious weakness is when

multiple datasets are found on the same page, and SimpleRank relies on the very possibly

misleading in-page ordering.

It would be better to examine the extracted tables themselves, rather than ranking the

overall page where the data appears. Search engines traditionally rely on the tf-idf cosine

measure, which scores a page according to how often it contains the query terms, and how

unusual those terms are. Tf-idf works because its main observation generally holds true in

practice – pages that are “about” a term t generally contain repetitions of t. However, this

observation does not strongly hold for HTML lists: e.g., the list from Figure 5.1 does not

contain the terms vldb program committee. Further, any “metadata” about an HTML

107

1: function SCPRank(keywords):

2: // returns in search-engine-rank order

3: urls = search engine(keywords)

4: tables = []

5: for url ∈ urls do

6: for table ∈ extract tables(url) do

7: //returns in-page order

8: tables.append((TableScore(keywords, table), table))

9: end for

10: end for

11: return tables.sort()

12:

13: function table score(keywords, table)

14: column scores = []

15: for column ∈ table do

16: column score =
∑

c∈column.cells
scp(keywords, c)

17: end for

18: return max(column scores)

Figure 5.4: The SCP and tablescore algorithms.

list exists only in the surrounding text, not the table itself, so we cannot expect to count

hits between the query and a specific table’s metadata. We attempted this approach in

Chapter 4 when ranking extracted HTML tables, which do often carry metadata in the

form of per-column labels.

An alternative is to measure the correlation between a query phrase and each element

in the extracted database. Our SCPRank algorithm, seen in Figure 5.4 uses symmetric

conditional probability, or SCP, to measure the correlation between a cell in the extracted

database and a query term.

In the SCPRank algorithm we use the following terminology. Let s be a term. The

value p(s) is the fraction of Web documents that contain s:

p(s) =
web docs that contain s

total # of web docs

Similarly, p(s1, s2) is the fraction of documents containing both s1 and s2:

p(s1, s2) =
web docs that contain both s1 and s2

total # of web docs

108

The symmetric conditional probability between a query q and the text in a data cell c

is defined as follows:

scp(q, c) =
p(q, c)2

p(q)p(c)

This formula determines how much more likely q and c appear together in a document

compared to chance. For example, it is reasonable to believe that Stan Zdonik appears

with vldb program committee on the same page much more frequently than might an

arbitrarily-chosen string. Thus, scp(Stan Zdonik, vldb program committee) will be rela-

tively large.

Symmetric conditional probability was first used by Lopes and DaSilva [30] for finding

multiword units, such as bigrams or trigrams, in text. It is very similar to Pointwise Mutual

Information [83]. In the measure generally used in text analysis, however, the p(q, c) value

measures the probability of q and c occurring in adjacent positions in a document. In our

tabular Structured Web setting, a data cell is generally only adjacent to other data cells.

Thus our SCPRank employs non-adjacent symmetric conditional probability, and only

requires that q and c appear together in the same document.

Of course, the SCPRank algorithm scores tables, not individual cells. As Figure 5.4

shows, it starts by sending the query to a search engine and extracting a candidate set of

tables. For each table, SCPRank computes a series of per-column scores, each of which is

simply the sum of per-cell SCP scores in the column. A table’s overall score is the maximum

of all of its per-column scores. Finally, the algorithm sorts the tables in order of their scores

and returns a ranked list of relevant tables. In Section 5.5 we show that SCPRank is

time-consuming due to the huge number of required SCP scores, but that its result quality

is very high.

Unfortunately, näıvely computing the SCP scores for SCPRank can pose a runtime

performance issue. The most straightforward method is to use a search engine’s inverted

index to compute the number of indexed documents that contain both q and c. A single

inverted index lookup is equivalent to an in-memory merge-join of “posting lists” - the

integers that represent the documents that contain q and c. This operation can be done

quickly - a classically-designed search engine performs an inverted index lookup for every

Web search. But it is not completely trivial, as each posting list may run in the tens or

109

even hundreds of millions of elements. We must merge a posting list for each token in q and

c, so multiple-term queries or data values are more expensive.

The number of possible unique SCP scores is O(kT k), where T is the number of unique

tokens in the entire Web corpus, and k is the number of tokens in q and c. Because

T is likely to be in the millions, precomputing SCP is not feasible. We are unaware of

any indexing techniques beyond the inverted index for computing the size of a document

set, given terms in those documents. To make matters worse, SCPRank requires a large

number of SCP scores: one for every data value in every extracted candidate table. A single

table can contain hundreds of values, and a single search may elicit hundreds of candidate

tables. Thus, to make SCPRank more tractable, we make two optimizations. First, we

only compute scores for the first r rows of every candidate table. Second, as described in

Section 5.4 below, we substantially reduce the search engine load by approximating SCP

scores on a small subset of the Web corpus.

Clustering

We now turn to the second part of the Search operator, clustering the results by similarity.

Intuitively, we want the tables in the same cluster to be “unionable.” Put another way, they

should represent tables derived from the same relation in some notional mediated schema.

For example, a good cluster that contains the two VLDB PC member tables from Figure 5.1

roughly corresponds to a mediated schema describing all PC members from all tracks across

multiple VLDB conferences.

We frame clustering as a simple similarity distance problem. For a result table t in a

ranked list of tables T , cluster(t, T−t) returns a ranked list of tables in T−t, sorted in order

of decreasing similarity to t. The generic cluster() algorithm, seen in Figure 5.5, computes

dist(t, t′) for every t′ ∈ T − t. Finally, it applies a similarity score threshold that limits the

size of the cluster centered around t. The difference between good and bad cluster results,

i.e., the difference between clusters in which the tables are unionable and those in which

the tables have little to do with each other, lies in the definition for dist().

Our first and simplest dist() function is TextCluster, which is identical to a very

110

1: function cluster(T, thresh):

2: clusters = []

3: for t ∈ T do

4: cluster = singlecluster(t, T, thresh)

5: clusters.append(sizeof(cluster), cluster)

6: end for

7: return clusters.sort()

8:

9: function singlecluster(t, T , thresh):

10: clusteredtables = []

11: for t′ ∈ T do

12: d = dist(t, t′)

13: if d > thresh then

14: clusteredtables.append(d, t′)

15: end if

16: end for

17: return clusteredtables.sort()

Figure 5.5: The generic cluster algorithm framework. Possible implementations of dist() are
TextCluster, SizeCluster, and ColumnTextCluster.

popular and simple document clustering algorithm. TextCluster just computes the tf-idf

cosine distance between the texts of table a and the text of table b. It does not preserve

any column or row information.

Unfortunately, related tables may have few, if any, words in common. As an example,

consider two sets of country names derived from a single underlying table, where one set

covers the countries starting with ”A-M” and the other set covers ”N-Z”. These tables are

two disjoint selections on the overall relation of country names. With no text necessarily in

common, it is difficult to determine whether two data sets are related or not.

While similar tables may not contain overlapping text, data strings from the same data

type will often follow roughly similar size distributions. SizeCluster, the second dist()

function, computes a column-to-column similarity score that measures the difference in

mean string length between them. The overall table-to-table similarity score for a pair of

tables is the sum of the per-column scores for the best possible column-to-column matching.

The best column-to-column matching maximizes the sum of per-column scores.

The final distance metric is ColumnTextCluster. Like SizeCluster, the Column-

111

TextCluster distance between two tables is the sum of the tables’ best per-column match

scores. However, instead of using differences in mean string length to compute the column-

to-column score, ColumnTextCluster computes a tf-idf cosine distance using only text

found in the two columns.

5.3.2 CONTEXT

The Context operator has a very difficult task: it must add data columns to an extracted

table that are suggested by the table’s surrounding text. For example, recall that for a

listing of conference PC members, the conference’s year will generally not be found in each

row of the table - instead, it can be found in the page text itself. When the Octopus user

wants to adorn a table with this information, she only has to indicate the target table T ,

which already contains the necessary extraction-lineage information.

We developed three competing algorithms for Context. SignificantTerms is very

simple. It examines the source page where an extracted table was found and returns the k

terms with the highest tf-idf scores that do not also appear in the extracted data. We hope

that terms that are important to a page, e.g.the VLDB conference year, will be repeated

relatively often within the page in question and thus have a high term-frequency while being

relatively rare on the Web as a whole.

The second algorithm is Related View Partners, or RVP. It looks beyond just the

table’s source page and tries to find supporting evidence on other pages. The intuition is

that some Web pages may have already needed to perform a form of the Context operator

and published the results. Recall that an extracted table of VLDB PC members is likely to

contain (name, institution) data. Elsewhere on the Web, we might find a homepage for

a researcher in the PC member table, identified by a name value. If that homepage lists the

researcher’s professional services, then it might contain explicit structured (conference,

year) data. We can think of the researcher’s professional services data as another view

on a notional underlying mediated-schema relation, which also gave rise to the VLDB PC

member data.

The RVP algorithm is described formally in Figure 5.6 and operates roughly as follows.

112

1: function RVPContext(table, source page):

2: sig terms = getSignificantTerms(source page, table)

3: list of tables = []

4: for row ∈ table do

5: list of tables.append(getRVPTables(row, sig terms))

6: end for

7: terms = all terms that occur in list of tables

8: sort terms in descending order of # of tables each term occurs in

9: return terms

10:

11: function getRVPTables(row, sig terms):

12: tables = SEARCH(row, topk = 5).extractTables()

13: return tables that contain at least one term from sig terms

Figure 5.6: The RVP algorithm.

When operating on a table T , it first obtains a large number of candidate related-view

tables, by using each value in T as a parameter to a new Web search and downloading the

top-10 result pages. There is one such Web search for each cell in T . Because T may have

a very large number of tuples, RVP limits itself to a sample of s rows. In our experiments

below, we used s = 10.

RVP then filters out tables that are completely unrelated to t’s source page, by removing

all tables that do not contain at least one value from SignificantTerms(T). RVP then

obtains all data values in the remaining tables and ranks them according to their frequency

of occurrence. Finally, RVP returns the k highest-ranked values.

Our last algorithm, Hybrid, is a hybrid of the above two algorithms. It leverages

the fact that the SignificantTerms and RVP algorithms are complementary in nature.

SignificantTerms finds context terms that RVP misses, and RVP discovers context terms

that SignificantTerms misses. The Hybrid algorithm returns the context terms that

appear in the result of either algorithm. For the ranking of the context terms, the Hybrid

interleaves the results starting with the first result of the SignificantTerms algorithm.

We show in our experiments that Hybrid outperforms the SignificantTerms and RVP

algorithms.

113

5.3.3 EXTEND

Recall that Extend attempts to adorn an existing table with additional relevant data

columns derived from other extracted data sources. The user indicates a source table T , a

join column c, and a topic keyword k. The result is a table that retains all the rows and

columns of the original source table, with additional columns of row-appropriate data that

are related to the topic.

It is important to note that any Extend algorithm must address two hard data inte-

gration problems. First, it must solve a schema matching problem, described in Rahm and

Bernstein [71]. The task is to verify that new data added by Extend actually focus on the

topic k, even if the terminology from the candidate page or table is different. For example,

it may be that k =publications while an extracted table says papers. Second, it must solve a

reference reconciliation problem, as in Dong et al. [36]. The goal is to ensure that values in

the join column c match up if they represent the same real-world object, even if the string

representation differs. For example, realizing that Alon Halevy and Alon Levy as the same

person but both are different from Noga Alon.

We developed two algorithms for Extend that solve these problems in different ways,

and extract the relevant data from sources on the Web. The algorithms largely reflect two

different notions of what kinds of Web data exist.

The first, JoinTest, looks for an extracted table that is “about” the topic and which has

a column that can join with the indicated join column. Schema matching for JoinTest relies

on a combination of Web search and key-matching to perform schema matching. It assumes

that if a candidate join-table was returned by a search for k, and the source table T and the

candidate are joinable, then it’s reasonable to think that the new table’s columns are relevant

to the Extend operation. The join test in this case eliminates from consideration many

unrelated tables that might be returned by the search engine simply because they appear

on the same page as a high-quality target table. Reference reconciliation for JoinTest is

based on a string edit-distance test.

The JoinTest algorithm assumes that for each Extend operation, there is a single

high-value “joinable” table on the Web that simply needs to be found. For example, it is

114

1: function MultiJoin(column, keyword):

2: urls = []

3: for cell ∈ column do

4: urls += searchengine(cell + keyword)

5: tables = []

6: for url ∈ urls do

7: for table ∈ extract tables(url) do

8: table.setscore(table score(keywords, table))

9: tables.append(table)

10: end for

11: end for

12: end for

13: sort tables

14: clusters = []

15: for table ∈ tables do

16: cluster = makecluster(table)

17: cluster.setscore(join score(table.getScore(),column, cluster))

18: clusters.append(cluster)

19: end for

20: sort clusters

21: return clusters

22:

23: function join score(tableScore, column, cluster):

24: // Weight w is a parameter of the system

25: scoreCount = len(cluster.getUniqueJoinSrcElts())

26: score = scoreCount / len(column)

27: return (w ∗ tableScore) + (1− w) ∗ score

Figure 5.7: The MultiJoin algorithm. Take particular note of the join score() function. The
getUniqueJoinSrcElts() function returns, for a given cluster, the set of distinct cells from the
original query column that elicited tables contained in the cluster. The size of its output, when
normalized by the size of column, measures the degree to which a cluster “covers” data from the
query column.

115

plausible that a source table that describes major US cities could thus be extended with the

city column and the topic keyword mayor. On the other hand, it appears unlikely that we

can use this technique to extend the set of VLDB PC members on the PC member column,

with topic publication; this single table simply does not appear anywhere in our Web

crawl even though the information is available scattered across many different tables.

JoinTest works by finding the table that is “most about k” while still being joinable

to T on the c column. Because Web data is always dirty and incomplete, we can never

expect a perfect join between two tables; instead, we use Jaccardian distance to measure

the compatibility between the values in T ’s column c and each column in each candidate

table. If the distance is greater than a constant threshold t, we consider the tables to be

joinable. All tables that pass this threshold are sorted in decreasing order of relevance to

k, as measured by a traditional Web search query. If there is any extracted table that can

pass the join-threshold, it will be returned and used by Extend.

The second algorithm is MultiJoin. MultiJoin attempts to join each tuple in the

source table T with a potentially-different table. It can thus handle the case when there is

no single joinable table, as with VLDB PC members’ publications. The algorithm resembles

what a human search-user might do when looking to adorn a table with additional informa-

tion. The user could extend a table piecemeal by performing a series of Web searches, one

for each row in the table. Each search would include the the topic-specific keyword (e.g.,

publications) plus the individual value for that row in column c (e.g., a PC member’s name).

The user could then examine the huge number of resulting tables, and check whether any

are both topic-appropriate and effectively join with the value in c. MultiJoin, shown in

detail in Figure 5.7, attempts to automate this laborious process.

MultiJoin addresses the issue of schema matching via the column-matching clustering

algorithm described in Section 5.3.1 above. Multiple distinct tables that are all about the

same topic should appear in the same cluster. For each cluster, MultiJoin computes how

many distinct tuples from the source table T elicited a member of the cluster; the algorithm

then chooses the cluster with the greatest “coverage” of T . This clustering-based approach

is roughly similar to data-sensitive schema-matching techniques, e.g., Doan et al. [35].

Reference reconciliation in MultiJoin is partially solved as a by-product of using a

116

search engine to find a separate table for each joinable-tuple. For example, a search for

“Alon Levy” will yield many of the same results as a search for “Alon Halevy.” This works

for several reasons: pages that embed the tables will sometimes contain multiple useful

labels, as in the “Alon Levy” case here. Also, search engines incorporate incoming anchor

text that will naturally give data on a page multiple aliases. Finally, search engines include

some amount of spelling correction, string normalization, and acronym-expansion.

Note that MultiJoin is similar to the Search search-and-cluster framework, with two

important differences:

1. When generating the list of raw web pages, MultiJoin issues a distinct web search

query for every pair (vc, q), where vc is a value in column c of T . Because of how these

queries are constructed, we can think of each elicited result table as having a “source

join element” to which it is related, i.e., vc.

2. When ranking the resulting clusters, MultiJoin uses a combination of the relevance

score for the ranked table, and a join score for the cluster. The join score counts how

many unique values from the source table’s c column elicited tables in the cluster via

the web search step. This gives higher rank to clusters that extend the source table

T more completely.

5.4 Implementation At Scale

The Octopus system provides users with a new way of interacting deeply with the corpus

of Web documents. As with a traditional search engine, Octopus will require a lot of

hardware and software in order to scale to many users. The main goal of this chapter is to

show that the system can provide good-quality results, not to build the entire Octopus back

end software stack. That said, it is important to see whether Octopus can ever provide

low latencies for a mass audience. In this section, we step through a few of the special

systems problems that Octopus poses beyond traditional relevance-based Web search and

show that with the right infrastructure, building a large-scale Octopus service is feasible.

There are two novel operations executed by the algorithms from the section above,

each of which could reasonably require a new piece of back-end infrastructure software

117

were Octopus to be widely deployed. They include non-adjacent SCP computations

from Search’s SCPRank and multi-query Web searches from the Context’s RVP

algorithm and Extend’s MultiJoin algorithm. All of these steps can be implemented

using standard Web searches using just the hitcounts in the SCPRank case, but this is

not a good solution. Search engines can afford to spend a huge amount of resources in

order to quickly process a single query, but the same is unlikely to be true when a single

Octopus user yields tens of thousands of queries. Some Octopus-specific infrastructure,

however, can hugely reduce the required computational resources. In the first two cases, we

implemented small prototypes for back-end systems. In the final case, we relied exclusively

on approximation techniques to make it computationally feasible.

The first challenge, non-adjacent SCP statistics, are required by Search’s SCPRank

algorithm. Unfortunately, we cannot simply precompute word-pair statistics, as we could

if we focused only on adjacent words; each sampled document in the nonadjacent case

would yield O(w2) unique token-combinations, even when considering just pairs of tokens.

Therefore, we created a “miniature” search engine that would fit entirely in memory for fast

processing. Using about 100 GB of RAM over 100 machines, we searched just a few million

Web pages. We do not require absolute precision from the hitcount numbers, so we saved

memory by representing document sets using Bloom Filters [12]. This solution is usable,

but quantifying how much worse it is than a precise answer is a matter for future work.

The second challenge, multi-query Web searches, arises from the RVP and Mul-

tiJoin algorithms. The Näıve RVP implementation requires rd Web searches, where r

is the number of tables processed by Context, and d is the average number of sampled

non-numeric data cells in each table. For reasonable values of r = 100, d = 30, RVP may

require several thousand search queries. Luckily, RVP computes a score that is applied

to the table as a whole, so it may be reasonable to push d to fairly low values, drastically

reducing the number of searches necessary. Further, as we will see in Section 5.5.3 below,

RVP offers a real gain in quality, but whether it is enough to justify the extra cost of

its Web search load is not clear. Exploring alternate index schemes for RVP is another

interesting area for future work. MultiJoin has a similar, but smaller, problem of issuing

a large number of search queries for each source table. It only needs to issue a single query

118

per row.

5.5 Experiments

We now evaluate the quality of results generated by each of our operators: Search, Con-

text, and Extend. We begin with a description of our query collection technique.

5.5.1 Collecting Queries

It is not obvious how to choose a sample set of queries for testing Octopus. Ideally, we

would have drawn the test queries from real user data. Of course, Octopus is a research

project with no user base beyond its developers, so there is no such data to obtain. We also

considered using query logs from traditional Web search, but only a fraction of searches are

meant to obtain structured data, and any mechanism to choose only the “structured” ones

would have entailed the risk of “cherry-picking” queries that would work well. We do not

know of a popular data-centric application with an appropriate query stream.

So, we chose to use the Amazon Mechanical Turk service to obtain a diverse query load

suggested by Web users. It is a service that allows a requester to post an “intelligence task”

along with an offered payment. Meanwhile, a worker can examine the offered tasks and

choose to perform zero or more of them, earning payment upon completion. Example tasks

include image labeling and text summarization.

We posted an intelligence task that asked each worker to “Suggest [one or two] topics for a

useful data table (e.g., used cars or US presidents).” We also asked each worker to supply

two distinct URLs that provide an example table for the topic. Finally, we also included a

nontechnical description of what makes a good table of data. We paid between twenty-five

and fifty cents per task completed, and all submitted answers are included in our test query

load. We removed all data suggested by one worker who did not even attempt to supply

meaningful support URLs, and removed a few queries that were essentially duplicates. We

otherwise kept the queries exactly as entered by the workers.

Of course, queries suggested by Turk workers may not be representative of what Oc-

topus users will actually enter. But by collecting a test set in this manner, we avoided

formulating queries ourselves, thus engaging in another form of cherry-picking. Also, by

119

- state capitals and largest cities in us

- cigarette use among high school students

- business expenditure on research and development

- international educational exchange in the united states

- usa pizza - currencies of different countries

- fast cars - 2008 beijing olympics

- mlb world series winners - bittorrent clients

- phases of the moon - australian cities

- video games - usa population by state

- used cellphones - science discoveries

- composition of the sun - running shoes

- pain medications - stock quote tables

- company income statements - periodic table of elements

- world’s tallest buildings - north american mountains

- pre production electric vehicles - pga leaderboard

- nba scoreboard - ipod models

- olympus digital slrs - 2008 olympic gold medal winners

- professional wrestlers - exchange rates for us dollar

- fuel consumption - wimbledon champions

- top grossing movies - world religions

- us cities - economy gdp

- car accidents - stocks

- clothing sizes - fifa world cup winners

- nutrition values - dog breeds

- prime ministers of england - country populations

- academy awards - black metal bands

- ibanez guitars - kings of africa

- world interest rates

Table 5.1: List of queries used.

forcing each query to be supported by two example tables, we guaranteed that each sugges-

tion is at least roughly “structured.”

5.5.2 SEARCH

As we described in Section 5.3.1, there are two steps in implementing Search: ranking and

clustering. To compare the different algorithms for each, we used the aforementioned test

set of 52 queries, each representing a starting point for a complex information gathering

120

Algorithm Top 2 Top 5 Top 10

SimpleRank 27% 51% 73%

SCPRank 47% 64% 81%

Table 5.2: Fraction of top-k sets that contain at least one “relevant” table.

task. See Table 5.1 for the list of queries.

Ranking

We ran the ranking phase of Search on each of the above 52 queries, first using the Sim-

pleRank algorithm, and then SCPRank. For each input text query, the system outputs

a ranked list of tables, sorted in order of relevance. We asked two judges, again drawn from

the Amazon Mechanical Turk service, to independently examine each table/query pair and

label the table’s relevance to the query on a scale from 1-5. We mark a table as relevant

only when both examiners give a score of 4 or higher.

We measure a ranking algorithm’s quality by computing the average percentage of “rel-

evant” results in the top-2, top-5, and top-10 emitted query results. Table 5.2 summarizes

our results: on a plausible user-chosen workload, Octopus returns a relevant structured

table within the top-10 hits more than 80% of the time. Almost half the time, there is

a relevant result within the top-2 hits. Note that SCPRank performs substantially bet-

ter than SimpleRank, especially in the top-2 case. The extra computational overhead of

SCPRank clearly offers real gains in result quality.

Clustering

Next, we evaluate the three clustering algorithms described in Section 5.3.1. The clustering

system takes two inputs: a “center” table to cluster around, and a set of cluster candidates.

A good cluster will contain tables that are similar to the center table, in both structure and

data. As mentioned in Section 5.2.3, the component tables of a cluster should be unionable

with few or no modifications. The working Octopus system presents results by invoking

the cluster algorithm once for each item in the ranked table results, with the remaining

121

tables provided as the candidate set. Octopus then takes the resulting clusters and ranks

them according to the average in-cluster relevance score. Without effective clustering, each

resulting table group will be incoherent and unusable.

We tested the competing clustering algorithms using the queries in Table 5.1. We first

issued each query and obtained a sorted list of tables using the SCPRank ranking algo-

rithm. We then chose by hand the “best” table from each result set, and used it as the table

center input to the clustering system. We ignore cluster performance on irrelevant tables;

such tables are often not simply irrelevant to the query, but also of general poor quality,

with few rows and empty values. Further, clusters centered on such tables are likely to be

very low in the final output, and thus never seen by the user.

We assessed cluster quality by computing the percentage of queries in which a k-sized

cluster contains a table that is “highly-similar” to the center. This value is computed for

k = 2, k = 5, and k = 10. This number reveals how frequently clustering helps to find

even a single related table. We determine whether a table pair is “highly-similar” by again

asking two workers from the Amazon Mechanical Turk to rate the similarity of the pair on

a scale from 1 to 5. If both judges give a similarity rating of 4 or higher, the two tables are

marked as highly-similar.

The results in Table 5.3 show that even when the requested cluster has just two elements,

giving the system only two “guesses” to find a table that is similar to the center, Octopus

can generate a useful cluster 70% of the time. If the requested cluster size is larger (k = 10),

then Octopus finds a useful cluster 97% of the time.

There is surprisingly little variance in quality across the algorithms. The good perfor-

mance from the Näıve SizeCluster algorithm is particularly interesting. To make sure

that this “single useful table” test was not too simple, we also computed the overall average

user similarity score for tables in clusters of size k = 2, k = 5, and k = 10. As seen in

Table 5.4, the user quality ratings for a given cluster size are very close to each other.

In the case of clustering, it appears that even very simple techniques are able to obtain

good results. We conjecture that unlike a short text query, a data table is a very elaborately-

described object that leaves relatively little room for ambiguity. It appears that many

similarity metrics will obtain the right answer; unfortunately, no clustering algorithm is a

122

Algorithm k=2 k=5 k=10

SizeCluster 70% 88% 97%

TextCluster 67% 85% 91%

ColumnTextCluster 70% 88% 97%

Table 5.3: Percentage of queries that have at least one table in top-k-sized cluster that is “very
similar” to the cluster center. The percentage should generally increase as k grows, giving the
algorithm more chances to find a good table.

Algorithm k=2 k=5 k=10

SizeCluster 3.17 2.82 2.57

TextCluster 3.32 2.85 2.53

ColumnTextCluster 3.13 2.79 2.48

Table 5.4: Average user similarity scores between cluster center and cluster member, for clusters of
size k. Higher scores are better. The average score should generally decrease as k increases, and the
clustering algorithm must find additional similar tables.

very large consumer of search engine queries and so there is little computational efficiency

to be gained here.

5.5.3 CONTEXT

In this section we compare and contrast the three Context algorithms described above.

To evaluate the algorithms’ performance, we first created a test set of true context values.

First, we again took the first relevant table per query listed in Table 5.1, skipping over any

results where there was either no relevant table or where all relevant tables were single-

column. Next, two judges manually and independently reviewed each table’s source Web

page, noting terms in the page that appeared to be useful context values. Any context value

that was listed by both reviewers was added to the test set. This process left a test set of 27

tables with a non-empty set of test context values. Within the test set, there is a median

of three test context values per table, and thus, per query.

Figure 5.8 shows the results of our experiments for the Context operator. For each

123

algorithm (SignificantTerms, RVP, and Hybrid), we measure the percentage of tables

where a true context value is included in the top 1, top 2 or top 3 of the context terms

generated by the algorithm. Because the Octopus user generally examines Context

results by hand, it is acceptable if Context’s output contains some incorrect terms. The

main goal for Context is to prevent the user from examining the source pages by hand.

We see that Context can adorn a table with useful data from the surrounding text

over 80% of the time, when given 3 “guesses.” Even in the top-1 returned values, Context

finds a useful value more than 60% of the time.

The Näıve SignificantTerms algorithm does a decent, if not spectacular, job. For

example, it finds a true context term in the top 3 results for 70% of the tables. Although

the RVP algorithm does not outperform SignificantTerms, we can see from the Hybrid

algorithm’s performance that RVP is still helpful. Recall that the Hybrid algorithm inter-

leaves the results of the SignificantTerms and RVP algorithms. Although the RVP and

SignificantTerms results are not disjoint, RVP is able to discover new context terms that

were missed by SignificantTerms. For example, looking again at the top-3, the Hybrid

algorithm outperforms SignificantTerms algorithm by more than 16%; thus achieving an

accuracy of 81%.

Even though SignificantTerms does not yield the best output quality, it is efficient and

very easy to implement. Combining it with RVP algorithm results in improved quality,

but because RVP can entail very many search engine queries, deciding between the two is

likely to depend on the amount of computational resources at hand.

5.5.4 EXTEND

When evaluating the performance of Extend algorithms, we can imagine that the combi-

nation of each source tuple in T and the query topic k forms a “question set” that Extend

attempts to answer. We compare JoinTest and MultiJoin by examining what percentage

of T ’s rows were adorned with correct and relevant data. We do not distinguish between

incorrect and nonexistent extensions.

Our test query set is necessarily more limited than the set shown in Table 5.1, many of

124

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

$" %" &"

!
"#
$"
%&
'
()
*"

+#,-."/#0%)1%"%)23*"

4#3,&25*#0"#$"467+89+":(;#25%<3*"

-./0.1.230456789" :;<" =>?7.@"

Figure 5.8: A comparison of the Context algorithms. Shows the percentage of tables
(y-axis) for which the algorithm returns a correct context term within the top-k (x-axis)
context terms.

Description of join column Topic query

countries universities

us states governors

us cities mayors

film titles characters

UK political parties member of parliament

baseball teams players

musical bands albums

Table 5.5: Test queries for Extend, derived from results from queries in Table 5.1.

which do not have much plausible “extra” information. For example, it is unclear how a

user might want to add to the phases of the moon table. Further, the set of useful join

keys is more limited than in a traditional database setting, where a single administrator

has designed several tables to work together. Although numeric join keys are common and

reasonable for a traditional database, in the Web setting they would suggest an implausible

degree of cooperation between page authors. Labels, e.g., place or person names, are more

useful keys for our application. In addition, some table extensions might not be possible

because the data simply does not exist on the Web.

We thus chose a small number of queries from Table 5.1 that appear to be Extend-able.

125

For each, we chose as the source table T the top-ranked human-marked “relevant” table

returned by Search. We chose the join column c and topic query k by hand, opting for

values that appeared most amenable to Extend processing. For example, in the case of

VLDB PC members, c is the name of the reviewer, not the reviewer’s home institution; the

topic query is publications. Table 5.5 enumerates the resulting test set.

The JoinTest algorithm only found extended tuples in three cases - countries, cities,

and political parties. Recall that JoinTest tries to find a single satisfactory join table that

covers all tuples in the source table. In these three cases, 60% of the tuples were extended.

The remaining 40% of tuples could not be joined to any value in the join table. Each source

tuple matched just a single tuple in the join table, except in the political parties case, where

multiple matches to the party name are possible.

In contrast, the MultiJoin algorithm found Extend data for all of the query topics.

On average, 33% of the source tuples could be extended. This rate of tuple-extension is

much lower than in cases where JoinTest succeeds, but arguably shows the flexibility of

MultiJoin’s per-tuple approach. Tables that are difficult to extend will be impossible to

process with JoinTest, as a complete single table extension is simply unlikely to exist for

many queries. With MultiJoin, fewer rows may be extended, but at least some data can

be found.

The most remarkable difference between the two algorithms, however, is the sheer num-

ber of extensions generated. As mentioned, JoinTest generally found a single extension for

each source tuple. In contrast, MultiJoin finds an average of 45.5 correct extension values

for every successfully-extended source tuple. For example, MultiJoin finds 12 albums by

led zeppelin and 113 distinct mayors for new york. In this latter case, mayor extensions to

new york obviously reflect mainly past office-holders. However, detecting the current mayor

is an interesting area for future research.

In retrospect, this difference between JoinTest and MultiJoin is not surprising - if

JoinTest could extend large numbers of tuples in a single table and simultaneously find

many different values for each source tuple, it would suggest the existence of extremely

massive and comprehensive tables. MultiJoin only requires that topic-and-tuple relevant

data be discoverable on some page somewhere, not that all the source tuples will have

126

all their topic data in exactly the same place. Because it appears that choosing between

JoinTest and MultiJoin should depend on the underlying nature of the data being joined,

in the future we would like to combine them into a single algorithm; for example, we might

first attempt JoinTest and then move to MultiJoin if JoinTest fails to find a “good

enough” joinable table.

Experimental Summary

Overall, our experiments show that it is possible to obtain high-quality results for all three

Octopus operators discussed here. Even with imperfect outputs, Octopus already im-

proves the productivity of the user, as generally the only alternative to these operators is

to manually compile the data.

There are also promising areas for future research. Not only are there likely gains in

output quality and algorithmic runtime performance, there are also interesting questions

about reasoning about the data, as in the case of finding New York’s current mayor. There

has been some work by Kok and Domingos [53] in the textual information extraction area

that we would like to build on using our system.

5.6 Related Work

Data integration on the Web is an increasingly popular area of work. The Yahoo! Pipes

project [88] allows the user to graphically describe a “flow” of data, but it works only

with structured data feeds and requires a large amount of work to describe data operations

and schema matches between sources. There are other mashup tools available, including

the Marmite system [86]. Karma [81] automatically populates a user’s database, but still

requires sources with formal declarations.

The CIMPLE system [31], mentioned in Chapter 2, allows administrators to design

“community web sites” that incorporate data from many other sources. Its Web-centric data

integration task appears very similar to the one faced by Octopus. However, CIMPLE’s

integration scenario is very traditional compared to the one that Octopus pursues: data

integrations are assumed to be relatively static and very expensive to compute. In contrast,

we believe that Octopus integrations will be quick to compile and easy to execute.

127

Raman and Hellerstein’s Potter’s Wheel [72] emphasizes live interaction between a data

cleaner and the system. They offer several special cleaning operators, many of which are

useful in a web setting, but do nothing to solve Web-centric problems such as data-finding.

5.7 Conclusions

We described the Octopus, a system for Structured Web data integration. We also pre-

sented the three novel Octopus operators, which observe our design criteria for Structured

Web data tools. Unlike traditional data integration systems, the Search operator enables

a user to find data sources indirectly by keyword, allowing for domain-scalability with re-

spect to the large number of tables under management. The extraction-oriented Context

operator allows the user to find relevant information from a data table’s source Web page.

The Extend allows users to express join requests over Structured Web sources, even when

the join target is indicated only via keyword, again illustrating the importance of domain-

scalability.

All of these operators are domain-independent and are built on the domain-independent

extraction infrastructure from Chapter 4. Finally, we presented algorithms for all of these

operators and showed that they can be implemented in computationally efficient ways,

although there is room for future improvement in this area with certain algorithms.

We have now presented the three major parts of our Structured Web tool suite - Tex-

tRunner, WebTables, and Octopus. In the next and final chapter, we discuss areas for

future work and conclude the dissertation.

128

Chapter 6

CONCLUSIONS AND FUTURE WORK

This dissertation has described the challenges associated with managing Structured Web

data, and presented three working Structured Web data systems: TextRunner, WebTa-

bles, and Octopus. These projects make substantial steps toward addressing the chal-

lenges of the Structured Web, which we summarize in Section 6.1 below. They also point the

way to interesting future work, involving extensions to each system as well as new overall

approaches. We discuss this future work in Section 6.2.

6.1 Contributions

In Chapter 1, this dissertation introduced four design criteria for Structured Web data

management tools. We now briefly examine them and discuss the contributions made by

three different systems that embody those criteria.

First, because we cannot assume that authors on the Web will ever agree to any standard

format for data publishing, the tools should be extraction-focused. An extraction-focused

tool finds structured data in whatever format it may currently be embodied, even a messy

or incomplete one. Second, because of the number of topics on the Web and the Web’s

constant evolution, domain-dependent extractors or management techniques will inevitably

miss interesting data. The tools must be domain-independent in order to apply to the Web’s

full breadth. Third, because there are so many distinct domains under management, the

systems must be domain-scalable, requiring no undue amount of user work for each domain.

Finally, the tools must be computationally-efficient enough to process data at the Web’s

size. It is difficult to imagine a system that ignores one or more of these criteria and yet

successfully manages the entire Structured Web.

129

6.1.1 TextRunner Contributions

TextRunner is a domain-independent, domain-scalable, and computationally-efficient in-

formation extractor that operates over natural language Web text. The key contribution of

the TextRunner system is its architecture, which allows us to extract all of the facts in

a corpus in a single pass. It thus obtains a performance advantage over competing systems

of several orders of magnitude. We described its three-part design:

• The Self-Supervised Learner uses a deep natural language parse and some Tex-

tRunner heuristics to distinguish good from bad extractions. This process yields

high-quality results and is domain-independent. However, it is also extremely expen-

sive, so we instead run this parse/heuristic combination over just a small random

portion of the corpus. Instead of using these results directly, they are used to build a

training dataset for a much more efficient extraction classifier.

• The Single-Pass Extractor is that inexpensive classifier applied to the entire corpus.

• The Redundancy-Based Assessor uses frequency counts to improve the Single-Pass

Extractor’s output quality.

These three steps allow TextRunner to efficiently obtain extractions from natural

language Web text across many domains. It achieved a performance advantage of several

orders of magnitude in comparison to the competing KnowItAll system, which requires

the enumerated target relations ahead of time. TextRunner does so while retaining similar

extraction quality.

6.1.2 WebTables Contributions

The WebTables system introduced three components for managing the relational infor-

mation embedded in Web HTML tables. The first was a domain-independent extraction

mechanism for recovering high-quality relations from the mass of HTML tables. We showed

that this extraction-oriented system obtained results for table extraction with quality similar

130

to other domain-independent extractors; it also enabled us to assemble the largest corpus

of independent databases that we know of, by several orders of magnitude.

The second component was a table search engine that allowed a user to find extracted

data in a domain-scalable way. We demonstrated that our search system retrieved tables

with substantially better result quality than the Google commercial search engine.

Finally, we used the extracted tables to compile an unique data resource: the attribute

correlation statistics database, or ACSDb. The ACSDb allowed us to construct several

novel data-oriented services, such as synonym finding and schema autocomplete. Together,

these three elements made major steps toward managing the massive set of tabular datasets

available on the Web.

6.1.3 Octopus Contributions

Octopus introduced three novel operators for performing data integration among extracted

Structured Web data tables. The domain-scalable Search operator enables a user to find

data sources indirectly by keyword, using both relevance-ranking and clustering techniques.

The extraction-oriented and domain-independent Context uses hints from the data tables

and the user to extract relevant data values from each data table’s source Web page. The

Extend allows users to express join requests over the extracted tables. By allowing users

to indicate the join target via keyword, Extend fulfills the goal of domain-scalability. We

also provided computationally-efficient algorithms for implementing these operators.

We showed that each operator can obtain high-quality results on real Web data, across an

independently-suggested and evaluated test set. The end result of Octopus was a system

that allows a user to describe and execute a data integration task involving potentially

dozens of sites drawn from a set of hundreds of millions. Because of the power of the

Octopus operators, the user can do so without any professional training and using just a

handful of clicks.

6.2 Future Work

Although each Structured Web project in this thesis has made substantial contributions,

each has remaining weaknesses that can be improved in future work. Also, the experience

131

gained through working with all three systems suggests several brand-new directions not

tied to any one piece of preexisting work.

6.2.1 TextRunner

Michele Banko continued the extraction and linguistic work in TextRunner [8, 5], in

particular focusing on replacements for the Naive Bayes Classifier that yielded improved

extraction quality. However, there are areas where the TextRunner architecture could

also be improved. One ripe target for future work is TextRunner’s “single-sentence as-

sumption,” wherein each extracted tuple must be derived from a single standalone sentence.

Although the model is simple and avoids many problems, it also leaves too much information

behind that is obvious to a human reader. This is not surprising - natural language sen-

tences are written to appear in an ordered stream, and a given sentence is often only sensible

in light of the sentences that came before. As mentioned in Chapter 3, the single-sentence

assumption strongly limits the complexity of a tuple that TextRunner can reasonably

expect to obtain.

By allowing the author more space to describe an idea, tuples that are derived from

multiple sentences could be much more complex. For example, timestamped tuples would

probably be easier to obtain. It should also increase the triple yield, by admitting sentences

that contain anaphora that is locally-resolvable. For example, the following text might yield

two tuples instead of just one:

Colin Powell went to Brazil. He is a Republican.

Unfortunately, processing the multi-sentence text would be substantially more difficult.

The current TextRunner translates from text to clean entities and relations by applying

semantically-charged heuristics to the linguistic information. These heuristics are strongly

tied to a simple declarative fact model that is well-matched to single English-language

sentences. Processing multiple sentences would entail a much more complicated set of

heuristics, which would cover not just anaphor resolution and object reconciliation, but also

inter-sentence notions such as time and causality. All of these problems are major research

questions in Natural Language Processing, making future work along these lines seem quite

132

daunting. However, it may be possible to use the scale of Web data and clever use of

frequencies to make progress in this area.

6.2.2 WebTables

There are two major directions for future work in WebTables.

The first is to examine the WebTables relation search engine application. Ranking may

be improved by incorporating a stronger signal of source-page quality (such as PageRank).

We currently include page quality information only very indirectly, by using the page ranking

given by a traditional non-table-aware search engine. A separate and very exciting direction

is to expose additional structured operations in the search engine results page. For example,

a system that automatically computes relevant visualizations, a demonstration of which can

be seen in Figure 4.7, would dramatically improve access to a very useful data management

tool.

The second direction is to expand work with the ACSDb-based applications into a

larger class of semantic services that can serve as infrastructure for other data-oriented

applications. The schema autocomplete and synonym-generation systems are two examples.

It should be possible to construct several other services, as well:

• Given a name of an attribute, the system should return a set of values that could

plausibly populate a column with the same name. Such a system could be useful for

testing data quality in databases; it could also be used to automatically fill out forms

in order to surface Deep Web content.

• Given a set of data, the system should return a schema that fits the data well. This

would be useful in “schema-light” data scenarios like spreadsheets, where the data

may come before any rigorous data design.

• Given an entity, the system should return a set of properties associated with the

entity. For example, given University-of-Washington, the system should return its

location, date of founding, list of departments, etc. Such a service would be useful for

query expansion.

133

Clearly, these semantic services will require looking at the extracted tabular content as

well as the schema information.

6.2.3 Octopus

Improvements to Octopus fall into two major categories: improved algorithms for interact-

ing with the existing system, and additional reasoning techniques to apply to the managed

data.

An important step for Octopus is to enable entirely interactive-speed user operations.

Currently, some algorithms are computationally very intensive and can take up to a few

minutes. For non-adjacent SCP statistics, used by the SCPRank algorithm, the system

requires that the data be entirely memory-resident for performance reasons. Even with a

budget of 100GB of RAM, the entire Web statistics are too large; Octopus approximates

these statistics by using a subset of the overall corpus as well as noisy Bloom filters. In the

future we should quantify the tradeoff between memory size and result quality.

The RVP algorithm, which finds join relationships between extracted tables, also poses

substantial performance problems. Research into join-indexing techniques may be very

effective at improving the RVP runtime.

Finally, it would be interesting to examine the semantics of Octopus data in more detail.

For example, recall the mayor of new york join operation in Section 5.5.4 that yielded 113

distinct mayors; obviously, there are not 113 current mayors of New York City. If the

system could automatically detect when data is temporally-sensitive, it could present those

113 mayors in a way that makes the time relationship obvious. There may be other useful

relationships to detect, such as many-to-one relationships (e.g., cities and their containing

state) or functional relationships (e.g., a state and its capital city).

6.2.4 Multiple Extractors

One of the central assumptions of this dissertation has been that domain-independent ex-

traction is sufficient to obtain a comprehensive version of the data in the Structured Web.

If this were true, then it should be possible to take any two domain-independent extractors,

134

apply them each to crawls of the Web that are roughly similar, and obtain roughly similar

results.

However, there is some evidence that suggests this is not the case. Table 6.1(a) shows the

ten most-popular textual relations extracted from TextRunner data. They focus largely

on biographical and “person-centric” data. Table 6.1(b) shows the topics of the ten most-

popular relational schemas from the WebTables data. They focus mainly on technical

and transactional-style information. The stark difference in data types between the two

lists suggests something that is quite plausible: that when a user chooses a topic, she may

also choose an appropriate data model with which to express the data.

(a) TextRunner

be/is

ask/call

arrive/come/go

join/lead

born-in

created-in

is-not

is-city-in

beat/defeat

located-in

(b) WebTables

web access logs

file listings

forum posts

album listings

phone numbers

search queries

product catalog

real estate listing

auction data

manufacturing data

Table 6.1: On the left, the most popular relation strings extracted by TextRunner. On
the right, the most popular topics for schemas from WebTables-extracted relations. Even
though we ran two domain-independent extractors on a large general web crawl, the outputs
are very different.

The initial goal for future work in this area must be to quantify more finely how much

these two extractors agree or disagree. If the extractors truly diverge as much as they appear

to, then obtaining a truly comprehensive Structured Web data set will be much harder than

it first appeared. One possible solution is to operate many extractors in parallel and combine

their results, an approach we first sketched in Cafarella [19]. Combining extractions from

135

multiple sources entails a very large deduplication challenge. There has been substantial

recent work in this area which may apply, e.g., Arasu et al. [3], Benjelloun et al. [10], and

Dong et al. [36].

6.2.5 Extractor Execution Model

All of the extractors in this dissertation have followed a simplistic execution model: each

extractor runs over source material, computes its output, and terminates. There are several

weaknesses with this approach that we would like to fix in the future.

First, real-world content is updated over time and so there may be quality or efficiency

advantages in designing extractors that “remember” previous executions. At the very least,

it seems hugely wasteful to re-extract data from Web pages that remain unchanged or change

in only minor ways in between extractor executions.

Second, in many deployment scenarios, users will want to correct the extraction errors

that arise from even the best systems. These cannot simply be applied to a previously-

extracted database: it will be enormously frustrating for users if their corrections are clob-

bered by future extraction runs. In addition, the extractor should incorporate the user

feedback for future runs. One approach to solving both problems is to use a much more

sophisticated extraction model, in which database facts are backed by extractions from a

large number of sources, both automated and human. In many aspects, such a system would

resemble the multiextractor problem mentioned above.

We experimented to a small degree with extractions from multiple sources in the ExDB

system [24]. The motivation of ExDB was to allow general queries over data extracted from

a small number of extraction mechanisms - it was a very simple version of the multiextractor

problem. However, our experience with ExDB may offer lessons for future work involving

multiple extractors as well as human/extractor interaction.

ExDB allowed users to write Datalog-style queries over extractions stored in a proba-

bilistic database; these extractions came from KnowItAll, TextRunner, and a mech-

anism for finding attribute synonyms. Unlike queries written over a traditional database,

the user did not have to know about a schema ahead of time - she could simply use a bi-

136

nary predicate in the query and assume that ExDB’s large extracted dataset would contain

information for that predicate. The probabilities associated with each extraction allowed

the system to incorporate multiple sources of information when computing each poten-

tial output tuple. For example, a tuple that lists Edison as a scientist and as having

invented the lightbulb might have a probability that is the product of two extractions:

the TextRunner-style fact triple and the KnowItAll-derived scientist hypernym.

The system had two major weaknesses that any future work will have to address. Both

problems involved the “synthesized” type of tuple mentioned above. First, even though the

concrete stored tuples had probabilities that appeared to be accurate, and ExDB’s proba-

bilistic inference method was correct, the synthesized tuples often suffered from inaccurate

probabilities. It appears that this problem was at least partly due to an overly-simplistic

probabilistic model, which treated each individual concrete tuple as an independent event.

Thus, a “wide” output tuple that combined many concrete source tuples would often have

a low probability, simply by virtue of being the product of a large number of terms that

were close to, but less than, 1. A clear area to explore is a model that does not treat all

extractions as independent, particularly if the extractions are derived from the same source

document or website.

The second major problem with ExDB was the computational burden of computing the

answer to a query. Even simple queries on the extraction database (compiled from just 90M

pages) can take over a minute to run. Luckily, the domain area may offer a straightforward

solution - it is not clear that users can distinguish between the quality of two extractions

that differ quite substantially in their probabilities. The output of an extraction inference

system like ExDB, whether run on its own; embedded inside a multiextraction system; or

as the core of an extractor/user interaction system; may be robust to inferred probabilities

that are very roughly approximated. We would like to examine improving query processing

time by aggressively limiting the accuracy of the computed probabilities, and examining the

impact on the above-mentioned applications.

137

BIBLIOGRAPHY

[1] Eugene Agichtein, Luis Gravano, Viktoriya Sokolovna, and Aleksandr Voskoboynik.
Snowball: A Prototype System for Extracting Relations from Large Text Collections.
In SIGMOD Conference, 2001.

[2] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system for keyword-based search
over relational databases. In ICDE, 2002.

[3] Arvind Arasu, Christopher Ré, and Dan Suciu. Large-scale deduplication with con-
straints using dedupalog. In ICDE, 2009.

[4] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary G. Ives. Dbpedia: A nucleus for a web of open data. In ISWC/ASWC, pages
722–735, 2007.

[5] Michele Banko. Open Information Extraction for the Web. PhD thesis, University of
Washington, Seattle, 2009.

[6] Michele Banko, Michael J. Cafarella, Stephen Soderland, Matthew Broadhead, and
Oren Etzioni. Open Information Extraction from the Web. In IJCAI, pages 2670–
2676, 2007.

[7] Michele Banko and Oren Etzioni. Strategies for lifelong knowledge extraction from the
web. In K-CAP, pages 95–102, 2007.

[8] Michele Banko and Oren Etzioni. The tradeoffs between traditional and open relation
extraction. In HLT-NAACL, 2008.

[9] Siegfried Bell and Peter Brockhausen. Discovery of data dependencies in relational
databases. In European Conference on Machine Learning, 1995.

[10] Omar Benjelloun, Hector Garcia-Molina, David Menestrina, Qi Su, Steven Euijong
Whang, and Jennifer Widom. Swoosh: a generic approach to entity resolution. VLDB
J., 2009.

[11] Philip A. Bernstein. Applying model management to classical meta data problems. In
CIDR, 2003.

[12] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422–426, 1970.

138

[13] Philip Bohannon, Srujana Merugu, Cong Yu, Vipul Agarwal, Pedro DeRose, Arun Iyer,
Ankur Jain, Vinay Kakade, Mridul Muralidharan, Raghu Ramakrishnan, and Warren
Shen. Purple sox extraction management system. SIGMOD Record, 37(4):21–27, 2008.

[14] Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
Freebase: a collaboratively created graph database for structuring human knowledge.
In SIGMOD Conference, pages 1247–1250, 2008.

[15] Charles P. Bourne and Trudi Bellardo Hahn. A History of Online Information Services,
1963-1976. The MIT Press, 2003.

[16] Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, and Jeffrey Dean. Large
language models in machine translation. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Language
Learning, pages 858–867, 2007.

[17] Eric Brill and Grace Ngai. Man* vs. machine: A case study in base noun phrase
learning. In ACL, 1999.

[18] Sergey Brin. Extracting Patterns and Relations from the World Wide Web. In WebDB,
pages 172–183, 1998.

[19] Michael J. Cafarella. Extracting and querying a comprehensive web database. In CIDR,
2009.

[20] Michael J. Cafarella, Doug Downey, Stephen Soderland, and Oren Etzioni. Knowitnow:
Fast, scalable information extraction from the web. In HLT/EMNLP, 2005.

[21] Michael J. Cafarella, Alon Halevy, and Nodira Khoussainova. Data Integration for the
Relational Web. PVLDB, 2(1), 2009.

[22] Michael J. Cafarella, Alon Y. Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang.
WebTables: Exploring the Power of Tables on the Web. PVLDB, 1(1):538–549, 2008.

[23] Michael J. Cafarella, Alon Y. Halevy, Yang Zhang, Daisy Zhe Wang, and Eugene Wu.
Uncovering the Relational Web. In WebDB, 2008.

[24] Michael J. Cafarella, Christopher Re, Dan Suciu, and Oren Etzioni. Structured query-
ing of web text data: A technical challenge. In CIDR, pages 225–234, 2007.

[25] H. Chen, S. Tsai, and J. Tsai. Mining tables from large scale html texts. In 18th Inter-
national Conference on Computational Linguistics (COLING), pages 166–172, 2000.

139

[26] Peter P. Chen. The entity-relationship model - toward a unified view of data. Trans-
actions on Database Systems, 1(1):9–36, 1976.

[27] Kenneth Ward Church and Patrick Hanks. Word association norms, mutual informa-
tion, and lexicography. In Proceedings of the 27th Annual Association for Computa-
tional Linguistics, 1989.

[28] CODASYL: Feature Analysis of Generalized Data Base Management Systems. ACM,
May 1971.

[29] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,
13(6):377–387, 1970.

[30] J Ferreira da Silva and G. P. Lopes. A local maxima method and a fair dispersion nor-
malization for extracting multi-word units from corpora. Sixth Meeting on Mathematics
of Language, 1999.

[31] Pedro DeRose, Warren Shen, Fei Chen, AnHai Doan, and Raghu Ramakrishnan. Build-
ing structured web community portals: A top-down, compositional, and incremental
approach. In VLDB, pages 399–410, 2007.

[32] Pedro DeRose, Warren Shen, Fei Chen, Yoonkyong Lee, Douglas Burdick, AnHai Doan,
and Raghu Ramakrishnan. Dblife: A community information management platform
for the database research community (demo). In CIDR, pages 169–172, 2007.

[33] Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Y. Halevy, and Pedro Domin-
gos. imap: Discovering complex mappings between database schemas. In SIGMOD
Conference, 2004.

[34] AnHai Doan, Pedro Domingos, and Alon Y. Halevy. Reconciling schemas of disparate
data sources: A machine-learning approach. In SIGMOD Conference, 2001.

[35] AnHai Doan, Pedro Domingos, and Alon Y. Halevy. Reconciling schemas of disparate
data sources: A machine-learning approach. In SIGMOD Conference, pages 509–520,
2001.

[36] Xin Dong, Alon Y. Halevy, and Jayant Madhavan. Reference reconciliation in complex
information spaces. In SIGMOD Conference, pages 85–96, 2005.

[37] Doug Downey, Oren Etzioni, and Stephen Soderland. A probabilistic model of redun-
dancy in information extraction. In IJCAI, pages 1034–1041, 2005.

[38] Hazem Elmeleegy, Jayant Madhavan, and Alon Halevy. Harvesting Relational Tables
from Lists on the Web. PVLDB, 1(3), 2009.

140

[39] Oren Etzioni, Michael J. Cafarella, Doug Downey, Stanley Kok, Ana-Maria Popescu,
Tal Shaked, Stephen Soderland, Daniel S. Weld, and Alexander Yates. Web-Scale
Information Extraction in KnowItAll: (Preliminary Results). In WWW, pages 100–
110, 2004.

[40] Oren Etzioni, Michael J. Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked,
Stephen Soderland, Daniel S. Weld, and Alexander Yates. Unsupervised named-entity
extraction from the web: An experimental study. Artif. Intell., 165(1):91–134, 2005.

[41] Marc Friedman, Alon Y. Levy, and Todd D. Millstein. Navigational plans for data
integration. In AAAI/IAAI, pages 67–73, 1999.

[42] Wolfgang Gatterbauer, Paul Bohunsky, Marcus Herzog, Bernhard Krüpl, and Bern-
hard Pollak. Towards domain-independent information extraction from web tables.
In Proceedings of the 16th International World Wide Web Conference (WWW 2007),
pages 71–80, 2007.

[43] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali
Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub totals. Data Min. Knowl. Discov.,
1(1):29–53, 1997.

[44] Alon Y. Halevy, Oren Etzioni, AnHai Doan, Zachary G. Ives, Jayant Madhavan, Luke
McDowell, and Igor Tatarinov. Crossing the structure chasm. In CIDR, 2003.

[45] Bin He, Mitesh Patel, Zhen Zhang, and Kevin Chen-Chuan Chang. Accessing the deep
web. Commun. ACM, 50(5):94–101, 2007.

[46] Bin He, Zhen Zhang, and Kevin Chen-Chuan Chang. Knocking the door to the deep
web: Integration of web query interfaces. In SIGMOD Conference, pages 913–914,
2004.

[47] Joseph M. Hellerstein, Michael Stonebraker, and James R. Hamilton. Architecture of
a database system. Foundations and Trends in Databases, 1(2):141–259, 2007.

[48] V. Hristidis and Y. Papakonstantinou. Discover: Keyword search in relational
databases. In VLDB, 2002.

[49] Gjergji Kasneci, Fabian M. Suchanek, Georgiana Ifrim, Shady Elbassuoni, Maya Ra-
manath, and Gerhard Weikum. Naga: harvesting, searching and ranking knowledge.
In SIGMOD Conference, pages 1285–1288, 2008.

[50] Gjergji Kasneci, Fabian M. Suchanek, Georgiana Ifrim, Maya Ramanath, and Gerhard
Weikum. Naga: Searching and ranking knowledge. In ICDE, pages 953–962, 2008.

141

[51] Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In ACL, pages
423–430, 2003.

[52] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM,
46(5):604–632, 1999.

[53] Stanley Kok and Pedro Domingos. Extracting semantic networks from text via rela-
tional clustering. In ECML/PKDD (1), pages 624–639, 2008.

[54] Nicholas Kushmerick, Daniel S. Weld, and Robert B. Doorenbos. Wrapper induction
for information extraction. In IJCAI (1), pages 729–737, 1997.

[55] Dekang Lin and Patrick Pantel. Dirt: Discovery of inference rules from text. In KDD,
2001.

[56] Jayant Madhavan, Philip A. Bernstein, AnHai Doan, and Alon Y. Halevy. Corpus-
based schema matching. In ICDE, 2005.

[57] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema matching
with cupid. In VLDB, 2001.

[58] Jayant Madhavan, Alon Y. Halevy, Shirley Cohen, Xin Luna Dong, Shawn R. Jeffery,
David Ko, and Cong Yu. Structured data meets the web: A few observations. IEEE
Data Eng. Bull., 29(4):19–26, 2006.

[59] Jayant Madhavan, David Ko, Lucja Kot, Vignesh Ganapathy, Alex Rasmussen, and
Alon Y. Halevy. Google’s deep web crawl. PVLDB, 1(2):1241–1252, 2008.

[60] C. Manning and H. Schütze. Foundations of Statistical Natural Language Processing.
MIT Press, 1999.

[61] Imran R. Mansuri and Sunita Sarawagi. Integrating unstructured data into relational
databases. In ICDE, 2006.

[62] Microsoft Popfly. http://www.popfly.com/.

[63] George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39–
41, 1995.

[64] Renee Miller and Periklis Andritsos. Schema discovery. IEEE Data Eng. Bull.,
26(3):40–45, 2003.

[65] Ion Muslea. Extraction patterns for information extraction tasks: A survey. In In
AAAI-99 Workshop on Machine Learning for Information Extraction, pages 1–6, 1999.

142

[66] Ion Muslea, Steven Minton, and Craig A. Knoblock. Hierarchical wrapper induction
for semistructured information sources. Autonomous Agents and Multi-Agent Systems,
4(1/2):93–114, 2001.

[67] Grace Ngai and Radu Florian. Transformation based learning in the fast lane. In
NAACL, 2001.

[68] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web, 1999.

[69] G. Penn, J. Hu, H. Luo, and R. McDonald. Flexible web document analysis for delivery
to narrow-bandwidth devices. In International Conference on Document Analysis and
Recognition (ICDAR01), pages 1074–1078, 2001.

[70] Peter Pirolli, James E. Pitkow, and Ramana Rao. Silk from a sow’s ear: Extracting
usable structures from the web. In CHI, pages 118–125, 1996.

[71] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema
matching. VLDB J., 10(4):334–350, 2001.

[72] Vijayshankar Raman and Joseph M. Hellerstein. Potter’s wheel: An interactive data
cleaning system. In VLDB, pages 381–390, 2001.

[73] Ellen Riloff. Automatically constructing a dictionary for information extraction tasks.
In AAAI, pages 811–816, 1993.

[74] Gerard Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Commun. ACM, 18(11):613–620, 1975.

[75] Warren Shen, Pedro DeRose, Robert McCann, AnHai Doan, and Raghu Ramakrishnan.
Toward best-effort information extraction. In SIGMOD Conference, pages 1031–1042,
2008.

[76] Yusuke Shinyama and Satoshi Sekine. Preemptive information extraction using unre-
stricted relation discovery. In HLT-NAACL, 2006.

[77] Stephen Soderland. Learning to extract text-based information from the world wide
web. In Proceedings of the Third International Conference on Knowledge Discovery
and Data Mining (KDD-97), 1997.

[78] Michael Stonebraker and Joseph M. Hellerstein, editors. Readings in Database Systems,
Fourth Edition. The MIT Press, 2005.

143

[79] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic
knowledge. In WWW, pages 697–706, 2007.

[80] Beth M. Sundheim and Nancy A. Chinchor. Survey of the message understanding
conferences. In HLT ’93: Proceedings of the workshop on Human Language Technology,
pages 56–60, Morristown, NJ, USA, 1993. Association for Computational Linguistics.

[81] Rattapoom Tuchinda, Pedro A. Szekely, and Craig A. Knoblock. Building data inte-
gration queries by demonstration. In Intelligent User Interfaces, pages 170–179, 2007.

[82] Peter D. Turney. Mining the web for synonyms: Pmi-ir versus lsa on toefl. In ECML,
pages 491–502, 2001.

[83] Peter D. Turney. Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL.
CoRR, 2002.

[84] Yalin Wang and Jianying Hu. A machine learning based approach for table detection
on the web. In WWW, pages 242–250, 2002.

[85] I.H. Witten and E. Frank. Data Mining: Practical machine learning tools and tech-
niques. Morgan Kaufman, San Francisco, 2nd edition edition, 2005.

[86] Jeffrey Wong and Jason I. Hong. Making mashups with marmite: towards end-user
programming for the web. In CHI, pages 1435–1444, 2007.

[87] S.K.M. Wong, C.J. Butz, and Y. Xiang. Automated database schema design using
mined data dependencies. Journal of the American Society of Information Science,
49(5):455–470, 1998.

[88] Yahoo Pipes. http://pipes.yahoo.com/pipes/.

[89] Cong Yu and H. V. Jagadish. Schema summarization. In VLDB, pages 319–330, 2006.

[90] R. Zanibbi, D. Blostein, and J.R. Cordy. A survey of table recognition: Models,
observations, transformations, and inferences, 2003.

