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Abstract

Unsupervised Information Extraction (UIE) is the task of extracting knowledge from
text without the use of hand-labeled training examples. Because UIE systems do not
require human intervention, they can recursively discover new relations, attributes, and
instances in a scalable manner. When applied to massive corpora such as the Web,
UIE systems present an approach to a primary challenge in artificial intelligence: the
automatic accumulation of massive bodies of knowledge.

A fundamental problem for a UIE system is assessing the probability that its extracted
information is correct. In massive corpora such as the Web, the same extraction is found
repeatedly in different documents. How does this redundancy impact the probability of
correctness?

We present a combinatorial “balls-and-urns” model, called Urns, that computes the
impact of sample size, redundancy, and corroboration from multiple distinct extraction
rules on the probability that an extraction is correct. We describe methods for estimating
Urns’s parameters in practice and demonstrate experimentally that for UIE the model’s
log likelihoods are 15 times better, on average, than those obtained by methods used in
previous work. We illustrate the generality of the redundancy model by detailing multiple
applications beyond UIE in which Urns has been effective. We also provide a theoretical
foundation for Urns’s performance, including a theorem showing that PAC Learnability
in Urns is guaranteed without hand-labeled data, under certain assumptions.

Key words: Information Extraction, Unsupervised, World Wide Web

Email addresses: ddowney@eecs.northwestern.edu (Doug Downey), etzioni@cs.washington.edu
(Oren Etzioni), soderlan@cs.washington.edu (Stephen Soderland)

URL: http://www.cs.northwestern.edu/ ddowney/ (Doug Downey),
http://www.cs.washington.edu/homes/etzioni/ (Oren Etzioni),
http://www.cs.washington.edu/homes/soderlan/ (Stephen Soderland)

Preprint submitted to Artificial Intelligence August 25, 2010



1. Introduction

Automatically extracting knowledge from text is the task of Information Extraction
(IE). When applied to the Web, IE promises to radically improve Web search engines, al-
lowing them to answer complicated questions by synthesizing information across multiple
Web pages. Further, extraction from the Web presents a new approach to a fundamen-
tal challenge in artificial intelligence: the automatic accumulation of massive bodies of
knowledge.

IE on the Web is particularly challenging due to the variety of different concepts
expressed. The strategy employed for previous, small-corpus IE is to hand-label examples
for each target concept, and use the examples to train an extractor [19, 38, 7, 9, 29,
27]. On the Web, hand-labeling examples of each concept is intractable—the number of
concepts of interest is simply far too large. IE without hand-labeled examples is referred
to as Unsupervised Information Extraction (UIE). UIE systems such as KnowItAll
[16, 17, 18] and TextRunner [3, 4] have demonstrated that at Web scale, automatically-
generated textual patterns can perform UIE for millions of diverse facts. As a simple
example, an occurrence of the phrase “C such as x” suggests that the string x is a member
of the class C, as in the phrase “films such as Star Wars” [22].1

However, all extraction techniques make errors, and a key problem for an IE system
is determining the probability that extracted information is correct. Specifically, given a
corpus, and a set of extractions XC for a class C, we wish to estimate P (x ∈ C|corpus)
for each x ∈ XC . In UIE, where hand-labeled examples are unavailable, the task is
particularly challenging. How can we automatically assign probabilities of correctness to
extractions for arbitrary target concepts, without hand-labeled examples?

This paper presents a solution to the above question that applies across a broad
spectrum of UIE systems and techniques. It relies on the KnowItAll hypothesis, which
states that extractions that occur more frequently in distinct sentences in a corpus are
more likely to be correct.

KnowItAll hypothesis: Extractions drawn more frequently from
distinct sentences in a corpus are more likely to be correct.

The KnowItAll hypothesis holds on the Web. Intuitively, we would expect the Know-
ItAll hypothesis to hold because although extraction errors occur (e.g., KnowItAll
erroneously extracts California as a City name from the phrase “states containing
large cities, such as California”), errors occurring in distinct sentences tend to be dif-
ferent.2 Thus, typically a given erroneous extraction is repeated only a limited number
of times. Further, while the Web does contain some misinformation (for example, the
statement “Elvis killed JFK” appears almost 200 times on the Web according to a ma-
jor search engine), this tends to be the exception (the correct statement “Oswald killed
JFK” occurs over 3000 times).

1Here, the term class may also refer to relations between multiple strings, e.g. the ordered pair
(Chicago, Illinois) is a member of the LocatedIn class.

2Two sentences are distinct when they are not comprised of exactly the same word sequence. We
stipulate that sentences be distinct to avoid placing undue credence in content that is simply duplicated
across many different pages, a common occurrence on the Web.
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At Web-scale, the KnowItAll hypothesis can identify many correct extractions due to
redundancy: individual facts are often repeated many times, and in many different ways.
For example, consider the TextRunner Web information extraction system, which
extracts relational statements between pairs of entities (e.g., from the phrase “Edison in-
vented the light bulb,” TextRunner extracts the relational statement Invented(Edison,
light bulb)). In an experiment with a set of about 500 million Web pages, ignoring
the extractions occurring only once (which tend to be errors), TextRunner extracted
829 million total statements, of which only 218 million were unique (on average, 3.8
repetitions per statement). Well-known facts can be repeated many times. According
to a major search engine, the Web contains over 10,000 statements that Thomas Edison
invented the light bulb, and this fact is expressed in dozens of different ways (“Edison in-
vented the light bulb,” “The light bulb, invented by Thomas Edison,” ”Thomas Edison,
after ten thousand trials, invented a workable light bulb,” etc.).

Although the KnowItAll hypothesis is simply stated, leveraging it to assess extractions
is non-trivial. For example, the 10,000th most frequently extracted Film is dramatically
more likely to be correct than the 10,000th most frequently extracted US President, due
to the relative sizes of the target sets. In UIE, this distinction must be identified without
any hand-labeled data. This paper shows that a probabilistic model of the KnowItAll
hypothesis, coupled with the redundancy of the Web, can power UIE for arbitrary target
concepts. The primary contributions are discussed below.

1.1. The Urns Model of Redundancy in Text
The KnowItAll hypothesis states that the probability that an extraction is correct

increases with its repetition. But by how much? How can we precisely quantify our
confidence in an extraction given the available textual evidence?

We present an answer to these questions in the form of the Urns model—an instance
of the classic “balls and urns” model from combinatorics. In Urns, extractions are
represented as draws from an urn, where each ball in the urn is labeled with either a
correct extraction, or an error—and different labels can be repeated on different numbers
of balls. Given the frequency distribution in the urn for labels in the target set and
error set, we can compute the probability that an observed label is a target element
based on how many times it is drawn. A key insight of Urns is that when the frequency
distributions have predictable structure (for example, in textual corpora the distributions
tend to the Zipfian), they can be estimated without hand-labeled data.

We prove that when the frequency of each label in the urn is drawn from a mixture of
two Zipfian distributions (one for the target class and another for errors), the parameters
of Urns can be learned without hand-labeled data. When the data exhibits a certain
separability criterion, PAC learnability is guaranteed. We also demonstrate that Urns is
effective in practice. In experiments with UIE on the Web, the probabilities produced by
the model are shown to be 15 times better, on average, when compared with techniques
from previous work. [14]

1.2. Paper Outline
The paper proceeds as follows. We describe the Urns model in Section 2, experimen-

tally demonstrate its effectiveness in UIE, and detail applications beyond UIE in which
the model has been employed. The theoretical results characterizing the Urns model
are presented in Section 3. We discuss future work in Section 4, and conclude.
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2. The Urns Model

In this section, we describe the Urns model for assigning probabilities of correct-
ness to extractions. We begin by formally introducing the model, then describe our
implementation and a set of experiments establishing the model’s effectiveness for UIE.

The Urns model takes the form of a classic “balls-and-urns” model from combina-
torics. We first consider the single urn case, for simplicity, and then generalize to the full
multiple Urns Model used in our experiments.

We think of IE abstractly as a generative process that maps text to extractions. Ex-
tractions repeat because distinct sentences may yield the same extraction. For example,
the sentence containing “Scenic towns such as Yakima...” and the sentence containing
“Washington towns such as Yakima...” both lead us to believe that Yakima is a correct
extraction of the relation City(x).

Each potential extraction is modeled as a labeled ball in an urn. A label represents
either an instance of the target relation, or an error. The information extraction process is
modeled as repeated draws from the urn, with replacement. Thus, in the above example,
two balls are drawn from the urn, each with the label “Yakima”. The labels are instances
of the relation City(x). Each label may appear on a different number of balls in the urn.
Finally, there may be balls in the urn with error labels such as “California”, representing
cases where the extraction process generated a label that is not a member of the target
relation.

Formally, the parameters that characterize an urn are:

• C – the set of unique target labels; |C| is the number of unique target labels in the
urn.

• E – the set of unique error labels; |E| is the number of unique error labels in the
urn.

• num(b) – the function giving the number of balls labeled by b where b ∈ C ∪ E.
num(B) is the multi-set giving the number of balls for each label b ∈ B.

Of course, extraction systems do not have access to these parameters directly. The
goal of an extraction system is to discern which of the labels it extracts are in fact
elements of C, based on the number of repetitions of each label. Thus, the central
question we are investigating is: given that a particular label x was extracted k times in
a set of n draws from the urn, what is the probability that x ∈ C?

In deriving this probability formally below, we assume the system has access to multi-
sets num(C) and num(E) giving the number of times the labels in C and E appear on
balls in the urn. In our experiments, we provide methods that estimate these multi-sets
in the unsupervised and supervised settings.

We derive the probability that an element extracted k of n times is of the target class
as follows. First, we have that:

P (x appears k times inn draws|x ∈ C) =∑
r∈num(C)

(
n

k

)(r
s

)k (
1− r

s

)n−k
P (num(x) = r|x ∈ C)
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where s is the total number of balls in the urn, and the sum is taken over possible
repetition rates r.

Then we can express the desired quantity using Bayes Rule:

P (x ∈ C|x appears k times inn draws) =
P (x appears k times inndraws|x ∈ C)P (x ∈ C)

P (x appears k times inn draws)
. (1)

Note that these expressions include prior information about the label x – for example,
P (x ∈ C) is the prior probability that the string x is a target label, and P (num(x) =
r|x ∈ C) represents the probability that a target label x is repeated on r balls in the urn.
In general, integrating this prior information could be valuable for extraction systems;
however, in the analysis and experiments that follow, we make the simplifying assumption
of uniform priors, yielding the following simplified form:

Proposition 1.

P (x ∈ C|x appears k times inndraws) =

∑
r∈num(C)(

r
s )k(1− r

s )n−k∑
r′∈num(C∪E)(

r′

s )k(1− r′

s )n−k
.

2.0.1. The Uniform Special Case
For illustration, consider the simple case in which all labels from C are repeated on

the same number of balls. That is, num(ci) = RC for all ci ∈ C, and assume also that
num(ei) = RE for all ei ∈ E. While these assumptions are unrealistic (in fact, we use
a Zipf distribution for num(b) in our experiments), they are a reasonable approximation
for the majority of labels, which lie on the flat tail of the Zipf curve.

Define p to be the precision of the extraction process; that is, the probability that a
given draw comes from the target class. In the uniform case, we have:

p =
|C|RC

|E|RE + |C|RC
.

The probability that a particular element of C appears in a given draw is then pC =
p/|C|, and similarly pE = (1− p)/|E|.

We use a Poisson model to approximate the binomial from Proposition 1. That is, we
approximate ( rs )k(1− r

s )n−k as λke−λ/(
(
n
k

)
k!), where λ is rn

s . Using this approximation,
with algebra we have:

PUSC(x ∈ C|x appears k times inndraws) ≈ 1

1 + |E|
|C| (

pE
pC

)ken(pC−pE)
. (2)

In general, we expect the extraction process to be noisy but informative, such that
pC > pE . Notice that when this is true, Equation (2) shows that the odds that x ∈ C
increase exponentially with the number of times k that x is extracted, but also decrease
exponentially with the sample size n.

A few numerical examples illustrate the behavior of this equation. The examples
assume that the precision p is 0.9. Let |C| = |E| = 2, 000. This means that RC =
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9 × RE—target balls are nine times as common in the urn as error balls. Now, for
k = 3 and n = 10, 000 we have P (x ∈ C) = 93.0%. Thus, we see that a small number of
repetitions can yield high confidence in an extracted label. However, when the sample size
increases so that n = 20, 000, and the other parameters are unchanged, then P (x ∈ C)
drops to 19.6%. On the other hand, if C balls repeat much more frequently than E balls,
say RC = 90×RE (with |E| set to 20,000, so that p remains unchanged), then P (x ∈ C)
rises to 99.9%.

The above examples enable us to illustrate the advantages of Urns over the noisy-or
model used in previous IE work [25, 1]. The noisy-or model for IE assumes that each
extraction is an independent assertion, correct a fraction p of the time, that the extracted
label is correct. The noisy-or model assigns the following probability to extracted labels:

Pnoisy−or(x ∈ C|x appears k times) = 1− (1− p)k.

Therefore, the noisy-or model will assign the same probability— 99.9%—in all three of
the above examples. Yet, as explained above, 99.9% is only correct in the case for which
n = 10, 000 and RC = 90×RE . As the other two examples show, for different sample sizes
or repetition rates, the noisy-or model can be highly inaccurate. This is not surprising
given that the noisy-or model ignores the sample size and the repetition rates. Section
2.2 quantifies the improvements over the noisy-or obtained by Urns in practice.

2.0.2. Applicability of the Urns model
Under what conditions does our redundancy model provide accurate probability es-

timates? We address this question formally in Section 3, but informally two primary
criteria must hold. First, labels from the target set C must be repeated on more balls
in the urn than labels from the E set, as in Figure 1. The shaded region in Figure 1
represents the “confusion region” – if we classify labels based solely on extraction count,
half of the labels in this region will be classified incorrectly, even with the ideal classifier
and infinite data, because for these examples there simply isn’t enough information to
decide whether they belong to C or E. Thus, our model is effective when the confusion
region is relatively small. Secondly, even for a small confusion region, the sample size n
must be large enough to approximate the two distributions shown in Figure 1; otherwise
the probabilities output by the model will be inaccurate.

2.0.3. Multiple Urns
We now generalize our model to encompass multiple urns. When we have multiple

extraction mechanisms for the same target class, we could simply sum the extraction
counts for each example and apply the single-urn model as described in the previous
section. However, this approach forfeits differences between the extraction mechanisms
that may be informative for classification. For example, an IE system might employ
several patterns for extracting city names, e.g. “cities including x” and “x and other
towns.” It is often the case that different patterns have different modes of failure, so
labels extracted by multiple patterns are generally more likely to be correct than those
appearing for a single pattern. Previous work in co-training has shown that leveraging
distinct uncorrelated “views” of the data is often valuable [5]. We model this situation
by introducing multiple urns, where each urn represents a different pattern.3

3We may lump several patterns into a single urn if they tend to behave similarly.
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Figure 1: Schematic illustration of the number of distinct labels in the C and E sets with repetition rate
r. The “confusion region” is shaded.

Instead of n total extractions, in the multi-urn case we have a sample size nm for each
urnm ∈M , with the label for example x appearing km times. LetA(x, (k1, . . . , km), (n1, . . . , nm))
denote this event. Further, let Am(x, k, n) be the event that label x appears k times in
n draws from urn m, and assuming that the draws from each urn are independent, we
have:

Proposition 2.

P (x ∈ C|A(x, (k1, . . . , km), (n1, . . . , nm))) =

∑
ci∈C

∏
m∈M P (Am(ci, km, nm))∑

x∈C∪E
∏
m∈M P (Am(x, km, nm))

.

With multiple urns, the distributions of labels among balls in the urns are represented
by multi-sets numm(C) and numm(E). Expressing the correlation between numm(x)
and numm′(x) is an important modeling decision. Multiple urns are especially beneficial
when the repetition rates for elements of C are more strongly correlated across different
urns than they are for elements of E—that is, when numm(x) and numm′(x) are pro-
portionally more similar for x ∈ C than for x ∈ E. Fortunately, this turns out to be
the case in practice in IE. We describe our method for modeling multi-urn correlation in
Section 2.1.1.

2.1. Implementation of Urns

This section describes how we implement Urns for both UIE and supervised IE, and
identifies the assumptions made in each case.

In order to compute probabilities for extracted labels, we need a method for estimating
num(C) and num(E). For the purpose of estimating these sets from labeled or unlabeled
data, we assume that num(C) and num(E) are Zipf distributed, meaning that if ci is
the ith most frequently repeated label in C, then num(ci) is proportional to i−zC . We
can then characterize the num(C) and num(E) sets with five parameters: the set sizes
|C| and |E|, the shape parameters zC and zE , and the extraction precision p.
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2.1.1. Multiple Urns
To model multiple urns, we consider different precisions pm for each urn, but make

the simplifying assumption that the size and shape parameters are the same for all urns.
As mentioned above, we expect repetition rate correlation across urns to be higher for
elements of the C set than for the E set. We model this correlation as follows: first,
elements of the C set are assumed to come from the same location on the Zipf curve for
all urns, that is, their relative frequencies are perfectly correlated. Some elements of the
E set are similar, and have the same relative frequency across urns – we refer to these as
global errors. However, the rest of the E set is made up of local errors, meaning that they
appear for only one kind of mechanism (for example, “Eastman Kodak” is extracted as
an instance of Film only in phrases involving the word “film”, and not in those involving
the word “movie.”). Formally, local errors are labels that are present in some urns and
not in others. Each type of local error makes up some fraction of the E set, and these
fractions are the parameters of our correlation model. Assuming this simple correlation
model and identical size and shape parameters across urns is too restrictive in general—
differences between mechanisms are often more complex. However, our assumptions
allow us to compute probabilities efficiently (as described below), and don’t appear to
hurt performance significantly in practice (i.e. when compared with an “ideal” model as
in Section 2.2.1).

With this correlation model, if a label x is an element of C or a global error, it will
be present in all urns. In terms of Proposition 2, the probability that a label x appears
km times in nm draws from m is:

P (Am(x, km, nm)) =
(
nm
km

)
(fm(x))km(1− fm(x))nm−km (3)

where fm(x) is the frequency of label x. That is,

fm(ci) = pmQCi
−zC for ci ∈ C

fm(ei) = (1− pm)QEi−zE for ei ∈ E.

In these expressions, i is the frequency rank of the label, assumed to be the same across
all urns, and QC and QE are normalizing constants such that∑

ci∈C
QCi

−zC =
∑
ei∈E

QEi
−zE = 1.

For a local error x which is not present in urn m, P (Am(x, km, nm)) is 1 if km = 0
and 0 otherwise. Substituting these expressions for P (Am(x, km, nm)) into Proposition
2 gives the final form of our Urns model.

2.1.2. Efficient Computation
A feature of our implementation is that it allows for efficient computation of prob-

abilities. In general, computing the sum in Proposition 2 over the potentially large C
and E sets would require significant computation for each label. However, given a fixed
number of urns, with num(C) and num(E) Zipf distributed, an integral approximation
to the sum in Proposition 2 (using a Poisson in place of the binomial in Equation 3)
can be solved in closed form in terms of incomplete Gamma functions. The details of
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this approximation and its solution for the single-urn case are given in Section 3.4 The
closed form expression can be evaluated quickly, and thus probabilities for labels can
be obtained efficiently. This solution leverages our assumptions that size and shape pa-
rameters are identical across urns, and that relative frequencies are perfectly correlated.
Finding efficient techniques for computing probabilities under less stringent assumptions
is an item of future work.

2.1.3. Supervised Parameter Estimation
In the event that a large sample of hand-labeled training examples is available for

each target class of interest, we can directly estimate each of the parameters of Urns.
In our experiments, we use Differential Evolution to identify parameter settings that
approximately maximize the conditional log likelihood of the training data [40].5 Differ-
ential Evolution is a population-based stochastic optimization technique, appropriate for
optimizing the non-convex likelihood function for Urns. Once the parameters are set,
the model yields a probability for each extracted label, given the number of times km it
appears in each urn and the number of draws nm from each urn.

2.1.4. Unsupervised Parameter Estimation
Estimating model parameters in an unsupervised setting requires making a number

of assumptions tailored to the specific task. Below, we detail the assumptions employed
in Urns for UIE. It is important to note that while these assumptions are specific to
UIE, they are not specific to a particular target class. As argued in [17], UIE systems
cannot rely on per-class information—in the form of either assumptions or hand-labeled
training examples—if they are to scale to extracting information on arbitrary classes that
are not specified in advance.

Implementing Urns for UIE requires a solution to the challenging problem of estimat-
ing num(C) and num(E) using only untagged data. Let U be the multi-set consisting
of the number of times each unique label was extracted in a given corpus. |U | is the
number of unique labels encountered, and the sample size n =

∑
r∈U r.

In order to learn num(C) and num(E) without hand-labeled data, we make the
following assumptions:

• Because the number of different possible errors is nearly unbounded, we assume
that the error set is very large.6

• We assume that both num(C) and num(E) are Zipf distributed where the zE
parameter is set to 1.

• In our experience with KnowItAll, we found that while different extraction rules
have differing precision, each rule’s precision is stable across different classes [17].
For example, the precision of the extractor “cities such as x” and “insects such as

4For the multi-urn solution, which is obtained through a symbolic integration package and there-
fore complicated, we refer the reader to the Java implementation of the solution which is available for
download – see [12], Appendix A.

5Specifically, we use the Differential Evolution routine built into Mathematica 5.0.
6In our experiments, we set |E| = 106. A sensitivity analysis showed that changing |E| by an order

of magnitude, in either direction, resulted in only small changes to our results.
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y” are similar. Urns takes this precision as an input. To demonstrate that Urns
is not overly sensitive to this parameter, we chose a fixed value (0.9) and used it as
the precision pm for all urns in our experiments.7 Section 2.2.5 provides evidence
that the observed p value tends to be relatively stable across different target classes.

We then use Expectation Maximization (EM) over U in order to arrive at appropri-
ate values for |C| and zC (these two quantities uniquely determine num(C) given our
assumptions). Our EM algorithm proceeds as follows:

1. Initialize |C| and zC to starting values.
2. Repeat until convergence:

(a) E-step Assign probabilities to each element of U using Proposition (1).
(b) M-step Set |C| and zC from U using the probabilities assigned in the E-step

(details below).

We obtain |C| and zC in the M-step by first estimating the rank-frequency distribution
for labels from C in the untagged data U . From U and the probabilities found in the
E-step, we can obtain EC [k], the expected number of labels from C that were extracted
k times for k ≥ 1 (the k = 0 case is detailed below). We then round these fractional
expected counts into a discrete rank-frequency distribution with a number of elements
equal to the expected total number of labels from C in the untagged data,

∑
k EC [k]. We

obtain zC by fitting a Zipf curve to this rank-frequency distribution by linear regression
on a log-log scale.8

Lastly, we set |C| =
∑
k EC [k] +unseen, where we estimate the number of unseen la-

bels of the C set (i.e. those with k = 0) using Good-Turing estimation [20]. Good-Turing
estimation provides an estimate of the probability mass of the unseen labels (specifically,
the estimate is equal to the expected fraction of the draws from C that extracted labels
seen only once). To convert this probability into a number of unseen labels, we simply
assume that each unseen label has probability equal to that of the least frequent seen
label. A potentially more accurate method would choose unseen such that the actual
number of unique labels observed is equal to that expected by the model (where the
latter is measured e.g. by sampling). Such methods are an item of future work.

This unsupervised learning strategy proved effective for target classes of different sizes;
for example, Urns learned parameters such that the number of elements of the Country
relation with non-negligible extraction probability was about two orders of magnitude
smaller than that of the Film and City classes, which approximately agrees with the
actual relative sizes of these sets.

2.2. Urns: Experimental Results
How accurate is Urns at assigning probabilities of correctness to extracted labels? In

this section, we answer this question by comparing the accuracy of Urns’s probabilities
against other methods from previous work.

7A sensitivity analysis showed that choosing a substantially higher (0.95) or lower (0.80) value for
pm still resulted in Urns outperforming the noisy-or model by at least a factor of 8 and PMI by at least
a factor of 10 in the experiments described in section 2.2.1.

8To help ensure that our probability estimates are increasing with k, if zC falls below 1, we adjust
zE to be less than zC .
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This section begins by describing our experimental results for IE under two settings:
unsupervised and supervised. We first describe two unsupervised methods from previ-
ous work: the noisy-or model and PMI. We then compare Urns with these methods
experimentally, and lastly compare Urns with several baseline methods in a supervised
setting.

We evaluated our algorithms on extraction sets for the classes City(x), Film(x),
Country(x), and MayorOf(x,y), taken from experiments with the KnowItAll system
performed in [17]. The sample size n was 64,605 for City, 135,213 for Film, 51,390 for
Country and 46,858 for MayorOf. The extraction patterns were partitioned into urns
based on the name they employed for their target relation (e.g. “country” or “nation”)
and whether they were left-handed (e.g. “countries including x”) or right-handed (e.g. “x
and other countries”). We chose this partition because it results in extraction mechanisms
that make relatively uncorrelated errors, as assumed in the multiple-urns model. For
example, the phrase “Toronto, Canada and other cities” will mislead a right-handed
pattern into extracting “Canada” as a City candidate, whereas a left-handed pattern
is far less prone to this error. Each combination of relation name and handedness was
treated as a separate urn, resulting in four urns for each of City(x), Film(x), and
Country(x), and two urns for MayorOf(x, y).9,10

For each relation, we tagged a random sample of 1,000 extracted labels, using external
knowledge bases (the Tipster Gazetteer for cities and the Internet Movie Database for
films) and manually tagging those instances not found in a knowledge base. For Country
and MayorOf, we manually verified correctness for all extracted labels, using the Web.
Countries were marked correct provided they were a correct name (including abbrevia-
tions) of a current country, and mayors were marked correct if the person was a mayor
of the city at some point in time. In the UIE experiments, we evaluate our algorithms
on all 1,000 examples, and in the supervised IE experiments we perform 10-fold cross
validation.

2.2.1. UIE Experiments
We compare Urns against two other methods for unsupervised information extrac-

tion. First, in the noisy-or model used in previous work, an extracted label appearing
km times in each urn is assigned probability 1 −

∏
m∈M (1 − pm)km , where pm is the

extraction precision for urn m. We describe the second method below.
Our previous work on KnowItAll used Pointwise Mutual Information (PMI) to

obtain probability estimates for extracted labels [17]. Specifically, the PMI between an

9Draws from Urns are intended to represent independent evidence. Because the same sentence can be
duplicated across multiple different Web documents, in these experiments we consider only each unique
sentence containing an extraction to be a draw from Urns. In experiments with other possibilities,
including counting the number of unique documents producing each label, or simply counting every
extraction of each label, we found that for UIE, performance differences between the various approaches
were small compared to the differences between Urns and other methods.

10In the unsupervised setting, we assumed that the fraction of errors in the urns that are local is 0.1,
and that errors appearing for only left- or only right-handed patterns were equally prevalent to those
appearing for only one label. The only exception was the City class, where because the target class
is the union of the two class names (“city” and “town”) rather than the intersection (as with “film”
and “movie”), we assumed that no local errors appeared for only one name. Altering these settings (or
indeed, simply using a single urn – see Section 2.2.4) had negligible impact on the results in Figure 2.
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extracted label and a set of automatically generated discriminator phrases (e.g., “movies
such as x”) is computed from Web search engine hit counts. These PMI scores are used
as features in a Naive Bayes Classifier (NBC) to produce a probability estimate for the
label. The NBC is trained using a set of automatically bootstrapped seed instances.
The positive seed instances are taken to be those having the highest PMI with the
discriminator phrases after the bootstrapping process; the negative seeds are taken from
the positive seeds of other relations, as in other work (e.g., [25]).

Although PMI was shown in [17] to rank extracted labels fairly well, it has two sig-
nificant shortcomings. First, obtaining the hit counts needed to compute the PMI scores
is expensive, as it requires a large number of queries to a public Web search engine (or,
alternatively, the expensive construction of a local Web-scale inverted index). Second,
the seeds produced by the bootstrapping process are often noisy and not representa-
tive of the overall distribution of extractions [39]. This combined with the probability
polarization introduced by the NBC tends to give inaccurate probability estimates.

2.2.2. Discussion of UIE Results
The results of our unsupervised experiments are shown in Figure 2. We plot deviation

from the ideal log likelihood—defined as the maximum achievable log likelihood given
our feature set. Specifically, for each class C define an ideal model Pideal(x) equal to
the fraction of test set labels with the same extraction counts as x that are correct. We
define the ideal log likelihood as:

ideal log likelihood =
∑
x∈C

logPideal(x) +
∑
x∈E

log(1− Pideal(x)). (4)

Our experimental results demonstrate that Urns overcomes the weaknesses of PMI.
First, Urns’s probabilities are far more accurate than PMI’s, achieving a log likelihood
that is a factor of 20 closer to the ideal, on average (Figure 2). Second, Urns is substan-
tially more efficient as shown in Table 1.

This efficiency gain requires some explanation. These experiments were performed
using the KnowItAll system, which relies on queries to Web search engines to identify
Web pages containing potential extractions. The number of queries KnowItAll can
issue daily is limited, and querying over the Web is, by far, KnowItAll’s most expensive
operation. Thus, number of search engine queries is our efficiency metric. Let d be the
number of discriminator phrases used by the PMI explained above. The PMI method
requires O(d) search engine queries to compute the PMI of each extracted label from
search engine hit counts. In contrast, Urns computes probabilities directly from the
set of extractions—requiring no additional queries, which cuts KnowItAll’s queries by
factors ranging from 1.9 to 17.

As explained in Section 2.0.1, the noisy-or model ignores target set size and sample
size, which leads it to assign probabilities that are far too high for the Country and
MayorOf relations, where the average number of times each label is extracted is high (see
bottom row of Table 1). This is further illustrated for the Country relation in Figure
3. The noisy-or model assigns appropriate probabilities for low sample sizes, because in
this case most extracted labels are in fact correct, as predicted by the noisy-or model.
However, as sample size increases, the fraction of correct labels decreases—and the noisy-
or estimate worsens. On the other hand, Urns avoids this problem by accounting for the
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interaction between target set size and sample size, adjusting its probability estimates as
sample size increases. Given sufficient sample size, Urns performs close to the ideal log
likelihood, improving slightly with more samples as the estimates obtained by the EM
process become more accurate. Overall, Urns assigns far more accurate probabilities
than the noisy-or model, and its log likelihood is a factor of 15 closer to the ideal, on
average. The very large differences between Urns and both the noisy-or model and PMI
suggest that, even if the performance of Urns degrades in other domains, it is quite
likely to still outperform both PMI and the noisy-or model.

0

1

2

3

4

5

City Film Country MayorOf

D
ev

ia
ti

on
 f

ro
m

 id
ea

l l
og

 li
ke

lih
oo

d

urns

binomial

pmi

Figure 2: Deviation of average log likelihood from the ideal for four relations (lower is better). On
average, Urns outperforms noisy-or by a factor of 15, and PMI by a factor of 20.

City Film MayorOf Country
Speedup 17.3x 9.5x 1.9x 3.1x
Average k 3.7 4.0 20.7 23.3

Table 1: Improved Efficiency Due to Urns. The top row reports the number of search engine queries
made by KnowItAll using PMI divided by the number of queries for KnowItAll using Urns. The
bottom row shows that PMI’s queries increase with k—the average number of distinct labels for each
relation. Thus, speedup tends to vary inversely with the average number of times each label is drawn.

Our computation of log-likelihood contains a numerical detail that could poten-
tially influence our results. To avoid the possibility of a likelihood of zero, we restrict
the probabilities generated by Urns and the other methods to lie within the range
(0.00001, 0.99999). Widening this range tended to improve Urns’s performance relative
to the other methods, as this increases the penalty for erroneously assigning extreme
probabilities—a problem more prevalent for PMI and noisy-or than for Urns. If we
narrow the range by two digits of precision, to (0.001, 0.999), Urns still outperforms
PMI by a factor of 15, and noisy-or by a factor of 13. Thus, we are comfortable that the
differences observed are not an artifact of this design decision.

Lastly, although we focus our evaluation on the quality of each method’s probability
13
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Figure 3: Deviation of average log likelihood from the ideal as sample size varies for the Country relation
(lower is better). Urns performs close to the ideal given sufficient sample size, whereas noisy-or becomes
less accurate as sample size increases.

estimates in terms of likelihood, the advantage of Urns is also reflected in other metrics
such as classification accuracy. When we convert each method’s probability estimate into
a classification (positive for a label iff the probability estimate is greater than 0.5), we
find that Urns has an average accuracy of approximately 81%, compared with PMI at
63% and noisy-or at 47%. Thus, Urns decreases classification error over the previous
methods by a factor of 1.9x to 2.8x. Urns ranks the majority of extracted labels in a
manner similar to the noisy-or model (which ranks by overall frequency). Thus, Urns
offers comparable performance to noisy-or in terms of e.g. area under the precision/recall
curve [6]. However, the correlations captured by multiple urns can improve the ranking
of sufficiently frequent labels, as detailed in Section 2.2.4.

2.2.3. Supervised IE Experiments
We compare Urns with three supervised methods. All methods utilize the same

feature set as Urns, namely the extraction counts km.

• noisy-or – Has one parameter per urn, making a set of M parameters (h1, . . . , hM ),
and assigns probability equal to

1−
∏
m∈M

(1− hm)km .

• logistic regression – Has M + 1 parameters (a, b1, b2, . . . , bM ), and assigns prob-
ability equal to

1
1 + ea+

∑
m∈M kmbm

.
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• SVM – Consists of an SVM classifier with a Gaussian kernel. To transform the
output of the classifier into a probability, we use the probability estimation built-in
to LIBSVM [8], which is based on logistic regression of the SVM decision values.

Parameters maximizing the conditional likelihood of the training data were found
for the noisy-or and logistic regression models using Differential Evolution.11 For those
models and Urns, we performed 20 iterations of Differential Evolution using 400 distinct
search points. In the SVM case, we performed grid search to find the kernel parameters
giving the best likelihood performance for each training set – this grid search was required
to get acceptable performance from the SVM on our task.

The results of our supervised learning experiments are shown in Table 2. Urns,
because it is more expressive, is able to outperform the noisy-or and logistic regression
models. In terms of deviation from the ideal log likelihood, we find that on average Urns
outperforms the noisy-or model by 19%, logistic regression by 10%, but SVM by only
0.4%.

City Film Mayor Country Average
noisy-or 0.0439 0.1256 0.0857 0.0795 0.0837
logistic
regression 0.0466 0.0893 0.0655 0.1020 0.0759
SVM 0.0444 0.0865 0.0659 0.0769 0.0684
Urns 0.0418 0.0764 0.0721 0.0823 0.0681

Table 2: Supervised IE experiments. Deviation from the ideal log likelihood for each method and each
relation (lower is better). The overall performance differences are small, with Urns 19% closer to the
ideal than noisy-or, on average, and 10% closer than logistic regression. The overall performance of SVM
is close to that of Urns.

2.2.4. Benefit from Multiple Urns
The previous results use the full multi-urn model. How much of Urns’s large perfor-

mance advantage in UIE is due to multiple urns?
In terms of likelihood, as measured in Figure 2, we found that the impact of multiple

urns is negligible. This is primarily because the majority of extracted labels occur only a
handful of times, and in these cases the multiple-urn model lacks enough data to estimate
the correlation of counts across urns.

Multiple urns can offer some performance benefit, however, for more commonly ex-
tracted labels. We evaluated the effect of multiple urns for UIE across the four relations
shown in Figure 2, computing the average label-precision at K, equal to the fraction
of the K highest-probability labels which are correct. The results under the single-urn
and full Urns model are shown in Table 3 for varying K. The full Urns model always
performs at least as well as the single-urn model, and sometimes provides much higher
precision. In fact, using multiple urns reduces the error by 29% on average for the five
K values shown in the table.

11For logistic regression, different convex optimization methods are applicable; however, in our exper-
iments the Differential Evolution routine appeared to converge to an optimum, and we do not believe
the choice of optimization method impacted the logistic regression results.
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Number of highest-ranked extracted labels Single Urn Urns
10 1 1
20 0.9875 1
50 0.925 0.955
100 0.8375 0.845
200 0.7075 0.71

Table 3: Label-precision of the K highest-ranked extracted labels for varying values of K between 10
and 200. Across the five K values shown, Urns reduces error over the single-urn model by an average
of 29%.

2.2.5. Is p a “universal constant”?
Our UIE experiments employed an extraction precision parameter p of 0.9. While

Urns still massively outperforms previous methods even if this value is adjusted to 0.8
or 0.95, the accuracy of Urns’s probabilities does degrade as p is altered away from 0.9.

In this section, we attempt to measure how consistent the observed p value is across
varying classes. This experiment differs somewhat from those presented above. In order
to test across a wide variety of classes, we moved beyond the KnowItAll experiments
from [17] and used the TextRunner system to provide instances of classes [3]. To choose
classes to investigate, we randomly selected 12 nouns from WordNet for which there were
at least 100 extractions (not necessarily unique) in TextRunner. We excluded nouns
which were overly general such that nearly any extraction would be correct (e.g., the class
Example) and nouns which are rarely or never used to name concrete instances (e.g., the
class Purchases). The results in this section were compiled by querying TextRunner
for 100 sentences containing extractions for each class.12

While TextRunner provides greater coverage than KnowItAll, precision in gen-
eral is lower. One of the inaccuracies of the TextRunner system is that it often fails
to delimit the boundaries of extractions properly (e.g., it extracts the phrase “alkanes or
cycloalkanes” as an instance of the Solvents class). We found that we could improve the
precision of TextRunner by over 20% on average by post-processing all extractions,
breaking on conjunctions or punctuation (i.e. the previous example becomes simply
“alkanes”). Our results employ this heuristic.

The results of the experiment are shown in Table 4. For each class, “p Observed”
gives the fraction of the 100 extractions tagged correct (by manual inspection). The
average p value observed across classes of 0.84 is lower than the value of 0.9 we use in
our previous experiments; this reflects the relatively lower precision of TextRunner
as well as the increased difficulty of extracting common nouns (versus the proper noun
extractions used previously). The results show that while there is substantial regularity
in observed p values, the values are not perfectly consistent. In fact, three classes (with
“p Observed” values in bold) differ significantly from the average observed p value (at
significance level of 0.01, Fisher Exact Test).

Given that we observe variability in p values across classes, an important question
is whether the correct p value for a given class, pclass, can be predicted. We observed
empirically that the precision of extractions for a class increases with how relatively

12The list of excluded nouns and the labeled extractions for each selected class are available for
download; see [12], Appendix A.
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frequently the class name is used in extraction patterns. As an example, the phrase
“cultures such as x” appears infrequently relative to the word “cultures,” as shown
the Table 4 in terms of Web hit counts obtained from a search engine. In turn, the
class Cultures exhibits a relatively low p value. Intuitively, this result makes sense—
class names which are more “natural” for naming instances should both appear more
frequently in extraction patterns, and provide more precise extractions.

We can exploit the above intuition by adjusting the estimate of extraction precision
for each class by a factor hclass. For illustration, based on the values in Table 4, we
devised the following adjustment factor:

hclass = 0.08(−2.36− log10

Hits(class such as)
Hits(class)

). (5)

The adjustment factor can give us a more accurate estimate of the precision for a given
class pclass = p− hclass.

Obviously, the expression hclass is heuristic and could be further refined using addi-
tional experiments. Nonetheless, adjusting by the factor does allow us to obtain better
precision estimates across classes. The quantity “p Observed + hclass” has only 57% of
the variance of the original “p Observed” (and the same mean, by construction). Further,
none of the observed differences of “p Observed + hclass” are statistically significantly
different from the original mean, using the same significance test employed previously.

Lastly, we should mention that even without any adjustment factor, the variance in
p value across classes is not substantially greater than that employed in our sensitivity
analysis in Section 2.2. Thus, we expect the performance advantages of Urns over the
noisy-or and PMI models to extend to these other classes as well.

Class p Observed Hits(class such as)
Hits(class) p Observed + hclass

solvents 0.98 0.201 0.85
devices 0.93 0.022 0.87
thinkers 0.93 0.013 0.89
relaxants 0.92 0.010 0.89
mushrooms 0.86 0.001 0.90
mechanisms 0.85 0.017 0.80
resorts 0.85 0.002 0.88
flies 0.84 0.0004 0.93
tones 0.77 0.001 0.83
wounds 0.77 0.002 0.80
machines 0.69 0.002 0.71
cultures 0.67 0.002 0.70

Table 4: Average p values for various classes, measured from 100 hand-tagged examples per class. Three
of the 12 classes have p values in bold, indicating a statistically significantly difference from the mean
of 0.84 (significance level of 0.01, Fisher Exact Test). However, if we adjust the estimate of p per class
according to how frequently it occurs in the “such as” pattern (using the factor hclass; see text), none
of the resulting p + hclass values are significantly different from the mean.

2.3. Urns: Other applications
Urns is a general model. For any classification task, if one of the features represents
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a count of observations following a mixture of Zipf distributions as assumed by Urns, the
model can be employed. In this section, we highlight three examples of how the Urns
model has been applied to tasks other than that of assigning probabilities of correctness
to extractions.

2.3.1. Estimating UIE precision and recall
An attractive feature of Urns is that it enables us to estimate its expected recall

and precision as a function of sample size. If the distributions in Figure 1 cross at the
dotted line shown then, given a sufficiently large sample size n, expected recall will be
the fraction of the area under the C curve lying to the right of the dotted line.

For a given sample size n, define τn to be the least number of appearances k at
which an extracted label is more likely to be from the C set than the E set (given the
distributions in Figure 1, τn can be computed using Proposition 1). Then we have:

E[TruePositives] = |C| −
∑

r∈num(C)

τn−1∑
k=0

(
n

k

)(r
s

)k (
1− r

s

)n−k
where we define “true positives” to be the number of extracted labels ci ∈ C for which
the model assigns probability P (ci ∈ C) > 0.5.

The expected number of false positives is similarly:

E[FalsePositives] = |E| −
∑

r∈num(E)

τn−1∑
k=0

(
n

k

)(r
s

)k (
1− r

s

)n−k
.

The expected precision of the system can then be approximated as:

E[Precision] ≈ E[TruePositives]
E[FalsePositives] + E[TruePositives]

To illustrate the potential benefit of the above calculations and evaluate their accu-
racy, we computed expected recall and precision for the particular num(C) and num(E)
learned (in the unsupervised setting) in our experiments in Section 2.2. The results
appear in Table 5. The recall estimates are within 11% of the actual recall (that is,
the estimated number of correct examples in our set of extracted labels, based on the
hand-tagged test set) for the City and Film classes. Further, the estimates reflect the
important qualitative difference between the large City and Film classes as compared
with the smaller MayorOf and Country classes.

Were we to increase the sample size n for the Film class and the Country class each to
1,000,000, the model predicts that we would increase our Film recall by 81%, versus only
4% for Country. Thus, the above equations allow an information extraction system to
dynamically choose how to allocate resources to match given precision and recall goals,
even in the absence of hand-labeled data.

2.3.2. Estimating the functionality of relations
Knowledge of which relations in a knowledge base are functional is valuable for a

variety of different tasks. Previous work has shown that knowledge of functional relations
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n E[Recall] Actual Recall E[Precision] Actual Precision
City 64605 12900 14300 0.78 0.84
Country 51390 37 176 0.63 0.77
Film 135213 25900 23400 0.79 0.68
MayorOf 46858 58 158 0.62 0.79

Table 5: Estimating precision and recall in UIE. Listed is the Urns model estimate for precision and
recall, along with the actual measured quantities, for four classes. The major differences between the
classes—that the MayorOf and Country classes have roughly two orders of magnitude lower recall than
the City and Film classes—is qualitatively reflected by the model.

can be used to automatically detect contradictions in text [11, 34], and to automatically
identify extractor errors in IE [1]. For example, if we know that the Headquartered
relation is functional and we see one document asserting that Intel is headquartered in
Santa Clara, and another asserting it is headquartered in Phoenix, we can determine that
either the documents contradict each other, or we have made an error in extraction. In
this section, we illustrate how Urns can be used to automatically compute the probability
that a phrase denotes a functional relation.

The discussion in this section is based on a set of extracted tuples. An extracted tuple
takes the form R(x, y) where (roughly) x is the subject of a sentence, y is the object, and
R is a phrase denoting the relationship between them. If the relation denoted by R is
functional, then typically the object y is a function of the subject x. Thus, our discussion
focuses on this possibility, though the analysis is easily extended to the symmetric case.

The main evidence that a relation R(x, y) is functional comes from the distribution
of y values for a given x value. If R denotes a function and x is unambiguous, then we
expect the extractions to be predominantly a single y value, with a few outliers due to
noise.

Example A in Figure 4 has strong evidence for a functional relation. 66 out of 70
extractions for was born in (Mozart, PLACE) have the same y value. An ambiguous x
argument, however, can make a functional relation appear non-functional. Example B
refers to multiple real-world individuals named “John Adams” and has a distribution of y
values that appears less functional than example C, which has a non-functional relation.

Logically, a relation R is functional in a variable x if it maps it to a unique variable
y: ∀x, y1, y2R(x, y1)∧R(x, y2)⇒ y1 = y2. Thus, given a large random sample of ground
instances of R, we could detect with high confidence whether R is functional. In text, the
situation is far more complex due to ambiguity, polysemy, synonymy, and other linguistic
phenomena.

To decide whether R is functional in x for all x, we first consider how to detect whether
R is locally functional for a particular value of x. We later combine the local functionality
probabilities to estimate the global functionality of a relation.13 Local functionality for
a given x can be modeled in terms of the global functionality of R and the ambiguity
of x. We later outline an EM-style algorithm that alternately estimates the probability
that R is functional and the probability that x is ambiguous.

Let θfR be the probability that R(x, ·) is locally functional for a random x, and let

13We compute global functionality as the average local scores, weighted by the probability that x is
unambiguous.
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A. was born in(Mozart, PLACE):
Salzburg(66), Germany(3), Vienna(1)

B. was born in(John Adams, PLACE):
Braintree(12), Quincy(10), Worcester(8)

C. lived in(Mozart, PLACE):
Vienna(20), Prague(13), Salzburg(5)

Figure 4: Functional relations such as example A have a different distribution of y values than non-
functional relations such as C. Ambiguous x argument as in B, however, can make a functional relation
appear non-functional.

Θf be the vector of these parameters across all relations R. Likewise, θux represents the
probability that x is locally unambiguous for random R, and Θu the vector for all x.

We wish to determine the maximum a posteriori (MAP) functionality and ambiguity
parameters given the observed data D, that is arg maxΘf ,Θu P (Θf ,Θu|D). By Bayes
Rule:

P (Θf ,Θu|D) ∝ P (D|Θf ,Θu)P (Θf ,Θu). (6)

We outline a generative model for the data, P (D|Θf ,Θu). Let R∗x indicate the event
that the relation R is locally functional for the argument x, and that x is locally unam-
biguous for R. Also, let D indicate the set of observed tuples, and define DR(x,·) as the
multi-set containing the frequencies for extractions of the form R(x, ·).

Let us assume that the event R∗x depends only on θfR and θux , and further assume that
given these two parameters, local ambiguity and local functionality are conditionally
independent. We obtain the following expression for the probability of R∗x given the
parameters:

P (R∗x|Θf ,Θu) = θfRθ
u
x .

We assume each set of data DR(x,·) is generated independently of all other data and
parameters, given R∗x. From this and the above we have:

P (D|Θf ,Θu) =
∏
R,x

(
P (DR(x,·)|R∗x)θfRθ

u
x + P (DR(x,·)|¬R∗x)(1− θfRθ

u
x)
)
. (7)

These independence assumptions allow us to express P (D|Θf ,Θu) in terms of dis-
tributions over DR(x,·) given whether or not R∗x holds. We use a single-urn model to
estimate these probabilities based on binomial distributions.

Let k = maxDR(x,·), and let n =
∑
DR(x,·); we will approximate the distribution

over DR(x,·) in terms of k and n. In the single-urn model, if R(x, ·) is locally functional
and unambiguous, k has a binomial distribution with parameters n and p, where p is the
precision of the extraction process. If R(x, ·) is not locally functional and unambiguous,
then we expect k to typically take on smaller values. Empirically, we find that the
underlying frequency of the most frequent element in the ¬R∗x case tends to follow a
Beta distribution.

Under the model, the probability of the evidence given R∗x is:

P (DR(x,·)|R∗x) ≈ P (k, n|R∗x) =
(
n

k

)
pk(1− p)n−k. (8)

20



And the probability of the evidence given ¬R∗x is:

P (DR(x,·)|¬R∗x) ≈ P (k, n|¬R∗x)

=
(
n

k

)∫ 1

0

p′k+αf−1(1− p′)n+βf−1−k

B(αf , βf )
dp′

=

(
n
k

)
Γ(n− k + βf )Γ(αf + k)

B(αf , βf )Γ(αf + βf + n)
. (9)

where n is the sum over DR(x,·), Γ is the Gamma function and B is the Beta function.
αf and βf are the parameters of the Beta distribution for the ¬R∗x case (in practice,
these are estimated empirically).

Substituting Equation 9 into Equation 7 and applying an appropriate prior gives the
probability of parameters Θf and Θu given the observed data D. However, Equation 7
contains a large product of sums—with two independent vectors of coefficients, Θf and
Θu—making it difficult to optimize analytically.

If we knew which arguments were ambiguous, we would ignore them in computing
the functionality of a relation. Likewise, if we knew which relations were non-functional,
we would ignore them in computing the ambiguity of an argument. Instead, we initialize
the Θf and Θu arrays randomly, and then execute an EM-style algorithm to arrive at a
high-probability setting of the parameters.

Note that if Θu is fixed, we can compute the expected fraction of locally unambiguous
arguments x for which R is locally functional, using DR(x′,·) and Equation 9. Likewise,
for fixed Θf , for any given x we can compute the expected fraction of locally functional
relations R that are locally unambiguous for x.

Specifically, we repeat until convergence:

1. Set θfR = 1
sR

∑
x P (R∗x|DR(x,·))θux for all R.

2. Set θux = 1
sx

∑
R P (R∗x|DR(x,·))θ

f
R for all x.

In both steps above, the sums are taken over only those x or R for which DR(x,·) is
non-empty. Also, the normalizer sR =

∑
x θ

u
x and likewise sx =

∑
R θ

f
R.

By iteratively setting the parameters to the expectations in steps 1 and 2, we arrive
at a good setting of the parameters.

The above algorithm is experimentally investigated in [34], showing that the technique
effectively identifies functional relations, and can power effective contradiction detection.

2.3.3. Synonym Resolution
The last application of Urns we will discuss is that of resolving which strings refer

to the same objects or relations. In text, the same object is often referred to by mul-
tiple distinct names—“U.S.” and “United States” each refer to the same country, for
example. Likewise, relationships between objects are often expressed as multiple distinct
paraphrases (e.g., “x is the capital of y” and “x, capital of y”).

The Resolver system performs Synonym Resolution – taking as input a set of
extracted tuples (as discussed above, e.g., IsCapitalOf(D.C., United States)) and
returning a set of clusters, where each cluster contains coreferential object strings or
relationship strings [42].
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Here we provide a high-level description of how Resolver employs an Urns-like
model, deferring to [42] for the details. Consider the task of determining whether two
strings s1 and s2 refer to the same object, based on a set of tuples each including either
s1 or s2 as an argument. Resolver specifies a urn-based generative process for the
observed tuples; namely, the set of potential tuples for si are modeled as labels on balls
in a urn, and the actual observed tuples involving si are modeled as draws from the urn.
Resolver assumes that if s1 and s2 refer to the same object, then the urn contents for
s1 are maximally similar to those for s2; otherwise, the two urns can differ to a greater
or lesser degree. With this assumption, Resolver computes the probability that s1 and
s2 co-refer based on how frequently they participate in similar tuples. This method is
shown to be effective for resolving synonymous strings in practice.

2.4. Related Work
In contrast to the bulk of previous IE work, our focus is on unsupervised IE (UIE)

where Urns substantially outperforms previous methods (Figure 2).
In addition to the noisy-or models we compare against in our experiments, the IE lit-

erature contains a variety of heuristics using repetition as an indication of the veracity of
extracted information. For example, Riloff and Jones [33] rank extractions by the number
of distinct patterns generating them, plus a factor for the reliability of the patterns. Our
work is intended to formalize these heuristic techniques, and unlike the noisy-or mod-
els, we explicitly model the distribution of the target and error sets (our num(C) and
num(E)), which is shown to be important for good performance in Section 2.2.1. The
accuracy of the probability estimates produced by the heuristic and noisy-or methods is
rarely evaluated explicitly in the IE literature, although most systems make implicit use
of such estimates. For example, bootstrap-learning systems start with a set of seed in-
stances of a given relation, which are used to identify extraction patterns for the relation;
these patterns are in turn used to extract further instances (e.g. [33, 25, 1, 30]). As this
process iterates, random extraction errors result in overly general extraction patterns,
leading the system to extract further erroneous instances. The more accurate estimates
of extraction probabilities produced by Urns would help prevent this “concept drift.”

Skounakis and Craven [37] develop a probabilistic model for combining evidence from
multiple extractions in a supervised setting. Their problem formulation differs from ours,
as they classify each occurrence of an extraction, and then use a binomial model along
with the false positive and true positive rates of the classifier to obtain the probability
that at least one occurrence is a true positive. Similar to the above approaches, they do
not explicitly account for sample size n, nor do they model the distribution of target and
error extractions.

Culotta and McCallum [10] provide a model for assessing the confidence of extracted
information using conditional random fields (CRFs). Their work focuses on assigning
accurate confidence values to individual occurrences of an extracted field based on textual
features. This is complementary to our focus on combining confidence estimates from
multiple occurrences of the same extracted label. In fact, each possible feature vector
processed by the CRF in [10] can be thought of as a virtual urn m in our Urns. The
confidence output of Culotta and McCallum’s model could then be used to provide the
precision pm for the urn.

Our UIE task is related to previous work in automatically devising logical statements
from text [24, 36] and unsupervised semantic role labeling [41, 21, 32]. UIE is distinct
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in that the target output is a knowledge base of factual relations, rather than an inter-
pretation of text in terms of logic or labeled semantic roles. Because our UIE approach
operates over a large corpus, we do not attempt to identify all semantic assertions in the
text corpus. Instead, we focus on only factual assertions that can be identified automat-
ically at relatively high precision (using e.g. extraction patterns), and present methods
for combining this evidence at Web-scale.

Our work is similar in spirit to BLOG, a language for specifying probability distri-
butions over sets with unknown objects [28]. As in our work, BLOG models can express
observations as draws from an unknown set of balls in an urn. Whereas BLOG is intended
to be a general modeling framework for probabilistic first-order logic with varying sets of
objects, our work is directed at modeling redundancy in IE. We also provide supervised
and unsupervised learning methods for our model that are effective for data sets contain-
ing many thousands of examples, along with experiments demonstrating their efficacy in
practice.

One of the problems our EM-based algorithm for learning Urns parameters must
solve is estimating the parameter |C|, the size of the target set. This problem has
commonalities with the classic “capture-recapture” problem from ecology, in which the
goal is to estimate the size of an animal population by capturing and marking a sample of
the population, then re-sampling at a later time [31]. There are a number of significant
differences between the capture-recapture problem and estimating Urns parameters,
however. First, Urns attempts to learn the parameter |C| from observations which are
co-mingled with samples from a confounding error distribution. Second, Urns must also
characterize how the frequencies of the target set vary (in terms of the Zipfian shape
parameter zC). In order to overcome these additional parameter estimation difficulties,
Urns exploits problem structures often found in textual domains, such as the fact that
extraction frequencies tend to be Zipf distributed.

3. Urns: Theoretical Results

The Urns model was shown in the previous section to be effective in practice for
UIE and other applications. In this section, we analyze the Urns model theoretically.
To better understand the behavior of Urns, we would like the be able to characterize
how class probability increases with extraction count. Further, we would like a guarantee
on Urns’s accuracy given sufficient unlabeled data. How does accuracy increase with
sample size? Can the parameters of the model be learned from unlabeled data in general?

Specifically, we investigate the following questions in the context of a single-urn model:

1. In the model, at what rate does the probability that an extracted label is of the
target class increase with the number of extractions k?

2. What are sufficient conditions for accurate classification, given the parameters of
the model? What sample size n is sufficient to achieve a given level of classification
accuracy?

3. Can the parameters of the model be learned from unlabeled data?
4. Can the Urns model provide accurate classifications for extractions, i.e. is PAC-

learnability guaranteed?

We begin by considering the first two questions in the uniform special case previously
introduced in Section 2.0.1. The uniform case, while not fully realistic, does provides
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qualitatively interpretable results useful for illustration. We then address all four ques-
tions in the more realistic Zipfian model used in our experiments.

In the below, for notational convenience we will utilize in place of the multi-set
num(C) a multi-set FC containing, for each element of C, the relative fraction of balls
labeled with that element. We define FE similarly, such that

∑
f∈FC∪FE f = 1. Then

the following expression (adapted from Equation 1) specifies the probability that x is an
element of C given the observed values of k and n:

P (x ∈ C|k, n) =

∑
f∈FC f

k(1− f)n−k∑
f∈FC∪FE f

k(1− f)n−k
.

We will also refer to the classifier output by Urns, which is a function from extracted
labels to a binary value, indicating that Urns’s probability is greater than 0.5 (positive)
or less than 0.5 (negative).

3.1. Theoretical Results: Known Parameters
This section presents our theoretical results when the parameters of Urns are known.

In the following, we examine Urns under two sets of assumptions, the Uniform Special
Case (USC) and the Zipfian Case (ZC), defined below.

Theorems 3 and 5 address question (1) above in each model, describing how class
probability increases with the number of times k a label is extracted. Specifically, we
provide expressions for the increase in the odds ratio odds(k, n) = P (x ∈ C|k, n)/(1 −
P (x ∈ C|k, n)) in terms of k. Theorems 4 and 7 address question (2). Let cknown indicate
the classifier output by Urns when the parameters are known; we provide upper bounds
on the expected error E[error(cknown)] in terms of the sample size n and the model
parameters.

3.2. Analyzing the Uniform Special Case
The Uniform Special Case (USC) of the Urns model, first introduced in Section 2.0.1,

is characterized by the following assumptions:

USC1 Each target label has the same probability pC of being selected in a single draw,
and each error label has a corresponding probability pE .

USC2 Each label from C is repeated on more balls in the urn than is each label from E
(that is, pC > pE).

USC3 Frequency observations k are Poisson distributed (as in Equation 2).

3.2.1. Theoretical Results in the USC
The following theorem states how the odds ratio odds(k, n) increases with k in the

USC.

Theorem 3. In the USC

odds(k1, n)
odds(k2, n)

=
(
pC
pE

)k1−k2
. (10)
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Proof. Follows from the posterior probability in the USC (from Equation 2):

P (x ∈ C|k, n) =
1

1 + |E|
|C| (

pE
pC

)ken(pC−pE)
. (11)

�
Along with assumption USC2, Theorem 3 illustrates that in the USC the odds that

an element is a member of the target class increase exponentially with repetition. The
increase is hastened when the target and error classes are less confusable (i.e. as pC
increases relative to pE).

How accurately we can classify extracted labels, given the parameters of the model
and the sample size? Let cknown indicate the Urns classifier when the parameters are
known. The following theorem provides an upper bound on the error of cknown in the
USC in terms of the sample size n, and the separability pC − pE between the C and E
sets.

Theorem 4. In the USC, the expected error E[error(cknown)] < ε when the sample size
n satisfies:

n ≥ 12pC ln 1/ε
(pC − pE)2

. (12)

Proof Define a model m with a threshold τ = pC+pE
2 such that Pm(x ∈ C|k, n) ≥ 0.5

whenever k ≥ nτ , and Pm(x ∈ C|k, n) < 0.5 otherwise. Since we can calculate the
optimal threshold when the parameters are known, E[error(cknown)] is no worse than the
expected error made by model m (which utilizes a potentially sub-optimal threshold). We
express the expected error of model m over the full set C ∪E by summing the expected
contribution of each label (equal to the probability that the label appears a number of
times resulting in misclassification).

E[error(cknown)] =

∑
x∈E

∑
k≥nτ P (k|x ∈ E,n) +

∑
x∈C

∑
k<nτ P (k|x ∈ C, n)

|C ∪ E|
. (13)

Employing Chernoff bounds, we can bound the probability that a given label deviates
from its expected frequency enough to be misclassified. The Chernoff bounds we employ
state that for a random variable X =

∑
iXi equal to the sum of independent Bernoulli

random variables Xi, the probability that X exceeds its expectation µ by more than a
factor (1 + δ), for any δ > 0, is bounded as:

P (X > (1 + δ)µ) < e−µδ
2/3. (14)

Likewise, the probability that X is sufficiently less than its expectation is bounded as:

P (X < (1− δ)µ) < e−µδ
2/2. (15)

for any δ > 0.
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Let d = pC − pE . Then we have:∑
k≥nτ

P (k|x ∈ E,n) =
∑

k≥n(pE+d/2)

P (k|x ∈ E,n)

= P (k ≥ n(pE + d/2)|x ∈ E)
≤ P (k > n(pC + d/2)|x ∈ E)

< e−nd
2/(12pC)

where the last inequality uses the Chernoff bound in Equation 14 with µ = npC and
δ = d/(2pC). Similarly, using the bound in Equation 15, we have:∑

k<nτ

P (k|x ∈ C, n) =
∑

k<n(pC−d/2)

P (k|x ∈ C, n)

= P (k < n(pC − d/2)|x ∈ C)

< e−nd
2/(8pC)

< e−nd
2/(12pC).

Algebra gives the final result. �
Theorem 4 yields the following corollary, which states that under the assumptions

of the USC, even a weakly indicative extractor (one for which pC − pE is just slightly
greater than zero) can provide an arbitrarily accurate classifier, given sufficiently large
n. This statement is akin to similar results in boosting algorithms in machine learning
[35].

Corollary 4.1. In the USC, for any ε > 0, any extractor for which pC − pE > 0 can be
used to achieve accuracy of 1− ε given sufficient sample size n.

3.3. Analyzing the Zipfian Single-urn Case
The USC is a reasonable approximation for labels on the flat tail of the Zipf curve,

but it is clearly an oversimplification for all labels. The following theorems are analogous
to those presented for the USC above, but employ the more realistic Zipfian single-urn
assumptions. In particular, we assume that the target and error sets are governed by
known Zipf distributions, described below, with sizes |C| and |E| and shape parameters
zC and zE . Further, we assume draws are generated from a mixture of these Zipf dis-
tributions, governed by a known mixing parameter p giving the probability that a single
draw comes from C:

p =
∑
f∈FC

f. (16)

As in our experiments, we will find it more mathematically convenient to work with
a continuous representation of the commonly discrete Zipfian distribution. Integrating
over the continuous representation will allow us to arrive at closed-form expressions for
class probability in terms of gamma functions (Theorem 5). In the discrete Zipfian
case, it is assumed that the ith most frequent element of C has frequency αC/i

zC , for
αC a normalization constant. In our continuous representation, the frequency of each
element of C is itself a random variable drawn by choosing a uniform x from the range
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[1, |C|+ 1] and then mapping x to the curve fC(x) = αC/x
zC to obtain a frequency. The

normalization constant αC is:

αC =
p∫ |C|+1

1
1
xzC dx

. (17)

The normalization constant is chosen such that if we draw |C| frequencies for the labels
of the C set, the expected sum of the frequencies is p, as desired. The frequency of each
element of E is defined analogously. We will refer to the functions fC and fE as frequency
curves.

As in the USC, for a label in the ZC with underlying frequency f we assume the
observed count k is Poisson distributed with expected value nf . Thus, the likelihood of
observing an example of the set S (used to denote either of the C or E sets) a total of k
times in n draws is:

PZC(k|x ∈ S, n) =
1
|S|

∫ |S|+1

1

(nαSx−zS )k

enαSx
−zS k!

dx. (18)

The solution of this equation in terms of incomplete gamma functions is given below in
Theorem 5, Equation 19.

We state the assumptions in the ZC as follows:

ZC1 The distributions of labels from C and E are each Zipfian as defined above, with
mixing parameter p. That is, the likelihood of the data is governed by Equation
18.

ZC2 Confidence increases with repetition; that is, P (x ∈ C|k) increases monotonically
with k.

ZC3 The error label frequency curve has positive probability mass below the minimum
target label frequency; that is αE/izE < αC/(|C|+1)zE for some known i < |E|+1.

ZC4 Analogously, the target label frequency curve has positive probability mass above
the maximum error label frequency; that is αC/izC > αE for some known i > 1.

ZC5 Both the target and error set have non-zero probability mass in the urn; that is,
p, 1− p > M for some known lower bound M > 0.

Assumptions ZC3 and ZC4 encode an assumption that given a sufficient number of
distinct labels in the urn, with high probability the most frequent labels will be target
labels and the least frequent will be error labels. These assumptions will allow us to
establish PAC learnability from unlabeled data alone.

To lend justification to the above assumptions, we note that we would expect them
to hold at least approximately in Unsupervised Information Extraction applications.
The Zipfian nature of extractions and monotonicity (ZC1 and ZC2) are well known to
hold approximately in practice. Further, assumption ZC3 is certainly empirically true
when one considers that, as a simple example, for any target set element there exist
multiple less-frequent misspellings in the error set. Assumption ZC4 tends to be at least
approximately true in practice: the most frequently extracted labels tend to be instances
of the target class. Assumption ZC5 is nearly trivially true in practice, we would always
expect the target and error sets to have probability mass above some non-zero minimum
value.
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3.3.1. Theoretical Results in the ZC
We start by explicitly expressing how the odds that an element is a member of the

target class increases with the number of repetitions:

Theorem 5. In the ZC, the odds ratio

odds(k + 1, n)
odds(k, n)

=

(k − 1/zC)g(k, zC , np, |C|+ 1, αC) + h(k − 1/zC , np
(|C|+1)zCαC

)

(k − 1/zE)g(k, zE , n(1− p), |E|+ 1, αE) + h(k − 1/zE ,
n(1−p)

(|E|+1)zEαE
)

where
h(k′, n′) = n′k

′
en
′

and
P (k|x ∈ C, n) =

np

αC

1/zC
g(k, zC , np, |C|+ 1, αC) (19)

with

g(k′, z′, n′, s′, α′) = Γ(k′ − 1/z′,
n′

s′z′α′
)− Γ(k′ − 1/z′,

n′

α′
)

assuming that neither zC nor zE are exactly equal to 1.

Proof. Given that |C|, |E|, k ≥ 1, and zC , zE 6= 1 the above result is obtained by
symbolic integration in Mathematica and algebra.14 �

Theorem 5 does not utilize any assumptions other than the Zipfian mixture (ZC1).
Equation 19 is the closed-form likelihood expression used to perform efficient inference
in our experiments. Of course, the odds ratio given above is complex. An illustration of
how class probability varies with k is shown in Figure 5. In order to provide qualitative
insights, the odds ratio should be simplified into a more interpretable bound; this is an
item of future work.

We also wish to bound the classification error of Urns for the ZC. The following
theorem provides a bound relative to the error of the optimal classifier, which utilizes
both the Urns parameters and the precise frequencies of each label (rather than simply
the observed counts). As such, the optimal classifier exhibits the best classification
performance that can be achieved using the extraction count alone.

Definition 6. The optimal classifier is one which classifies each label optimally given
knowledge of both the urn parameters, as well as the precise frequency in the urn of each
label.

Define τ such that the classification threshold of the optimal classifier for a given n
is equal to nτ . From assumption ZC2, we know that a single such τ exists. Then the
following theorem illustrates that as the sample size increases, the expected error falls
off nearly linearly toward that of the optimal classifier.

14For reference, the specific Mathematica commands involved in the proof are available online, see
http://www.cs.northwestern.edu/~ddowney/data/urnsIntegration.html.
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Figure 5: Probabilities assigned in the Urns model, in the Uniform Special Case (USC), and Zipfian
Case (ZC) as the Zipfian shape parameters vary. For very flat Zipf curves (zC = 0.45, zE = 0.4), ZC is
similar to USC, but ZC differs from USC as the shape parameters increase and diverge from each other.
A zE value of 1.1 implies some errors have high extraction frequency, meaning that as k increases,
class probability in the ZC converges to one more slowly than in the USC. In the above, |E| = 20, 000,
|C| = 500, p = 0.9, and n = 10, 000.

Theorem 7. In the ZC, given any δ > 0, the expected error of urns is bounded as:

E[error(cknown)] ≤ β +
KC(δ) +KE(δ)
(|C|+ |E|)n1−δ

where KC(δ) and KE(δ) are constants (with respect to n) defined below, and β is the
expected error of the optimal classifier.

The constants KC and KE are defined as follows (for S denoting C or E):

KS(δ) = max

(
3/δ, 1 +

∫ xτS−1

1

1
(αSx−zS − xτS)2

dx

)
(20)

where xτS is defined to be the unique value such that fS(xτS) = τ , and αS is the
normalization constant (see Equation 17).

Proof. Following the proof of Theorem 4, we aggregate the probabilities that the
elements are misclassified.

We present the analysis for expected error on elements of the C set; the E set is
analogous. When the parameters are known, Urns makes errors the optimal classifier
does not if and only if the true frequency of a target label x is greater than the threshold
τ , but the observed count is less than nτ . We bound the probability that an element with
true frequency of αCx−zC > τ appears fewer than nτ times in n draws using Chebyshev’s
inequality. Chebyshev’s inequality bounds the probability that a random variable Y with
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expectation µ and variance σ2 appears sufficiently far from its expectation:

P (|Y − µ| > rσ) ≤ 1
r2
.

For a Poisson random variable with expected value p′n for 0 < p′ < 1, σ is bounded
above by

√
n, so the above expression also bounds the probability that the deviation

exceeds r
√
n. Setting r

√
n equal to the smallest deviation resulting in misclassification

(nαCx−zC − nxτC), and integrating over the frequency curve fC , we have the following
bound for the expected error on the C set:

E[errorC(cknown)] ≤ βC +
∫ xτC

1

min
(

1,
1

n(αCx−zC − xτC)2

)
dx (21)

where βC is the fraction of the expected error of the optimal classifier due to elements
of C (namely, the probability mass of elements of C with frequency less than τ).

Define:

γn =
1
n

+
∫ xτC−1/n

1

1
n(αCx−zC − xτC)2

dx

≥
∫ xτC

1

min
(

1,
1

n(αCx−zC − xτC)2

)
dx.

We claim γn ≤ KC(δ)/n1−δ, given which the theorem follows. The proof of the claim
proceeds by induction. First, note that the n = 1 case, that γ1 ≤ KC(δ), holds by
construction of KC(δ)—the second term in the max function in Equation 20 is equal to
γ1. Then assuming γn ≤ KC(δ)/n1−δ, consider the n+ 1 case:

γn+1 =
nγn
n+ 1

+
∫ xτC−1/(n+1)

xτC−1/n

1
n(αCx−zC − xτC)2

dx

≤ KC(δ)nδ

n+ 1
+

1
n2

=
KC(δ)

(n+ 1)1−δ

(
nδ

(n+ 1)δ
+

(n+ 1)1−δ

KC(δ)n2

)
.

It remains to show that: (
nδ

(n+ 1)δ
+

(n+ 1)1−δ

KC(δ)n2

)
≤ 1. (22)

With algebra, this is equivalent to the statement that KC(δ)n2((n+1)δ−nδ) ≥ n+1.
From the generalized binomial theorem, (n+1)δ is at least as large as nδ + δnδ−1− δ(1−
δ)nδ−2/2. With algebra, we have:

KC(δ)n2((n+ 1)δ − nδ) ≥ KC(δ)δn1+δ

2
≥ 3n1+δ

2
≥ n+ 1

as desired, using the fact that KC(δ) ≥ 3/δ. �
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3.4. Theoretical Results with Unknown Parameters
In unsupervised classification, in general we are not given the Urns parameters in

advance, and must learn these from unlabeled data. In this section, we provide theorems
bounding the error in unsupervised classification even when the parameter values are
unknown. The following theorem shows that with high probability the parameter values
of Urns can be estimated accurately from unlabeled data alone, as the total number of
distinct labels in the urn u = |C|+ |E| increases, with n fixed.

Theorem 8. In the ZC, for any δ, ε > 0, given sufficiently large u = |C|+ |E| for fixed
n, we can obtain an estimate of the parameters of fC and fE such that with probability
1− δ each estimate lies within ε of the true parameter value.

Proof. The frequency curves fC and fE can be converted into functions gC(λ) and
gE(λ) giving the probability density of a particular frequency λ for labels in the C (resp.
E) set. These functions are themselves power law distributions. For example, in the
error set case:

gE(λ) =
{

LE
λ(1+zE)/zE

for aE ≤ x ≤ bE ,
0 for x < aE or x > bE ,

(23)

for a suitable constant LE where zE indicates the exponent from the original frequency
curve. The distribution of error labels in the model is completely characterized by four
parameters: LE and zE , the minimal frequency aE , and the maximal frequency bE .

The probability that a particular label appears k times in n extractions can then be
written as follows:

P (k|n) =
∫ n

0

(gC(λ) + gE(λ))
e−λλk

k!
dλ. (24)

Let g(x) = gC(x)+gE(x). When written in the form of Equation 24, the distribution
over k becomes an instance of a compound Poisson process, for which the existence of
effective estimators of g(x) is well-known. In particular, Theorem 1 from [26] states
that for any x < n we can obtain a sequence of estimates ĝu(x) of g(x) such that
E[ĝu(x) − g(x)]2 = o(1) as u → ∞. Thus, for any given δ′, ε′ > 0, we have with
probability 1 − δ′ that |ĝu(x) − g(x)| < ε′ for u sufficiently large. It remains to convert
this estimator of g(x) into estimators of each of the Urns parameters. In the re-written
model (Equation 23) we will employ, there are eight total parameters characterizing the
mixture components gC and gE . We present the construction for the four parameters of
gE , the gC case is analogous.

Consider two estimates ĝu(x0) and ĝu(rx0) where x0, rx0 < αC/(|C|+1). That is, x0

and rx0 are sufficiently small that gC(x0) and gC(rx0) are zero by assumption ZC3. By
algebra, in this region (1 + zE)/zE = (ln g(x0)− ln g(rx0))/(ln r), so zE is a continuous
and bounded function of g(x0) and g(rx0) on the domain of interest. This implies we can
estimate zE within ε with probability 1− δ given our estimator ĝu, for u suitably large.
Likewise, LE is a continuous and bounded function of g(x) and zE , so we can estimate
LE effectively.

It remains to obtain an estimator for the limits of support aE and bE . We begin with
the minimal limit aE . We construct from 0 to n a uniform lattice of estimates {ĝu(xi)}
each ε apart. By assumption ZC5, gE(x) > M ′ for x ∈ [aE , aE + ε) for a known constant
M ′ given that ε is sufficiently small. By taking u suitably large, we can ensure with
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probability 1− δ that ∀xi < aE , |ĝu(xi)−g(xi)| = |ĝu(xi)| < M ′/2 and that the xj ≥ aE
falling in the interval [aE , aE + ε) has estimate ĝu(xj) > M ′/2. Thus, the minimal xi
such that ĝu(x) > M ′/2 is with probability 1− δ an estimate within ε of aE . Estimating
the maximal limit of support bE is similar. The same procedure is employed, except that
because gC(bE) is non-zero, we instead identify successive estimates ĝu(xk) and ĝu(xk+1)
that differ by a sufficiently large margin, where xk is greater than our estimate for aE .
By taking u sufficiently large and ε sufficiently small, with probability 1− δ the value xk
is within ε of bE . �

3.4.1. PAC Learnability under Urns

In this section, we show that a sufficiently informative extractor that follows the Urns
model can be used to PAC learn from only unlabeled data. Here, we assume we have
additional features for each label beyond just the extraction counts (for example, other
features could include the co-occurrence counts of each label with textual contexts other
than the extractors, as in [15]).

Our result is expressed in terms of a given, fixed concept class of binary classifiers
mapping the input features to {0, 1}, denoted as C—as is typical in the PAC-learning
setting, we assume our target function (having zero error) is in C.

Our result requires that a “separability” criterion holds on the concept class C. This
criterion states that no two distinct concepts in C agree on too large a fraction of the
instance space:

Definition 9. A concept class C′ is ε-separable if for any distinct concepts c, c′ ∈ C′,
the fraction of examples x ∈ X such that c(x) = c′(x) is less than 1− ε.

We also require an extractor that is sufficiently informative. We state this criteria
in terms of the minimal expected classification error that can be achieved using the
extraction counts, in the limit of u and n large. This is equivalent to the area of the
“confusion region” in Figure 1, which we define formally as:

Definition 10. The area of the confusion region of an extractor is:

min
τ

[∫ τ

0

gC(λ)dλ+
∫ ∞
τ

gE(λ)dλ
]
. (25)

Given this definition, we can state the following result, which shows that Urns is
able to PAC learn from unlabeled data alone.

Proposition 11. If C is ε-separable, given an extractor that follows the ZC with confu-
sion region of area less than 1− ε/2, C is PAC-learnable from unlabeled data alone.

Proof. By Theorem 8, with high probability we can obtain the parameters of Urns
within an error of ε′, for any ε′ > 0. Because the optimal classification threshold τ is a
continuous and bounded function of the Urns parameters (see Equation 25), Urns can
achieve accuracy arbitrarily close to the confusion region size. Thus, the error of Urns
is less than 1 − ε/2, given n and u sufficiently large, meaning it assigns classifications
different from those of the target classifier on fewer than 1 − ε/2 of the examples. By
the separability criterion, the target concept is the only hypothesis that differs from the
output of Urns on so few examples. Thus, an algorithm that returns the concept c ∈ C
most similar to the output of Urns will always return the target concept. �
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3.5. Related Work
Joachims provides theoretical results in supervised textual classification that use the

Zipfian structure of text to arrive at error bounds for Support Vector Machine classifiers
on textual data [23]. The strong performance of SVMs in our supervised experiments
corroborate Joachims’s claim that these classifiers are effective on textual data. However,
in contrast to Joachims’s work, our theoretical results (and experiments) are focused on
the unsupervised case. We show that when the Zipfian structure holds, unsupervised
learning is possible under certain assumptions.

Our result showing that PAC Learnability is guaranteed in the Urns model (Proposi-
tion 11) extends a previous result showing that a single “monotonic feature” is sufficient
to PAC-learn under certain assumptions (a monotonic feature is one, like the extraction
counts we consider, whose value increases monotonically with class probability) [13]. The
primary advantage of our result is that it does not require that the extraction counts
be conditionally independent of the other features given the class, a strong assumption
which is shown to be problematic in practice in [12]. Our result avoids this assumption
by exploiting problem structure inherent in extraction, as expressed by the Urns model.

4. Future Work

The techniques described in this paper leave open many potential areas of future work.
One important direction is developing a probabilistic model for multiple extractors that is
more flexible than multiple urns. The correlation model used for multiple urns is limited
and can only handle a small, pre-defined set of distinct mechanisms. Language modeling
techniques for UIE from recent work leverage all contextual information when assessing
extractions, rather than relying on a select set of extraction patterns [15, 2]. However,
currently these techniques only rank extracted labels, and do not output probabilities or
classifications. A model that produces probabilities of correctness without labeled data,
like Urns, yet also leverages all available contextual information is an important target
of future work.

When utilizing Urns for UIE in practice, the EM-based algorithm we employ to
learn Urns parameters from unlabeled data could be improved in a number of ways. The
algorithm often requires a sample size of hundreds or thousands of unlabeled observations
of each class in order to be effective (as illustrated in Figure 3). For classes where data is
less plentiful, such as many of the relations extracted by the TextRunner system, the
parameter learning algorithm is less effective. We expect that Urns could be modified
to learn accurate parameters for much smaller data sets, through the use of priors or
more robust likelihood-maximization techniques.

Urns also requires that a reasonable estimate of the precision of the extraction pro-
cess be known. We demonstrated that this requirement is not prohibitive when extracting
instances of classes drawn from WordNet, using generic extraction patterns; the extrac-
tion frequency can be assumed or adjusted from unlabeled text in such a way that the
probabilities produced by Urns still offer large improvements over previous techniques.
However, for “Open IE” systems such as TextRunner which discover target relations
from text, the situation is more complex [3]. In TextRunner, extraction precision can
vary greatly across the discovered relations; thus, the probabilities output by Urns in
this case are less accurate. Automatically estimating extraction precision across relations
in Open IE systems is an area of future work.
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5. Conclusions

This paper described methods for identifying correct extractions in UIE, without the
use of hand-labeled training data. The Urns model estimates the probability that an
extraction is correct, based on sample size, redundancy, and corroboration from multiple
distinct extraction rules. We described supervised and unsupervised methods for esti-
mating the parameters of the model from data, and reported on experiments showing
that Urns massively outperforms previous methods in the unsupervised case, and is
slightly better than baseline methods in the supervised case. We also detailed several
other applications in which the general Urns model of redundancy has been effective.
Our theoretical results show how the accuracy of Urns improves with sample size, that
the parameters of Urns can be estimated without hand-labeled data, and that Urns
guarantees PAC-learnability from unlabeled data alone, given certain conditions.
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