
Locating Complex Named Entities in Web Text

Doug Downey, Matthew Broadhead, and Oren Etzioni
Turing Center

Department of Computer Science and Engineering
University of Washington

Box 352350
Seattle, WA 98195, USA

{ddowney,hastur,etzioni}@cs.washington.edu

Abstract
Named Entity Recognition (NER) is the task of
locating and classifying names in text. In previous
work, NER was limited to a small number of pre-
defined entity classes (e.g., people, locations, and
organizations). However, NER on the Web is a far
more challenging problem. Complex names (e.g.,
film or book titles) can be very difficult to pick out
precisely from text. Further, the Web contains a
wide variety of entity classes, which are not known
in advance. Thus, hand-tagging examples of each
entity class is impractical.
This paper investigates a novel approach to the
first step in Web NER: locating complex named
entities in Web text. Our key observation is that
named entities can be viewed as a species of multi-
word units, which can be detected by accumulat-
ing n-gram statistics over the Web corpus. We
show that this statistical method’s F1 score is 50%
higher than that of supervised techniques includ-
ing Conditional Random Fields (CRFs) and Con-
ditional Markov Models (CMMs) when applied
to complex names. The method also outperforms
CMMs and CRFs by 117% on entity classes ab-
sent from the training data. Finally, our method
outperforms a semi-supervised CRF by 73%.

1 Introduction
Named Entity Recognition (NER) is the task of identifying
and classifying names in text. In previous work, NER was
carried out over a small number of pre-defined classes of
entities—for example, the named entity task definition from
the Message Understanding Conference identified the three
classes PERSON, ORGANIZATION, and LOCATION [Gr-
ishman and Sundheim, 1996]. However, the Web contains a
variety of named entities that fall outside these categories, in-
cluding products (e.g., books, films), diseases, programming
languages, nationalities, and events, to name a few.

NER requires first locating entity names in text. Some
named entities are easy to detect in English because each

word in the name is capitalized (e.g., “United Kingdom”) but
others are far more difficult. Consider the two phrases:

(i) ...companies such as Intel and Microsoft...
(ii) ...companies such as Procter and Gamble...

The first phrase names two entities (“Intel” and “Mi-
crosoft”), whereas the second names a single entity (“Procter
and Gamble”). However, this distinction is not readily appar-
ent from the text itself. Similar situations occur in film titles
(“Dumb and Dumber”), book titles (“Gone with the Wind”),
and elsewhere (the “War of 1812”).1 The challenging prob-
lem is to precisely determine the boundaries of the entity
names in the text. We refer to this problem as the entity de-
limitation problem. Since entity delimitation does not deter-
mine the entity’s class, it is a subproblem whose solution is
necessary but not sufficient for successful NER.

Another fundamental challenge for standard, supervised
NER techniques is that the set of entity classes is not known
in advance for many Web applications, including information
extraction [Etzioni et al., 2005], question answering [Banko,
2002], and search [Pasca, 2004]. Thus, it is impractical to
hand tag elements of each entity class to train the supervised
techniques. Instead, we are forced to create a training cor-
pus where entities of any type are labeled “entity”, and non-
entities are labeled as such. This solution is problematic be-
cause NER techniques rely on orthographic and contextual
features that can vary widely across entity classes. We refer
to this problem as the unseen classes problem.

This paper introduces the LEX method, which addresses
both the delimitation and unseen classes problems by utiliz-
ing n-gram statistics computed over a massive Web corpus.
LEX does not address the entity classification problem. LEX
is based on the observation that complex names tend to be
multi-word units (MWUs), that is, sequences of words whose
meaning cannot be determined by examining their constituent
parts [da Silva et al., 2004]; MWUs can be identified with
high accuracy using lexical statistics, the frequency of words
and phrases in a corpus [da Silva and Lopes, 1999].

1While uncapitalized words within entities tend to come from a
small set of terms (e.g. “of,” “and,” etc.), it is not sufficient to simply
ignore these terms as they often appear between distinct entities as
well (as in “Microsoft and Intel” above).



LEX requires only a single threshold that is easily esti-
mated using a small number of hand-tagged examples drawn
from a few entity classes. However, LEX does require an un-
tagged corpus that contains the relevant lexical items a hand-
ful of times in order to compute accurate lexical statistics.
Thus, LEX is well-suited to the Web where entity classes are
not known in advance, many entity names are complex, but a
massive untagged corpus is readily available.

LEX is a semi-supervised learning method, so in addition
to Conditional Random Fields (CRFs) [Lafferty et al., 2001]
and Conditional Markov Models (CMMs) [McCallum et al.,
2000], we compare it with CRFs augmented with untagged
data using co-training and self-training. We find that LEX
outperforms these semi-supervised methods by more than
70%.

Our contributions are as follows:
1. We introduce the insight that statistical techniques for

finding MWUs can be employed to detect entity names
of any class, even if the classes are unknown in advance.

2. We demonstrate experimentally that LEX, a surpris-
ingly simple technique based on the above insight, sub-
stantially outperforms standard supervised and semi-
supervised approaches on complex names rarely con-
sidered in NER such as the titles of films and books.2

3. We show preliminary results demonstrating that LEX
can be leveraged to improve Web applications, reducing
the error rate of a Web information extraction system by
60-70% in one case.

4. Based on an analysis of the limitations of LEX, we pro-
pose an enhanced algorithm (LEX++) which attaches
common prefixes and suffixes to names, and uses addi-
tional lexical statistics to detect spurious collocations.
LEX++ offers an additional 17% performance improve-
ment over LEX.

Section 2 describes LEX. Section 3 presents our experi-
mental results comparing LEX with previous supervised and
semi-supervised methods. Section 4 presents an analysis
LEX’s limitations, along with an experimental evaluation of
LEX++. Section 5 considers related work, and the paper con-
cludes with a discussion of future work.

2 The LEX Method for Locating Names
The lexical statistics-based approach we use for locating
names is based on the key intuition that names are a type of
multi-word unit (MWU). Broadly, our algorithm assumes that
contiguous capitalized words3 are part of the same name, and
that a mixed case phrase beginning and ending with capital-
ized words is a single name if and only if it is a MWU—that
is, if it appears in the corpus sufficiently more frequently than
chance. Capitalized words at the start of sentences are only
considered names if they appear capitalized sufficiently often
when not at the beginning of a sentence.

2All of the above techniques achieve close to 100% accuracy on
simple names.

3Here, “capitalized,” words are those beginning with a capital
letter, and all other text (including punctuation and digits) is “un-
capitalized.”

More formally, the lexical method, denoted by LEX, is de-
fined by two thresholds τ and δ, and a function f(s0, s1, s2)
mapping three strings to a numerical value. The function
f(s0, s1, s2) measures the degree to which the concatenated
string s0s1s2 occurs “more than chance” – several such col-
location identifiers exist in the MWU literature, and we detail
the two measures we experiment with below. The threshold
τ is the value f(s0, s1, s2) must exceed in order for the string
s0s1s2 to be considered a single name. Lastly, if a capitalized
word’s appearances come at the beginning of a sentence more
than δ of the time, we assume it is not a name. We heuristi-
cally set the value of δ to 0.5, and set τ using training data as
described in Section 3.

Given a sentence S, a function f(s0, s1, s2), and thresh-
olds τ and δ, LEX proceeds as follows:

1. Initialize a sequence of names N = (n0, n1, . . . , nM )
equal to the maximal contiguous substrings of S that
consist entirely of capitalized words, where elements of
N are ordered from left to right in S. If when the first
word of S appears capitalized in the corpus, it is at the
beginning of a sentence more than δ of the time, omit it
from N .

2. Until all consecutive name pairs in N have been evalu-
ated:

(a) Choose the unevaluated pair of names (ni, ni+1)
with minimum i.

(b) If f(ni, wi, ni+1) > τ , where wi is the uncapital-
ized phrase separating ni and ni+1 in S, and wi is
at most three words in length,
• replace ni and ni+1 in N with the single name

niwini+1.

2.1 Measures of Collocation
The function f(s0, s1, s2) is intended to measure whether a
string s0s1s2 occurring in text is a single name, or if in-
stead s0 and s2 are distinct names separated by the string
s1. The functions f we consider are based on two standard
collocation measures, Pointwise Mutual Information (PMI)
and Symmetric Conditional Probability (SCP) [da Silva and
Lopes, 1999]. Define the collocation function ck(a, b) for two
strings a and b:

ck(a, b) =
p(ab)k

p(a)p(b)
(1)

where p(s) is the probability of the string s occurring in
the corpus.

In the above, c2 gives the SCP between a and b, and c1

is (for our purposes) equivalent to PMI.4 PMI and SCP are
defined for only two arguments; a variety of techniques have
been employed to extend these binary collocation measures
to the n-ary case, for example by averaging over all binary
partitions [da Silva and Lopes, 1999] or by computing the
measure for only the split of highest probability [Schone and
Jurafsky, 2001]. Here, we generalize the measures in the fol-
lowing simplistic fashion:

4More precisely, PMI(a, b) = log2c1(a, b). But in MWU iden-
tification we consider only the ordering of the collocation measure,
so the monotonic log function can be ignored.



gk(a, b, c) =
p(abc)k

p(a)p(b)p(c)
(2)

We take g1 as our PMI function for three variables, and g3

as our SCP function for three variables.

3 Experimental Results
This section describes our experiments on Web text, which
compare LEX’s performance with both supervised and semi-
supervised learning methods. Experiments over the Web cor-
pus can be tricky due to both scale and the diversity of entity
classes encountered, so we begin by carefully describing the
experimental methodology used to address these difficulties.

3.1 Experimental Methodology
Many classes of named entities are difficult to delimit pre-
cisely. For example, nested entities like the phrase “Director
of Microsoft” could be considered a single entity (a job ti-
tle), two entities (a job title and a company), or both. To
make evaluation as objective as possible, we performed our
experiments on entities from four classes where the bound-
aries of names are relatively unambiguous: (Actor , Book,
Company, and Film).

The LEX method requires a massive corpus in order to ac-
curately compute its n-gram statistics. To make our experi-
ments tractable, we approximated this corpus with 183,726
sentences automatically selected as likely to contain named
entities from the above four classes.5

We formed a training set containing a total of 200 sen-
tences, evenly distributed among the four classes. In these
training sets, we manually tagged all of the entities,6 result-
ing in a total of 805 tagged examples. We formed a test set
by hand-tagging a sample of 300 entities from each class; be-
cause the lexical approach requires estimates of the probabili-
ties of different phrases, we ignored any entities that appeared
fewer than five times in our corpus. To ensure that this was a
reasonable restriction, we queried Google and found that over
98% of our original test entities appeared on at least 5 distinct
Web pages. Thus, the requirement that entities appear at least
five times in the corpus is a minor restriction. Given the mas-
sive size of the Web corpus, a lexical statistics method like
LEX is likely to be effective for most entities.

We further separated our test set into “easy” and “diffi-
cult” cases. Precisely, the easy cases are those that are cor-
rectly identified by a baseline method that simply finds maxi-
mal substrings of contiguous capitalized words. The difficult
cases are those on which this simple baseline fails. Our fi-
nal test set contained 100 difficult cases, and 529 easy cases,
suggesting that difficult entity names are quite common on
the Web.

In the test phase, we ran each of our methods on the sen-
tences from the test set. Recall is defined as the fraction of test
set entities for which an algorithm correctly identifies both the

5We downloaded sentences from the Web matching patterns like
“actors such as...” or “...and other films,” etc.

6We also constructed training sets tagging only those entities of
the target classes (Actor, Book, Company, and Film) – however, this
approach decreased the performance of the supervised approaches.

F1 Recall Precision
LEX-PMI 0.38 0.43 0.34
LEX-SCP 0.63 (66%) 0.66 0.59

Table 1: Performance of LEX using collocation measures
PMI and SCP. SCP outperforms PMI by 66% in F1.

left and right boundaries. Precision is defined as the fraction
of putative entities suggested by the algorithm that are indeed
bona fide entities. Because our test set contains only a proper
subset of the entities contained in the test text, for the pur-
pose of computing precision we ignore any entities identified
by the algorithm that do not overlap with an element of the
test set.

3.2 PMI versus SCP
Our first experiment investigates which of the candidate col-
location functions (PMI or SCP) is most effective for use in
the LEX method. In these experiments and those that follow,
the threshold τ is set to the value that maximizes performance
over the training set, found using simple linear search.

The performance of each metric on difficult cases is shown
in Table 1. The SCP metric outperforms PMI by a consider-
able margin. This performance difference is not merely a con-
sequence of our method for acquiring thresholds; the perfor-
mance discrepancy is essentially unchanged if each threshold
is chosen to maximize performance on the test set. Further,
although we are focusing on difficult cases, the SCP metric
also outperforms PMI on the non-difficult cases as well (0.97
vs. 0.92 in F1).

The large performance difference between LEX-PMI and
LEX-SCP is a more extreme version of similar results exhib-
ited for those measures in MWU identification [Schone and
Jurafsky, 2001]. In our case, PMI performs poorly on our
task due to its well-known property of returning dispropor-
tionately low values for more frequent items [Manning and
Schütze, 1999]. PMI fails to correctly join together several of
the more frequent names in the test set. In fact, of the names
that PMI fails to join together, 53% appear in the corpus more
than 15 times – versus 0% for SCP.

In the remainder of our experiments the lexical method em-
ploys the SCP function and is referred to simply as LEX.

3.3 Comparison with NER approaches
We experimented with the following NER methods:

• SVMCMM – a supervised Conditional Markov Model
trained with a probabilistic Support Vector Machine.

• CRF – a supervised Conditional Random Field ap-
proach.

• CAPS – a baseline method that locates all maximal con-
tiguous substrings of capitalized words.

• MAN – an unsupervised name recognizer, based on
manually-specified rules. This method is taken from the
name location subcomponent of the KnowItAll Web in-
formation extraction system [Etzioni et al., 2005].

Both Conditional Random Fields (CRF) [Lafferty et al.,
2001] and Conditional Markov Models (CMM) [McCallum
et al., 2000] are state of the art supervised approaches for



F1 Recall Precision
SVMCMM 0.42 0.48 0.37
CRF 0.35 0.42 0.31
MAN 0.18 0.22 0.16
LEX 0.63 (50%) 0.66 0.59

Table 2: Performance on Difficult Cases LEX’s F1 score is
50% higher than the nearest competitor, SVMCMM.

F1 Recall Precision
SVMCMM 0.96 0.96 0.96
CRF 0.94 0.94 0.95
MAN 0.97 0.96 0.98
LEX 0.97 0.97 0.97
CAPS 1.00 (3%) 1.00 1.00

Table 3: Performance on Easy Cases All methods perform
comparably near the perfect performance of the CAPS base-
line; CAPS outperforms LEX and MAN by 3%.

text delimitation tasks. Our CRF and CMM implementations
were taken from the MinorThird text classification package
[Cohen, 2004]. We obtained settings for each algorithm via
cross-validation on the training set. We chose to train the
CMM using a Support Vector Machine (SVMCMM) rather
than with the maximum entropy approach in [McCallum et
al., 2000] because the SVMCMM substantially outperformed
the maximum-entropy classifier in cross-validation. The su-
pervised classifiers create feature vectors for each word; these
features include the lower-case version of the word, the ortho-
graphic pattern for the word (e.g. “Xx+” for “Bill” or “9+”
for “1995”, etc), and analogous features for tokens in a small
window around the word (of size selected by cross valida-
tion).

By definition, the CAPS baseline performs perfectly on
easy entity names, but does not correctly delimit any difficult
entity names. CAPS is equivalent to Step 1 in the LEX algo-
rithm in Section 2. Although LEX includes CAPS as an initial
step to handle easy names, the two algorithms will differ on
easy names when the lexical statistics, computed in Step 2 of
LEX, indicate that two easy names delimited by CAPS ought
to be concatenated. Consider, for example, the phrase “...as
Intel and Microsoft have...”. CAPS will always delimit this
phrase’s two names correctly, but LEX could potentially de-
limit them incorrectly (by, for example, outputting the phrase
“Intel and Microsoft” as a single name). In practice, this sit-
uation occurs infrequently (see Table 3).

The performance of the different methods on difficult cases
is shown in Table 2. Overall, LEX’s F1 score of 0.63 is
50% higher than that of its nearest competitor (SVMCMM,
at 0.42). The precision differences between LEX and SVM-
CMM are significant at p < 0.01, and the recall differences
are significant at p < 0.02 (Fisher Exact Test). Of course,
performance on the easy cases is also important. As shown in
Table 3, all methods perform comparably well on easy cases,
with F1 scores in the 0.95 and higher range.

The performance of LEX is fairly robust to parameter
changes. A sensitivity analysis revealed that altering the

F1 Recall Precision
SVMCMM 0.29 0.34 0.25
CRF 0.25 0.31 0.21
MAN 0.18 0.22 0.16
LEX 0.63 (117%) 0.66 0.60

Table 4: Performance on Unseen Entity Classes (Difficult
Cases) LEX outperforms its nearest competitor (SVMCMM)
by 117%.

F1 Recall Precision
SVMCMM 0.93 0.92 0.94
CRF 0.94 0.93 0.95
MAN 0.97 0.96 0.98
LEX 0.95 0.95 0.95
CAPS 1.00 (3%) 1.00 1.00

Table 5: Performance on Unseen Entity Classes (Easy
Cases) CAPS outperforms all methods by a small margin,
performing 3% better than its nearest competitor (MAN).

learned value of τ by a factor of 2 in either direction resulted
in LEX still outperforming SVMCMM by at least 40% on dif-
ficult cases. Also, altering the value of δ to either 0.4 or 0.6
resulted in LEX outperforming SVMCMM by at least 48%
on difficult cases.

3.4 Unseen Entity Classes
As argued in the introduction, in many Web applications, the
target entity classes are not known in advance. This poses
particular problems for standard NER approaches, which rely
on textual cues that can vary widely among entity classes. In
this experiment, we simulate the performance of each of our
entity delimitation methods on unseen entity classes. Specif-
ically, when evaluating performance on an entity class, we
remove from the training set any sentences containing enti-
ties of that class. The results of these experiments on difficult
cases are shown in Table 4. LEX outperforms the other ap-
proaches, with F1 performance more than 100% higher than
the best competing method (SVMCMM). The precision and
recall differences between LEX and SVMCMM on difficult
cases are each statistically significant at p < 0.001 (Fisher
Exact Test). As in the previous experiment, all methods per-
form relatively well on easy cases (Table 5).

3.5 Semi-supervised Comparison
LEX outperforms supervised NER methods by leveraging
lexical statistics computed over a large, untagged corpus.
Augmenting tagged examples with untagged data is known as
semi-supervised learning, an increasingly popular approach
for text processing tasks, in which untagged data is plenti-
ful. In this section, we compare LEX with previous semi-
supervised algorithms.

To create a semi-supervised baseline for our task, we aug-
mented the supervised classifiers from our previous experi-
ments to employ untagged data. As in other recent work on
semi-supervised text segmentation [Ando and Zhang, 2005],
we experimented with two semi-supervised approaches: co-
training and self-training.



One of the first semi-supervised algorithms for named en-
tity classification [Collins and Singer, 1999] was based on
semi-supervised co-training [Blum and Mitchell, 1998]. Co-
training relies on a partition of the feature set to produce in-
dependent “views” of each example to be classified, where it
is assumed each individual view is sufficient to build a rela-
tively effective classifier. In co-training, separate classifiers
are trained for each view. Then each classifier is applied to
the untagged examples, and the examples whose classifica-
tions are most certain are added as new training examples.
By iteratively bootstrapping information from distinct views,
co-training algorithms are able to create new training exam-
ples from untagged data.

The co-training approach developed in [Collins and Singer,
1999] does not actually perform entity delimitation. Instead,
it assumes the entity delimitation problem is solved, and ad-
dresses the task of classifying a given set of entities into cat-
egories. In our attempts to utilize a similar co-training al-
gorithm for our entity delimitation task, we found the algo-
rithm’s partitioning of the feature set to be ill suited to our
task. The approach in [Collins and Singer, 1999] employed
two views to classify named entities: the context surround-
ing a named entity, and the orthographic features of the en-
tity itself. While the context surrounding a known entity is
a good indicator of that entity’s class, in our experiments we
found that context was not effective for determining an un-
known entity’s boundaries. The co-training classifier trained
on our training set using only the “context” view achieved F1
performance of 0.16 on difficult cases, and 0.37 on easy cases
(versus 0.35 and 0.94 for the classifier trained on all features).
This violates the central assumption in co-training, that each
view be independently capable of producing a relatively ef-
fective classifier.

Because co-training was unsuited to our task, we exper-
imented with “single-view” co-training, also known as self-
training. This approach involved training a supervised classi-
fier on the training set, and then iteratively applying the clas-
sifier to the untagged data, adding to the training set the r
sentences on which the classifier is most confident.

Our experimental results are shown in Table 6. Because
only the CRF classifier returned reliable probability esti-
mates for sentences, it is the only classifier tested in a semi-
supervised configuration. In these experiments, r = 20, and
the algorithm was executed for a total of 40 self-training it-
erations. As shown in the table, the bootstrapped training
examples make positive but insignificant impacts on the per-
formance of the baseline supervised classifier. LEX’s F1 per-
formance of 0.63 is 73% higher than that of the best semi-
supervised CRF in Table 6 (0.37).

3.6 Information Extraction Performance
One important application of Web named entity delimitation
is found in unsupervised information extraction systems, e.g.
[Etzioni et al., 2005]. These systems use generic patterns
(e.g. “films such as”) to extract entities, but require some
method to identify the boundaries of the entities to extract.
Given a particular set of patterns, a more accurate name de-
limitation system should result in better extraction accuracy.
In this experiment, we tested a pattern-based information ex-

Self-tagged
Sentences F1 Recall Precision
0 0.35 0.42 0.31
400 0.37 0.43 0.32
800 0.36 0.42 0.31

Table 6: Performance of semi-supervised CRF (Difficult
Cases) The additional training sentences generated by the
semi-supervised algorithm (“Self-tagged Sentences”) do not
significantly improve performance over the original 200 sen-
tences from the training set.

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60
Recall

P
re

ci
si

on

LEX
SVMCMM
CRF
MAN

Figure 1: Information Extraction performance for the
Film class (Difficult Cases). LEX’s precision is 60-70%
higher than its closest competitor (SVMCMM).

traction system on our evaluation corpus, using each of our
methods to delimit entities. We ranked all extracted entities
in order of decreasing frequency to obtain precision/recall
curves for each class. Figure 1 shows the precision/recall
curves for the 100 most frequent extractions of difficult cases
in the Film class. As the graph shows, LEX enables sig-
nificantly higher precision than the other methods (as before,
all methods perform comparably well on easy extractions).
Additional experiments are necessary to assess information
extraction performance on other classes.

4 Error Analysis and Enhancements
LEX is a simple algorithm, and there are ways in which its
simplistic assumptions about the structure of names hinder its
performance. In this section, we detail three of LEX’s primary
error types, and we introduce LEX++, an enhanced algorithm
which addresses LEX’s limitations. LEX++ follows the LEX
algorithm given in Section 2, with modifications for each of
LEX’s error types as detailed below.

Numbers and Punctuation at Name Boundaries
LEX’s assumption that names begin and end with capitalized
words is violated by any names that begin or end with num-
bers or punctuation—for example, the film “8 Mile” or a com-
pany name including trailing punctuation such as “Dell Inc.”
This limitation of LEX accounted for 38% of its false nega-
tives on difficult cases in the experiments in Section 3.3.



LEX++ addresses this limitation of LEX by optionally ex-
tending names to the left or right (or both) to include num-
bers or punctuation. Formally, if a name ni (output by LEX)
is immediately preceded by a single number or punctuation
mark ti−1, LEX++ prepends ti−1 to ni whenever c2(ti−1, ni)
exceeds a threshold γ. Similarly, a number or punctuation
mark ti immediately following ni is appended to ni when-
ever c2(ni, ti) > γ.

Common Prefixes and Suffixes
LEX’s assumption that named entities correspond to lexical
collocations does not always hold in practice. For example,
LEX rarely attaches common prefixes and suffixes to names.
In an entity like “Cisco Systems, Inc.” the statistical associa-
tion between the suffix “Inc” and the company name “Cisco
Systems” is relatively small, because “Inc” occurs so fre-
quently in the corpus as a part of other entity names. The
situation is further complicated by the fact that most prefixes
and suffixes should be considered part of the entity name (as
in the “Inc.” example above), but others should not (e.g., hon-
orifics like “Sir” or “Mr.”).7 Mis-applying prefixes and suf-
fixes is responsible for 27% of LEX’s false negatives.

LEX++ attempts to attach common prefixes and suffixes
to names. To determine whether a given phrase is a prefix or
a suffix, we would like to measure how frequently the phrase
appears as a constituent of other entity names. As an approxi-
mation to this quantity, we use the fraction of times the phrase
is followed or preceded by a capitalized word. Formally, we
consider a phrase r = niwini+1 (where ni and ni+1 are dis-
tinct names output by LEX) to be a single name including a
prefix niwi if the phrase niwi is followed by a capitalized
word in the corpus more than a threshold φ of the time. Sim-
ilarly, r is a single name including a suffix if wini+1 is pre-
ceded by a capitalized word more than φ of the time.8

Related Entities
LEX also makes errors due to the high statistical association
between distinct but related entities. Phrases containing mul-
tiple related entities (e.g., conjunctions like “Intel and AMD”)
occur frequently relative to their constituent parts, and there-
fore appear to LEX to be MWUs. Thus, these phrases are
often erroneously output as single names by LEX.

LEX++ attempts to identify phrases containing distinct
names which happen to be mentioned together frequently.
Specifically, LEX++ exploits the fact a named entity requires
a unique order for its constituent terms, whereas a phrase con-
taining distinct entities often does not. For example, consider
that the phrase “Intel and AMD” appears with similar fre-
quency in its reversed form (“AMD and Intel”), whereas the
same is not true for the single entity “Pride and Prejudice.”

Formally, consider a phrase r = niwini+1 which
would be concatenated into a single name by LEX, that is,
g3(ni, wi, ni+1) > τ . LEX++ outputs r as a single name
only if p(ni+1wini), the probability of the reverse of r, is
sufficiently small. In our experiments, we use a heuristic of

7These guidelines are taken from the MUC standard for named
entity recognition, which we follow where applicable.

8We also limit names nk within prefixes and suffixes to be fewer
than three words in length.

F1 Recall Precision
LEX 0.63 0.66 0.59
LEX++ 0.74 (+17%) 0.76 0.72

Table 7: Performance of LEX++ versus LEX (Difficult
Cases). LEX++ outperforms LEX by 17%.

outputting r as a single name only when the reverse of r ap-
pears at most once in our corpus.

4.1 Experiments with LEX++
We compared the performance of LEX++ to LEX under the
experimental configuration given in Section 3.3. The values
of τ and δ were taken to be the same for both algorithms, and
the thresholds φ and γ were set using linear search over the
training set.

The results of our experiments are shown in Table 7. For
difficult entity names, the enhancements in LEX++ offer a
17% improvement in F1 over the original LEX. The perfor-
mance of both algorithms on easy cases is similar—LEX++
has a slightly lower F1 score (0.96) than that of LEX (0.97).

5 Related Work
The majority of named entity recognition (NER) research has
focused on identifying and classifying entities for a small
number of pre-defined entity classes, in which many entities
can be identified using capitalization. Our focus, by contrast,
is on delimiting names in cases where entity classes may be
unknown, and when names are complex (involving a mixture
of case).

Several supervised learning methods have been used previ-
ously for NER, including Hidden Markov Models, and more
recently Maximum Entropy Markov Models [McCallum et
al., 2000] and Conditional Random Field (CRF) models [Laf-
ferty et al., 2001; McCallum and Li, 2003]. Our experiments
show that LEX outperforms these methods on our task. Semi-
supervised methods for NER, which leverage untagged data,
were investigated specifically in the NER component of the
CoNLL 2003 shared task [Tjong Kim Sang and De Meulder,
2003]. While this task was primarily aimed at typical NER
categories (PERSON, LOCATION, and ORGANIZATION),
it also encompassed other ”miscellaneous” entities, includ-
ing nationalities and events. The evaluation corpus consisted
of high quality newswire text, and offered a relatively small
untagged corpus (roughly six times the size of the tagged cor-
pus). Our focus is on leveraging the Web, a vastly larger
(and lower quality) untagged corpus. Further, our experi-
ments show that LEX outperforms canonical semi-supervised
methods on our task. These two distinctions are likely re-
sponsible for the fact that none of the top performing systems
in the CoNLL task made profitable use of untagged data, in
sharp contrast to our experiments in which LEX outperforms
supervised methods by making crucial use of untagged data.

Our experiments compared LEX with previous semi-
supervised methods for NER, including co-training [Collins
and Singer, 1999; Blum and Mitchell, 1998] and single-view
bootstrapping. In recent work, Li and McCallum used un-
tagged data to devise context-based word clusters, which



were added as features to a supervised CRF algorithm. The
untagged data was shown to improve performance in part of
speech tagging and Chinese word segmentation [Li and Mc-
Callum, 2005]. Also, recently Ando and Zhang developed a
semi-supervised method for text chunking, based on training
thousands of classifiers on untagged data, and using the com-
monalities of the classifiers to devise relevant features for a
particular task [Ando and Zhang, 2005]. This method was
shown to improve performance in named entity delimitation
on the CoNLL 2003 corpus mentioned above. In contrast to
LEX, which is simple, the methods in [Li and McCallum,
2005] and [Ando and Zhang, 2005] are complex. Further,
neither of these methods have been evaluated on tasks such
as ours, where entity names are difficult and the target entity
classes may not be known in advance. Comparing LEX with
these semi-supervised techniques is an item of future work.

Lastly, the basic insight used in LEX – that named enti-
ties are a type of MWU – was also employed in [da Silva
et al., 2004] for an unsupervised entity extraction and clus-
tering task. In contrast to that work, LEX is a technique for
semi-supervised named entity delimitation, and we provide
experiments demonstrating its efficacy over previous work.

6 Conclusions
This paper shows that LEX, a simple technique employing
capitalization cues and lexical statistics, is capable of locat-
ing names of a variety of classes in Web text. Our exper-
iments showed that this simple technique outperforms stan-
dard supervised and semi-supervised approaches for named
entity recognition in cases where entity names are complex,
and entity classes are not known in advance.

Google’s recent release to the research community of a
trillion-word n-gram model makes LEX practical at Web
scale. Evaluating LEX in a large-scale experiment is an im-
portant item of future work. Further, although the statisti-
cal approach performed well in our experiments, it remains
the case that textual features are valuable clues in identify-
ing names—investigating ways to utilize both lexical statis-
tics and textual features simultaneously is a natural next step.
Finally, further investigation into leveraging improved Web
entity location to enhance applications such as Web search,
information extraction, and question answering is an impor-
tant item of future work.

Acknowledgments
We thank Michele Banko, Charles Downey, Jonathan Pool,
and Stephen Soderland for helpful comments. This re-
search was supported in part by NSF grants IIS-0535284 and
IIS-0312988, DARPA contract NBCHD030010, ONR grant
N00014-02-1-0324 as well as gifts from Google, and carried
out at the University of Washington’s Turing Center. The
first author was supported by a Microsoft Research Fellow-
ship sponsored by Microsoft Live Labs.

References
[Ando and Zhang, 2005] R Ando and T Zhang. A high-

performance semi-supervised learning method for text
chunking. In Proc. of ACL, 2005.

[Banko, 2002] M. Banko. Askmsr: Question answering us-
ing the worldwide web. In Proc. of EMNLP, 2002.

[Blum and Mitchell, 1998] A. Blum and T. Mitchell. Com-
bining Labeled and Unlabeled Data with Co-Training. In
Proc. of COLT, 1998.

[Cohen, 2004] W. W. Cohen. Minorthird: Methods
for identifying names and ontological relations in text
using heuristics for inducing regularities from data,
http://minorthird.sourceforge.net, 2004.

[Collins and Singer, 1999] M. Collins and Y. Singer. Unsu-
pervised Models for Named Entity Classification. In Proc.
of EMNLP/VLC, 1999.

[da Silva and Lopes, 1999] J. Ferreira da Silva and G. P.
Lopes. A local maxima method and a fair dispersion nor-
malization for extracting multi-word units from corpora.
In Sixth Meeting on Mathematics of Language, 1999.

[da Silva et al., 2004] J. Ferreira da Silva, Z. Kozareva,
V. Noncheva, and G. P. Lopes. Extracting named entities.
a statistical approach. In TALN 2004, 2004.

[Etzioni et al., 2005] O. Etzioni, M. Cafarella, D. Downey,
S. Kok, A. Popescu, T. Shaked, S. Soderland, D. Weld,
and A. Yates. Unsupervised named-entity extraction from
the web: An experimental study. Artificial Intelligence,
165(1), 2005.

[Grishman and Sundheim, 1996] R. Grishman and B. Sund-
heim. Message understanding conference- 6: A brief his-
tory. In Proc. of COLING, 1996.

[Lafferty et al., 2001] J. Lafferty, A. McCallum, and
F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In
Proc. of ICML, 2001.

[Li and McCallum, 2005] W Li and A McCallum. Semi-
supervised sequence modeling with syntactic topic mod-
els. In Proc. of AAAI, 2005.

[Manning and Schütze, 1999] C. D. Manning and
H. Schütze. Foundations of Statistical Natural Lan-
guage Processing. 1999.

[McCallum and Li, 2003] A. McCallum and W. Li. Early re-
sults for named entity recognition with conditional random
fields. In Proc. of CoNLL, 2003.

[McCallum et al., 2000] A. McCallum, D. Freitag, and
F. Pereira. Maximum entropy Markov models for infor-
mation extraction and segmentation. In Proc. of ICML,
2000.

[Pasca, 2004] M. Pasca. Acquisition of categorized named
entities for web search. In Proc. of CIKM, 2004.

[Schone and Jurafsky, 2001] P. Schone and D. Jurafsky. Is
knowledge-free induction of multiword unit dictionary
headwords a solved problem? In Proc. of EMNLP, 2001.

[Tjong Kim Sang and De Meulder, 2003] E. Tjong
Kim Sang and F. De Meulder. Introduction to the
conll-2003 shared task: Language-independent named
entity recognition. In Proc. of CoNLL, 2003.


