
A Search Engine for Natural Language Applications

Michael J. Cafarella
Department of Computer Science and

Engineering
University of Washington
Seattle, WA 98195 U.S.A.

mjc@cs.washington.edu

Oren Etzioni
Department of Computer Science and

Engineering
University of Washington
Seattle, WA 98195 U.S.A.

etzioni@cs.washington.edu

ABSTRACT
Many modern natural language-processing applications uti-
lize search engines to locate large numbers of Web docu-
ments or to compute statistics over the Web corpus. Yet
Web search engines are designed and optimized for simple
human queries—they are not well suited to support such ap-
plications. As a result, these applications are forced to issue
millions of successive queries resulting in unnecessary search
engine load and in slow applications with limited scalability.

In response, this paper introduces the Bindings Engine
(be), which supports queries containing typed variables and
string-processing functions. For example, in response to
the query “powerful 〈noun〉” be will return all the nouns
in its index that immediately follow the word “powerful”,
sorted by frequency. In response to the query “Cities such
as ProperNoun(Head(〈NounPhrase〉))”, be will return a list
of proper nouns likely to be city names.

be’s novel neighborhood index enables it to do so with
O(k) random disk seeks and O(k) serial disk reads, where k

is the number of non-variable terms in its query. As a result,
be can yield several orders of magnitude speedup for large-
scale language-processing applications. The main cost is a
modest increase in space to store the index. We report on
experiments validating these claims, and analyze how be’s
space-time tradeoff scales with the size of its index and the
number of variable types. Finally, we describe how a be-
based application extracts thousands of facts from the Web
at interactive speeds in response to simple user queries.

Categories and Subject Descriptors
H.3.1 [Information Systems]: Content Analysis and In-
dexing; H.3.3 [Information Systems]: Information Search
and Retrieval; E.2 [Data]: Data Storage Representations

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Search engine, indexing, variables, query, corpus, language,
information extraction

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

1. INTRODUCTION AND MOTIVATION
Modern Natural Language Processing (NLP) applications

perform computations over large corpora. With increasing
frequency, NLP applications use the Web as their corpus
and rely on queries to commercial search engines to support
these computations [21, 10, 11, 8]. But search engines are
designed and optimized to answer people’s queries, not as
building blocks for NLP applications. As a result, the ap-
plications are forced to issue literally millions of queries to
search engines, which can overload search engines, and limit
both the speed and scalability of the applications.

In response, Google has created the “Google API” to
shunt programmatic queries away from Google.com and has
placed hard quotas on the number of daily queries a program
can issue to the API. Other search engines have also intro-
duced mechanisms to block programmatic queries, forcing
applications to introduce “courtesy waits” between queries
and to limit the number of queries they issue.

Having a “private” search engine would enable an NLP
application to issue a much larger number of queries quickly,
but efficiency is still a problem. To support the application,
each document that matches a query has to be retrieved
from a random location on a disk. Thus, the number of ran-
dom disk seeks scales linearly with the number of documents
retrieved.1 As index sizes grow, the number of matching
documents would tend to increase as well. Moreover, many
NLP applications require the extraction of strings matching
particular syntactic or semantic types from each page. The
lack of NLP type data in the search engine’s index means
that many pages are fetched and processed at query time
only to be discarded as irrelevant.

We now consider two specific NLP applications to illus-
trate the sorts of computations they perform. Consider,
first, Turney’s widely used PMI-IR algorithm [21].
PMI-IR computes Pointwise Mutual Information (PMI) be-
tween terms by estimating their co-occurrence frequency
based on hit counts returned by a search engine. Turney
used PMI-IR to classify words as positive or negative by
computing their PMI with positive words (e.g., ‘excellent’)
subtracted from their PMI with negative words (e.g., ‘poor’)
[22]. Turney then applied this word classification technique
to a large number of adjectives, verbs, and adverbs drawn
from product reviews in order to classify the reviews as pos-
itive or negative. In this approach, the number of search
engine queries scales linearly with the number of words clas-

1Of course, it may be possible to distribute this load across
a large number of machines, but be embodies a much more
efficient solution.

sified, which limits the speed and scale of PMI-IR applica-
tions.

As a second example, consider the KnowItAll informa-
tion extraction system [10]. Inspired by Hearst’s early work
[13], KnowItAll relies on a set of generic extraction pat-
terns such as “<Class> including <ProperNoun>” to ex-
tract facts from text. KnowItAll instantiates the patterns
with the names of the predicates of interest (e.g., <Class> is
instantiated to ‘films’), and sends the instantiated portion of
the pattern as a search engine query (e.g., the phrase query
“films including”) in order to discover pages containing sen-
tences that match its patterns. KnowItAll is designed to
quickly extract large number of facts from the Web but, like
PMI-IR, is limited by the number and rate of search-engine
queries it can issue.

In general, statistical NLP systems perform a wide range
of corpora-based computations including training parsers,
building n-gram models, identifying collocations, and more
[16]. Recently, database researchers have also begun to make
use of corpus statistics in order to better understand data
and schema semantics (e.g., [12, 15]). We have “boiled
down” the requirements of this large and diverse body of
applications to a concise set of desiderata for search engines
that support NLP applications.

1.1 Desiderata
To satisfy the broad set of computations that NLP appli-

cations perform on corpora, we need a search engine that
satisfies the following desiderata:

• Support queries that contain one or more typed vari-
ables (e.g., “powerful 〈noun〉”).

• Provide a facility for defining variable types (e.g., syn-
tactic types such as verb or semantic ones such as ad-
dress), and for efficiently assigning types to strings at
index-creation time.

• Support queries that contain simple string-processing
functions over variable bindings (e.g., “Books such as
ProperNoun(Head(〈NounPhrase〉))”).2

• Require at most O(k) random disk seeks to correctly
answer queries containing variables, where k is the
number of concrete terms (i.e., not variables) in the
query.

• Process queries that contain only concrete terms just
as efficiently as a standard search engine.

• Minimize the impact on index-construction time and
space.

The main contribution of this paper is the introduction of
the fully-implemented Bindings Engine (be), which satis-
fies each of the above desiderata by introducing a variabi-
lized query language, an augmented inverted index called
the neighbor index, and an efficient algorithm for processing
variabilized queries.

Our second contribution is an asymptotic analysis of be

comparing it with a standard search engine (see Table 1 in

2The function Head extracts the Head noun in the noun
phrase, and the function ProperNoun is a Boolean-valued
function that determines whether its argument is a proper
noun.

Section 3.3). The analysis shows that the number of random
disk seeks for a standard search engine is O(B +k), where k

is the number of variables and B is the number of possible
bindings. But the number of random seeks is only O(k) for
be. Thus, when B is large, which we expect for any siz-
able corpus, be is much faster than a standard engine. Like
a standard engine, the space to store be’s index increases
linearly with the number of documents indexed.

Our third contribution is a set of experiments aimed at
measuring the performance of be in practice. We found
that on a broad range of queries, be was more than two
orders of magnitude faster than a standard search engine.
Its query-time efficiency was paid for by a factor of four
increase in index size, and a corresponding increase in index-
construction time.

Our final contribution is that be enables interactive infor-
mation extraction, whereby users can employ simple queries
to extract large amounts of information from the Web at
interactive speeds. For example, a person could query a be-
based application with the word “insects”, and receive the
results as shown in Figure 6.

The reminder of this paper is organized as follows. Section
2 introduces be’s query language, followed by a description
of be’s neighbor index and its query-processing algorithm
in Section 3. Section 4 presents our experimental results,
and Section 5 sketches different applications of be’s capa-
bilities. We conclude with related work and directions for
future work.

2. QUERY LANGUAGE
This section introduces be’s query language, focusing on

how query variables, types and functions are handled.
A standard search engine query consists of one or more

words (or terms) with optional logical operators and quo-
tation marks (which indicate a phrase query). be extends
the query language by adding variables, each of which has
a type. be processes a variable by returning every possible
string in the corpus that can be substituted for the variable
and still satisfy the user’s query, and which has a match-
ing type. We call a string that meets these requirements a
binding for the variable in question.

For example, the query “President 〈Name〉 Clinton” will
return as many bindings as there are distinct strings of
type Name in the corpus, appearing between occurrences of
“President” and “Clinton.” See Figure 1 for the full query
language.

For each type, a be system must be provided with a type
name and a type recognizer to find all instances of appro-
priate strings in the corpus. Reasonable types might in-
clude syntactic categories (e.g., noun phrases, adjectives, ad-
verbs), or semantic categories (e.g., names, addresses, phone
numbers). Of course, we also allow untyped variables, which
simply match the adjacent term. (For example, the query
“strong 〈term〉” will return all the indexed strings to the
right of the word ‘strong’ in the index). be accepts an ar-
bitrary set of type recognizers, so the set of types can be
tailored to the intended applications at index construction
time. be’s types are fixed once the index has been computed.

A query can also include functions, which apply to a bind-
ing string and return a processed version of the string. As
with type recognizers, a set of functions is supplied to the
be system before it can run. be can apply functions at
query time to bindings found in the index. For example, in-

Q → A OP Q
Q → A

OP → and
OP → or
OP → near

A → P
A → not P

P → term
P → “PH”

• P → “PH2”

PH → term PH
PH → term

• PH → term V PH
• PH → term V

• V → 〈type〉
• V → func(V)

• PH2 → V PH

Examples:
“President Bush 〈Verb〉”
“cities such as ProperNoun(Head(〈NounPhrase〉))”
”<NounPhrase> is the capital of <NounPhrase>”

Figure 1: A grammar for the be query language.
The grammar specifies that a phrase must consist
of at least one term, and all variables V are non-
consecutive. Non-Terminal symbols are in CAPS,
and novel operations appear with a • and in bold-
face. ‘Term’ is a whitespace-delimited string found
in the corpus. ‘Type’ is a member of the set of string
types determined at index time. The search engine
binds items within angled brackets to specific strings
in corpus documents. ‘func()’ is a binding-processor
function that accepts a single string and returns a
modified version of that string.

stead of creating an indexed type 〈Name〉 as above, we might
instead create the more general-purpose 〈NounPhrase〉; we
can constrain it to be a name with a function “fullName()”,
which returns any human names found inside the binding
for 〈NounPhrase〉. Functions are a convenience for query
processing.

2.1 Discussion
We formulated the query language in Figure 1 so that all

variables are non-consecutive, and that all variables have
a neighboring concrete term. This constrains the number
of positions in a document where a successful variable as-
signment can be found, and is important for efficient query
processing (see Section 3). While it would be possible to
process variables that do not neighbor concrete terms, the
sheer number of bindings means that such a query is un-
likely to be useful or efficiently processable. Thus, we have
chosen to exclude it from the language.

One common question is how variabilized queries differ

from the NEAR operator. NEAR takes two terms as argu-
ments. If the two terms appear within w words of each other
in a document, then the document is returned by the search
engine. Thus, NEAR can find matching documents while
allowing certain positions in the text to remain unspecified.
We might think of a word in the document text that occurs
between NEAR terms as a kind of “wildcard match”.

be’s variabilized queries are more powerful than NEAR
for several reasons. First, variabilized queries enforce order-
ing constraints between the terms in the query, while NEAR
only enforces proximity.3 Second, a NEAR query cannot re-
cover the actual values of its “wildcards”. It only determines
whether two terms are proximate. In contrast, a key aspect
of variabilized queries is to return the bindings matching the
variables in the query. Finally, be’s variabilized queries can
constrain matching variable bindings by type whereas the
NEAR operator has no notion of type.

We now describe how variabilized queries are implemented
to minimize the number of disk accesses per query.

3. INDEX AND QUERY PROCESSING
The inverted index allows standard queries to be pro-

cessed very efficiently, even with billions of indexed docu-
ments [3]. For every term in the corpus, an inverted index
builds a list of every document and position where that term
can be found. This enables very fast document-finding at
query time.

In this section, we describe why the standard inverted
index is insufficient for executing the variabilized queries in-
troduced earlier. We also introduce neighbor indexing, a
novel addition to the inverted index that can efficiently exe-
cute these new queries and still retain the advantages of the
inverted index.

3.1 Standard Implementation
Many language-based applications have been forced into a

very inefficient implementation of be’s variabilized queries.
Such systems operate roughly as follows on the query (“cities
such as 〈NounPhrase〉”):

1. Perform a traditional search engine query to find all
URLs containing the non-variable terms (e.g., “cities
such as”)

2. For each such URL:

(a) obtain the document contents,

(b) find the searched-for terms (“cities such as”) in
the document text,

(c) run the noun phrase recognizer to determine wheth-
er text following “cities such as” satisfies the type
requirement,

(d) and if so, return the string

We can divide the algorithm into two stages: obtaining
the list of URLs, and then processing them to find the
〈NounPhrase〉 bindings.

The first stage is a lookup using a standard inverted index.
As described in [3], processing a query consists of retrieving
a sorted document list for each query term, and then step-
ping through them in parallel to find the intersection set.

3Of course, if only proximity is desired, then the NEAR
operator can be added to the be query language.

...

...

...

docid0
pos

block#docs-1

neighbor
block0

neighbor
block1

neighbor
block#pos-1

“mayors” 5 A

6

pos
block

1

B

2

E

54 450

<offset> 3 NP
left

“Seattle” TERM
left

“Seattle” TERM
right

“such”

“...Seattle mayors such as…"Document A

term #docs pos
block0

docid#docs-1

#
positions

pos0 pos1 pos#pos-1

docid1

offset to
block end

#
neighbors

neighbor0 str0 neighbor1 str1 neighbor#nbrs-1 str#nbrs-1

STANDARD INVERTED INDEX

Figure 2: Detailed structure for a single term’s list in the be index. The top two levels, enclosed within
the bold line, consist of document information present in a standard inverted index. The be index adds
information for every (document, position) pair. This additional structure holds all the neighbors for the
(document, position) in question. The neighbor set consists of the typed strings immediately to the left and
right of that position. Reading from left to right, the neighbor index structure adds: 1) an offset to the end
of the block, so irrelevant instances can be easily skipped over; 2) the number of neighbors at that location;
3) a series of “neighbor/string” pairs. The “neighbor” value identifies the type and whether it’s to the left
or right. The “string” is the available binding at that location.

For phrase queries we also examine positions within each
document, to ensure the words appear sequentially.

Because the system reads each document list straight from
start to finish, each list can be arranged on disk as a single
stream. Thus the system will require no time-consuming
random disk seeks to step through a single term’s list. Disk
prefetching will also be more helpful. It might be possible
for large search installations to keep a substantial portion
of the index in memory, in which case the system can avoid
even sequential disk reads.

The second stage of the standard algorithm is very slow
because fetching each document is likely to result in a ran-
dom disk seek to read the text. Naturally, this disk access
is slow regardless of whether it happens on a locally-cached
copy or on a remote document server.

3.2 Neighbor Indexing
In this section we introduce the neighbor index, an aug-

mented inverted index structure that retains the advantages
of the standard inverted index while allowing access to rel-
evant parts of the corpus text. It is depicted in Figure 2.

The neighbor index retains the structure of an inverted

index. For each term in the corpus, the index keeps a list
of documents in which the term appears. For each of those
documents, the index keeps a list of positions where the term
occurs. However, the neighbor index maintains additional
data at every position. Each position keeps a list of each
adjacent document text string that satisfies one of the target
types. Each one of these strings we call a neighbor. Thus,
at each document position there is a left-hand and a right-
hand neighbor for each type. As mentioned above, the set of
types is determined by a set of type recognizers, applied to
the corpus during index construction. Certain types, such
as 〈term〉, may be present at every position in the corpus.
Other types, such as 〈NounPhrase〉, only start or end at
certain places in the corpus. A given position’s neighbors
may include all, some, or none of the types available.

Here is the algorithm used for processing a be query q:
First, break the query q into clauses, separated by logical
operators. Each clause c now consists of a set of elements
e0, e1, ...eE which are either concrete terms or variables.

The heart of the algorithm is the evaluation of each clause,
which proceeds as follows:

1. For each ei that is a concrete term, create a pointer to
the corresponding term lists li, initialized to the first
document in each list. We refer to the current head
document of list li as headdoc(li).

2. Increment the li pointer where headdoc(li) is lowest,
until headdoc(l0) = headdoc(l1) = ...headdoc(lq) or
until one pointer advances to the end of the list. We
thus advance all term list pointers to a document in
which all non-variable elements ei appear, or there are
no such remaining documents. If one of the lists is
exhausted, processing of this clause is complete.

(a) We can now refer to the head position of list li
as headpos(li). For all concrete terms, advance
term list pointer li with lowest headpos(li) until
headpos(l0) < headpos(l1) < ...headpos(lq). If
some term list pointer reaches the end of posi-
tions, then exit loop and continue to next docu-
ment.

(b) There may be some elements ei that are variables,
not concrete terms. For each of these, at least
one of ei−1 or ei+1 is guaranteed to be a concrete
term.

If ei−1 is concrete, note that headpos(li−1) is at
the start of a neighbor block for ei−1 that will
contain information about indexed strings to the
right of headpos(li−1). Examine the right-hand
neighbor for the desired typeof(ei).

If ei+1 is concrete, then headpos(li+1) is at the
start of a neighbor block for ei+1 that contains
information about indexed strings to the left of
headpos(li+1). Examine the left-hand neighbor
for the desired typeof(ei).

Find bindings for all variables ei in this way.

(c) In an above step, we checked that headpos(l0) <

headpos(l1) < ...headpos(lq) for elements with
concrete terms. We now check adjacency as well.
For any two adjacent concrete terms with indices
i and j, check that headpos(li)+1 = headpos(lj).

For adjacent element indices i, j, and k, where i

and k are concrete terms and j is a variable, check
that headpos(li) + lengthof(ej) = headpos(lk).

For a variable element ei that does not fall be-
tween two concrete variables, simply check that
lengthof(ei) is non-zero.

(d) If the above adjacency test succeeds, then record
all query variable bindings, and continue. If any
of the adjacency tests fail, then simply continue.

As with the inverted index, a term’s list is processed from
start to finish, and can be kept on disk as a contiguous piece.
The relevant string for a variable binding is included directly
in the index. So, there is no need for the disk to seek to fetch
the source document.

A neighbor index avoids the need to return to the original
corpus, but it can consume a large amount of disk space.
Depending on the variable types available, corpus text may
be folded into the index several times. To conserve space,
we perform simple dictionary-lookup compression of strings
in the index.

Query Time Index Space
be O(k) O(N ∗ T)

Standard engine O(k + B) O(N)

Table 1: Query Time and Index Space for the two
methods of implementing the be query language.
Query Time is expressed as a function of the number
of disk seeks. k is the number of concrete terms in
the query, which we expect will never grow beyond
a small number. B is the number of bindings found
when processing a query, which will grow with the
size of the corpus. T is the number of indexed types,
and N is the number of documents indexed. Since
typical values for B are in the thousands and typical
values for k are smaller than 4, be is much faster
than a standard engine. Since typical values for T

are small, the space cost is manageable.

The neighbor index reads variable bindings off disk sorted
first by the source document ID, and secondarily by posi-
tion within that document. This ordering is critical for pro-
cessing intersections between separate term lists. However,
document ID ordering is probably unhelpful for most appli-
cations. So after be finds all the available bindings, it sorts
them before returning the query results.

be has a general facility for defining sorting functions over
bindings. Our be implementation can sort bindings in as-
cending alphanumeric order or by frequency of appearance
(e.g., so Los Angeles will be sorted higher than Annandale,
VA). However, there are many other reasonable sort orders.
For example, bindings could be sorted according to a weight
that indicates how “trustworthy” the source document is.
be allows sorting by any arbitrary criterion.

Finally, to support statistical NLP applications such as
PMI-IR, be can associate a “hit count” with each binding
it returns. The hit count records the number of times that
the particular binding appeared in be’s index. This is an
important capability as discussed in Section 5.

3.3 Asymptotic Analysis
This section provides an asymptotic analysis of be’s be-

havior as compared to the “Standard Implementation” that
is in use today. Query Time is expressed as a function of the
number of random disk seeks, as these dominate all other
processing times. Index Space is simply the number of bytes
needed to store the index (not including the corpus).

Table 1 shows that be requires only O(k) random disk
seeks to process queries with an arbitrary number of vari-
ables whereas a standard engine takes O(k +B). Thus, be’s
performance is the same as that of a standard search engine
for queries containing only concrete terms. For variabilized
queries, where we expect B to be large, be is much faster.
be embodies a time-space tradeoff. The size of its index is
O(N ∗T) where N is the number of documents in the index
and T is the number of variable types. In contrast, the size
of the standard inverted index is O(N).

In typical Web applications, we expect N to be in the bil-
lions and T to be smaller than 10. Moreover, we expect the
index size to increase sub-linearly in T because elements of
each type only occur for a fraction of the terms in the index.
Note that atomic parts of speech such as noun and verb are
mutually exclusive, so tagging terms with any number of

such types can at most double the index. Finally, semantic
types such as zip code are rare and will only add a small
space overhead.

The be neighbor index shows its strength in the query
time analysis. The only seeks needed are to find the term
lists of the k concrete query terms. In contrast, the Standard
Implementation first seeks k times to perform its inverted
index lookup, and then fetches a document from disk for
each of B bindings.4

be does incur higher storage costs than the standard meth-
od. Both the standard method’s inverted index and the
neighbor index will grow linearly in size with the number
of indexed documents. However, be will also grow with the
number of indexed types; each additional type increases the
space to index a single document.

3.4 Implementation
The be search engine draws heavily upon code from the

Lucene and Nutch open source projects. Lucene is a pro-
gram that produces inverted search indices over documents.
Nutch is a search engine (including page database, crawler,
scorer, and other components) that uses Lucene as its in-
dexer. Like be, Lucene and Nutch are written in Java.

Our type recognizer uses an optimized version of the Brill
tagger [6] to assign part-of-speech tags, and identifies noun
phrases using regular expressions based on those tags.

4. EXPERIMENTAL RESULTS
This section experimentally evaluates both the benefits

and costs of the be search engine. Much of be’s source code
comes from the Nutch project, but a separate, unchanged
Nutch instance also serves as a benchmark standard search
engine for our experiments. The “Nutch” experiments de-
scribed below refer to the Standard Implementation from
Section 3.1 using this traditional Nutch index.

All of our Nutch and be experiments were carried out on a
corpus of 50 million web pages downloaded in late August of
2004. We ran all query processing and indexing on a cluster
of 20 dual-Xeon machines, each with two local 140 Gb disks
and 4 Gb of RAM. We used the corpus to compute both a
be index and a regular Nutch index.

Using a local Nutch instance instead of a commercial Web
search engine allows us to control for network latency, ma-
chine configuration, and the corpus size. We set all config-
uration values to be exactly the same for both Nutch and
be.

Finally, we ran a test of a full-fledged information extrac-
tion system that uses bestyle queries, comparing the Stan-
dard Implementation using the Google API versus be.

4.1 Benefit at Query Time
We recorded the query processing time for 150 differ-

ent queries using both be and Nutch. We generated these
queries by taking various patterns (e.g., “X such as
〈NounPhrase〉,” “〈NounPhrase〉 is a X”) and instantiating
each with a set of classes (e.g., “cities”, “countries”, and
“films”). For each query, we measured the time necessary
to find all bindings in the corpus. Both be and Nutch queries

4In fact, there can be multiple bindings per document, so
it is sometimes possible to use a single seek for multiple B.
But we assume that bindings are evenly distributed over the
corpus, so in general the number of seeks grows with B.

0

1,000

2,000

3,000

4,000

5,000

0 20,000 40,000 60,000 80,000

Total phrase occurrences in corpus

Ti
m

e
to

 p
ro

ce
ss

, i
n

se
cs

Nutch BE

Figure 3: Processing times for 150 queries, using
the be search engine and the Standard Implementa-
tion on Nutch. Both use the same corpus size and
are hosted locally. While Nutch processing times
range from 10.7 to 4044.4 seconds, be times range
from only 0.03 to 20.1 seconds. The straight line is
the linear trend for all Nutch extraction times. be’s
speedup ranges from a factor of 202 to a factor of
369.

were distributed evenly over all 20 machines in our cluster.
We waited for each system to return all answers to a query
before submitting the next.

Figure 3 plots the number of times the query phrase ap-
pears in the corpus versus the time required for processing
the query. It shows a very large improvement for be. A sin-
gle query took between 0.3 and 20.1 seconds with be, while
Nutch took between 10.7 and 4044.4 seconds.5 Processing
time is a function of the number of times the query appears
in the corpus. be’s speedup ranges from a factor of 202
to a factor of 369 for the queries in our experiments. The
speedup would be correspondingly greater for queries that
returned additional matches due to a larger index. Thus,
for a billion-page index, we would expect speedups of three
to almost four orders of magnitude.

In the Nutch case, we did not include any time spent in
post-retrieval processing to recognize particular types. Yet
one of the benefits of be is moving type recognition to index-
ing time. Thus, the measurements in Figure 3 understate
the benefit of be. The inclusion of type recognition time
would increase the Nutch query processing time by an aver-
age of 16.2%, making the be speedup even greater.

In addition to testing Nutch and be with the queries
above, we ran a full-fledged information extraction test us-
ing the KnowItAll system introduced in [10]. KnowItAll is a
natural “consumer” of be’s power because it is designed to
be a high throughput extraction system, but it routinely ex-
hausts the 100,000 daily queries allotted to it by the Google
API. We created two versions of KnowItAll — one that uses
the Standard Implementation on the Google API, and one
that uses be.

5All our measurements are in seconds of real time.

Num. Extractions Google be

10,000 5,976 secs 95 secs (63x speedup)
50,000 29,880 secs 95 secs (314x speedup)

150,000 89,641 secs N/A

Table 2: Time needed to find KnowItAll fact ex-
tractions (a mixture of city, actor, and film titles)
using the Standard Implementation on the Google
API versus be. The be column is constant at 95 sec-
onds of real time because be always returns every
single binding that matches its query.

0

200

400

600

800

1000

1200

Nutch, compressed
corpus

Nutch, uncompressed
corpus

BE, compressed corpus

S
iz

e,
 in

 G
B

Corpus
Index

Figure 4: Comparison of storage requirements for
a 50M page index. The Nutch index is a standard
inverted index with document and position infor-
mation. The be index includes types 〈term〉 for ev-
ery word in the corpus, and 〈NounPhrase〉 whenever
such structures are present in the text. The tradi-
tional index plus uncompressed text is presented as
a point of reference.

be’s impact on KnowItAll’s speed is shown in Table 2.
We see that when relying on Google, KnowItAll’s process-
ing time is dominated by the large number of queries re-
quired, and the “courtesy waits” in between queries. Fur-
thermore, KnowItAll’s processing time increases (roughly)
linearly with the number of extractions it finds. In contrast,
when KnowItAll uses be it is from 63 to 314 times faster, and
that speedup increases as the number of extractions grows.
be was not able to return 150,000 extractions due to the
limited be index size in our experiments (50 million pages).
However, as the analysis in Section 1 shows, we expect that
the speedup will increase linearly with larger be index sizes.

4.2 Costs
The be engine trades massive speedup at query time for

an increase in the time and space costs incurred at indexing
time. This section measures these costs, and argues that
they are manageable.

Figure 4 shows that roughly 80 Gb are necessary to hold
the Nutch index for the 50 million Web pages in our corpus,

0

5

10

15

20

25

30

35

40

45

Nutch BE

R
un

 ti
m

e,
 in

 h
ou

rs

Type Recognizer
Indexer

Figure 5: Time necessary to compute the Nutch in-
dex vs. time to compute the be index. In both cases,
we distributed the index computation over the same
cluster of 20 machines.

and another 180 Gb are necessary to store the compressed
Nutch corpus. Both are necessary for Nutch, because we
need to find the documents relevant to a query, and then
examine other non-query text from those documents. Stor-
ing the corpus locally obviates re-downloading pages. Thus,
the total storage necessary to run Nutch is 260 Gb. The
space necessary to hold the corresponding be index is 847
Gb — roughly a factor of three more. be does not require
a copy of the corpus because any document text that might
be useful as a binding has already been incorporated into
the neighbor index. However, the compressed corpus can
still be useful for traditional search tasks, such as generat-
ing query-sensitive document summaries, so we include it in
the be column in Figure 4.

The measurements reported in Figure 4 are for the types
〈term〉 and 〈NounPhrase〉. Adding two additional types
would, in the worst case, double the amount of space re-
quired by be. In fact, the expected increase in space is
smaller for two reasons. First, a substantial fraction of the
space cost for be is the conventional inverted index compo-
nent, which is fixed as we add new types. Second, a new
type such as 〈verb〉 or 〈adjective〉 would cause be to store
smaller objects than 〈Noun Phrase〉 and rarer objects than
〈term〉. Thus, we believe the addition of these types would
result in less than a 30% increase in storage requirements in
practice.

For comparison’s sake, we also present the uncompressed
corpus size. The predicted size of a be index depends on
many factors, such as how many types are indexed, how
frequently each type appears, and the effectiveness of the
dictionary-lookup compression scheme. However, it should
scale roughly with the amount of corpus text. (e.g., our ex-
ample includes the type term, which adds at least one entry
to the be index for every term in the corpus.) In essence,
we think of the neighbor index as a method for rearranging
corpus text so that it is amenable to the extraction of bind-

Figure 6: Most-frequently-seen extractions for query “insects”. The score for each extraction is the the
number of times it was retrieved over several BE extraction phrases.

ings for query variables. Thus, it is not surprising that its
size is roughly that of the corpus.

Figure 5 shows the time needed to compute the index. The
time is broken down into two components: the time to run
type recognizers, and the time to build the index. Again,
we included the types 〈term〉 and 〈NounPhrase〉. Recog-
nizer time includes the time to run Brill’s tagger and check
for regular expressions over those tags. Different type rec-
ognizers may take varying amounts of time to execute, but
since each recognizer makes a single pass over the corpus,
total recognizer overhead at index time should be linear in
the number of documents.

Overall, our measurements provide evidence for the fol-
lowing conclusion: if designing a search engine to support
information extraction, be offers the potential for substan-
tial speedup at query time in exchange for a modest over-
head in space and index-construction time. Moreover, as
argued in Section 5, we believe that this conclusion holds
for a broad set of NLP applications.

5. APPLICATIONS
The previous section showed how an information extrac-

tion system such as KnowItAll can leverage be. This section
sketches additional applications to illustrate the broad ap-
plicability of be’s capabilities.

5.1 Interactive Information Extraction
We have configured a be application to support interactive

information extraction in response to simple user queries.
For example, in response to the user query “insects”, the
application returns the results shown in Figure 6. The ap-
plication generates this list by using the query term to in-
stantiate a set of generic extraction phrase queries such as
“insects such as 〈NounPhrase〉”. In effect, the application
is doing a kind of query expansion to enable naive users to

extract information. In an effort to find high-quality ex-
tractions, we sort the list by the hit count for each binding,
summed over all the queries.

This kind of querying is not limited to single terms. For
example, the binary-relation query “cities, capital” yields
the extractions shown in Figure 7. The application generates
the list as follows: first, “cities” is used to generate a compre-
hensive list of cities, as we did with “insects”. Second, the
query term “capital” is used to instantiate a set of generic
extraction patterns, e.g., “〈NounPhrase〉 is the capital of
〈NounPhrase〉”. Third, be is queried with the instantiated
patterns. Finally, the application receives the set of binding
pairs, removing any pairs where the the first 〈NounPhrase〉
is not a highly-scored member of the “cities” list. We then
choose the most-frequently-seen “capital” binding for each
city, and sort the overall list by the number of times that
binding was found.

This kind of interactive extraction is similar to Web-based
Question-answering systems such as Mulder [14] and Ask-
MSR [7]. The key difference is the much larger volume of
information that be returns in response to simple keyword
queries. Large-scale information extraction system already
exist on the Web (e.g., Froogle) but they are domain specific,
and the extraction occurs off-line which limits the set of
queries that such systems can support.

The key difference between this be application and domain-
independent information extraction systems such as Know-
ItAll is that be enables extraction at interactive speeds —
the average time to expand and respond to a user query is
between 1 and 45 seconds. With additional optimization,
we believe we can reduce that time to 5 seconds or less.

5.2 PMI-IR
Turney’s PMI-IR scores [21] are widely used for such tasks

as finding words’ semantic orientation, synonym-finding, and

Figure 7: Most-frequently-seen extractions for the query “cities, capital”. We show each city only once,
picking the most-frequently-seen binding for its “capital” slot. The score for each extraction is the number
of times the capital relation was extracted. The query does not require the second extracted object to be a
country. Hence, the Chinese provincial capital “Nanjing” can appear in result 3.

antonym-finding. KnowItAll also uses them for assessing the
quality of extracted information [10].

It is often useful to compute a very large number of PMI-
IR scores. For example, we may want to assess a PMI-IR
score for every possible extraction from a given corpus.

To compute a PMI-IR score for the “cities such as” ex-
traction phrase, we need to solve

numHits(“cities such as X ′′)

numHits(“X ′′)

for each of the n values for X. For a single extraction
phrase, this will require 2n hit count queries from a tradi-
tional search engine. Yet, with a small amount of additional
work, be can compute the same values with just a single
query.

We can compute the numerators for every X in the cor-
pus by issuing a be query, then counting how many times
each unique value is returned. Since be has pre-defined the
string types of interest at index-construction time, it can
also compute a denominator list for every type. This is sim-
ply a list of every unique typed string (say, 〈Noun Phrase〉)
found in the neighbor index, followed by the number of times
the string appears. The denominator list may be large,
and like the neighbor index grows with both the number
of corpus documents and the number of types. However, it
can never be larger than a fraction of the neighborhood in-
dex itself, which includes left- and right-hand copies of each
typed string. Also, the denominator list is likely to be more
amenable to compression methods such as front-coding.

During PMI-IR query processing, the be engine takes its
standard results to compile an alphanumerically-sorted list
of all bindings, along with a hit count for each. It then

intersects this list with the denominator list, generating a
new PMI-IR score every time a string can be found in both
lists. This can execute as quickly as a single linear pass
through the denominator list.

Most of the work in constructing the denominator list is a
side-effect of constructing the neighborhood index. When-
ever a type recognizer finds a string, we add it to a special
denominator list file as well as the neighborhood index. Af-
ter the neighborhood index is complete, the denominator
list file is sorted alphanumerically. We then count adjacent
identical items, merging them and adding the count value.

6. FUTURE WORK
Our plans for be center around making it more suitable

for an interactive-speed information extraction system. We
plan to study extraction ranking schemes in more depth,
see whether we can use extractions to improve a traditional
search engine, and finally to improve query execution speed.

Ranking a simple list of documents is a well-studied prob-
lem for search engines. But ranking the results of an extrac-
tion query is a new and unexamined problem. Consider the
list of city and state pairs from Figure 7. Competing cri-
teria include confidence in the extraction, confidence in the
extraction’s source web pages, and content-specific sorting
demands (e.g., by population or geography).

In addition, we might use the be system to improve stan-
dard search engine result ranking. Bindings that are not
requested by the query but are present in the index can pro-
vide clues as to a document’s content. For example, bindings
of type 〈NounPhrase〉 might be useful for clustering search
results into subsets.

Since we expect our system to perform more phrase queries

than the average search engine, we will want to optimize
these queries whenever possible. We might index pairs of
search terms instead of single terms, in an effort to cut down
the average list length. Another possibility is some use of
the nextword index, which is described in further detail in
Section 7 [5].

7. RELATED WORK
There has been substantial work in query languages for

structured data, but none are wholly appropriate for a search
engine. WebSQL and Squeal are database systems that cre-
ate special schema for querying the set of web objects [17,
20]. Unlike traditional databases, both consider the web
as a fast-changing object that cannot be stored entirely lo-
cally (possibly requiring the database system to go to the
web to service a query). Like traditional databases, they
can process arbitrary SQL-like queries that are defined us-
ing their schema. Such queries are not limited to just the
text, so they are generally more expressive than be’s queries.
(Though since text is not treated in a special way, there is
certainly no idea of a text type.) However, even if these
database-driven systems offer general text indexing support,
they will still suffer from the same poor performance as a
general-purpose search engine.

The LAPIS system contains a sophisticated algebra for
defining text regions in a document [18]. Users define text
regions according to their physical relationship to other to-
kens or regions in the text stream. In addition, there are
named “patterns” which function very loosely like our
arbitrary text types. (Though be text types can be clas-
sified by arbitrary code.) The LAPIS and be query lan-
guages are not directly comparable, but there is a wide set
of text-adjacency queries that LAPIS can process, while be

cannot.
While LAPIS’ query language is powerful, its runtime per-

formance is likely to be quite poor at scale. The LAPIS
system was designed for and tested on small sets of docu-
ments, on the scale of a few hundred. It has no inverted
index structure, and so must investigate every document in
order to process a query. The query performance is therefore
likely to be even worse than the Standard Implementation,
which efficiently finds the relevant document set.

Agrawal and Srikant conducted an interesting study of
how to make documents with numerical data more amenable
to search engine-style queries [2]. The central idea is that
a search query that contains a numerical quantity should
elicit documents containing quantities that are numerically
similar (but textually distant). The system requires some
preprocessing of the corpus beyond the standard inverted
index, along with a few extensions to the query algorithm.
However, the task is still one of basic document finding. Un-
like be, the engine does not return text regions from the doc-
uments, so executing be-style queries would involve fetching
each individual document’s text.

The Linguist’s Search Engine (http://lse.umiacs.umd.edu/)
from Resnik is a tool for searching large corpuses of parse
trees [1]. Like be, it computes an index in advance to allow
for fast query processing. Unfortunately, there is not yet
much published detail on its precise query syntax or index-
ing mechanism.

The most related work is in the area of index design. Cho
and Rajagopalan build a multigram index over a corpus to
support fast regular expression matching [9]. The multi-

gram index is an inverted index that includes postings for
certain non-English character sequences. The query proces-
sor finds the relevant sequences from a regular expression
query, and uses the inverted index to find documents where
they appear. The resulting, much smaller, document set is
then examined with a full-power regular expression parser.

Regular expressions can express a number of strings that
the be language cannot, but be types can be generated from
type recognizers that can be far more complex than regular
expressions. For the queries we expect to execute, the multi-
gram index seems likely to do well in finding just the set of
relevant documents. However, with a standard inverted in-
dex, the original documents again still need to be fetched,
so performance will be similar to that of the Standard Im-
plementation.

The GuruQA System is a search engine for answering nat-
ural language questions [19]. GuruQA first annotates its
corpus with extra “words” called QA-Tokens. Each QA-
Token indicates the location of a phrase that might be use-
ful for answering a certain kind of question. For example,
QA-Tokens might indicate places in the corpus where years,
times, person names, etc., appear. GuruQA then computes
an inverted index over this annotated corpus, running over
the original text as well as the set of QA-Tokens.

When processing a user query, GuruQA examines the
question to find what kind of answer the user is probably
looking for. By searching for a QA-Token of a certain type,
it can then quickly find all occurrences of, say, dates.

The GuruQA “query language” is just natural language,
so it is not directly comparable to that of be. And unlike the
neighbor index when treating linguistic types, the GuruQA
index does not retain the actual text value for QA-Tokens.
GuruQA’s query processor must still fetch the original texts,
and incur the performance hit that entails. (Of course, Gu-
ruQA is not designed to find all relevant documents, like be

does.)
A series of articles describes the nextword index [5, 23,

4], a structure designed to speed up phrase queries and to
enable some amount of “phrase browsing.” It is an inverted
index where each term list contains a list of the successor
words found in the corpus. Each successor word is followed
by position information.

However, the nextword index lacks both expressive power
and performance when compared to be’s neighbor index.
Given a query phrase, a nextword index can find just the
right-hand single-word string. In contrast, a neighbor in-
dex can find strings of multiple words at positions to the
left, right, and within the query phrase boundaries; further,
those strings can be typed. A nextword index processes
multi-word query phrases in two serialized stages of index
lookups; be’s neighbor index can process multi-word queries
without any such serialization, and is thus fully paralleliz-
able. Assuming all index lookups run at equal speed, query
time for be would thus be a factor two smaller on multi-
word queries as compared with an engine that utilizes the
nextword index.

8. CONCLUSIONS
The Bindings Engine (be) consists of a generalized query

language (containing typed variables and functions), the
neighbor index, and an efficient query processing algorithm.
Utilizing be, we reported on a set of experiments that pro-
vide evidence for the following conclusions. First, be yields

two to three orders of magnitude speedup when support-
ing information extraction. Second, this speedup comes at
the cost of only a modest increase in space and in index-
construction time. Moreover, Section 3.3 analyzed how be’s
performance scales with each of the relevant parameters,
and showed that it has the potential for enormous speedups
on billion-page indices with only a constant factor space in-
crease for a fixed set of variable types.

Finally, be can support a broad range of novel language-
processing applications. As one example, we have sketched
a be application that extracts large amounts of information
from the Web in response to simple user queries, and does
so at interactive speeds.

Acknowledgments
The authors would like to thank Doug Cutting, Jeff Dean,
Steve Gribble, Brian Youngstrom, and all the contributors
to the KnowItAll, Lucene, and Nutch projects. Krzysztof
Gajos, Julie Letchner, Stephen Soderland, Tammy VanDe-
Grift, and Dan Weld also provided helpful feedback.

This research was supported in part by NSF grant IIS-
0312988, DARPA contract NBCHD030010, ONR grant N000
14-02-1-0324, and a gift from Google.

9. REFERENCES
[1] Corpus Colossal. The Economist, Jan. 2005.

[2] R. Agrawal and R. Srikant. Searching with numbers.
In WWW, pages 420–431. ACM Press, 2002.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addison Wesley, 1999.

[4] D. Bahle, H. E. Williams, and J. Zobel. Optimised
Phrase Querying and Browsing in Text Databases. In
M. Oudshoorn, editor, Proceedings of the Australasian
Computer Science Conference, pages 11–19, Gold
Coast, Australia, Jan. 2001.

[5] D. Bahle, H. E. Williams, and J. Zobel. Efficient
Phrase Querying with an Auxiliary Index. In
Proceedings of the ACM-SIGIR Conference on
Research and Development in Information Retrieval.,
pages 215–221, 2002.

[6] E. Brill. Some Advances in Rule-Based Part of Speech
Tagging. In AAAI, pages 722–727, 1994.

[7] E. Brill, S. Dumais, and M. Banko. An Analysis of the
AskMSR Question-Answering System. In EMNLP,
2002.

[8] E. Brill, J. Lin, M. Banko, S. T. Dumais, and A. Y.
Ng. Data-Intensive Question Answering. In TREC
2001 Proceedings, 2001.

[9] J. Cho and S. Rajagopalan. A Fast Regular
Expression Indexing Engine. In Proceedings of the 18th
International Conference on Data Engineering, 2002.

[10] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu,
T. Shaked, S. Soderland, D. S. Weld, and A. Yates.
Web-scale Information Extraction in KnowItAll. In
Proceedings of the 13th International World-Wide
Web Conference, 2004.

[11] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu,
T. Shaked, S. Soderland, D. S. Weld, and A. Yates.
Unsupervised Named-Entity Extraction from the Web:
An Experimental Study. Artificial Intelligence, 2005.

[12] A. Y. Halevy and J. Madhavan. Corpus-Based
Knowledge Representation. In Proceedings of the

International Joint Conference on Artificial
Intelligence, pages 1567–1572, 2003.

[13] M. Hearst. Automatic Acquisition of Hyponyms from
Large Text Corpora. In Proceedings of the 14th
International Conference on Computational
Linguistics, pages 539–545, 1992.

[14] C. C. T. Kwok, O. Etzioni, and D. S. Weld. Scaling
Question Answering to the Web. In Proceedings of the
10th International World-Wide Web Conference,
pages 150–161, 2001.

[15] J. Madhavan, P. Bernstein, A. Doan, and A. Halevy.
Corpus-based Schema Matching. In Proceedings of the
International Conference on Data Engineering, Tokyo,
Japan, 2005.

[16] C. D. Manning and H. Schütze. Foundations of
Statistical Natural Language Processing. MIT Press,
1999.

[17] A. O. Mendelzon, G. A. Mihalia, and T. Milo.
Querying the World Wide Web. International Journal
on Digital Libraries, 1996.

[18] R. C. Miller and B. C. Myers. Lightweight Structured
Text Processing. In Proceedings of 1999 USENIX
Annual Technical Conference, pages 131–144,
Monterey, CA, 1999.

[19] J. Prager, E. Brown, A. Coden, and D. Radev.
Question-Answering by Predictive Annotation. In 23rd
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 184–191, 2000.

[20] E. Spertus and L. A. Stein. Squeal: A Structured
Query Language for the Web. In Proceedings of the
9th International World Wide Web Conference
(WWW9), pages 95–103, 2000.

[21] P. D. Turney. Mining the Web for Synonyms: PMI-IR
versus LSA on TOEFL. In Proceedings of the Twelfth
European Conference on Machine Learning, 2001.

[22] P. D. Turney. Thumbs Up or Thumbs Down?
Semantic Orientation Applied to Unsupervised
Classification of Reviews. In ACL, pages 417–424,
2002.

[23] H. E. Williams, J. Zobel, and P. Anderson. What’s
Next? Index Structures for Efficient Phrase Querying.
In J. Roddick, editor, Proceedings on the Australasian
Database Conference, pages 141–152, Auckland, New
Zealand, 1999.

