
Sparse Information Extraction:
Unsupervised Language Models to the Rescue

Doug Downey, Stefan Schoenmackers, and Oren Etzioni
Turing Center, Department of Computer Science and Engineering

University of Washington, Box 352350
Seattle, WA 98195, USA

{ddowney,stef,etzioni}@cs.washington.edu

Abstract

Even in a massive corpus such as the Web, a
substantial fraction of extractions appear in-
frequently. This paper shows how to assess
the correctness of sparse extractions by uti-
lizing unsupervised language models. The
REALM system, which combines HMM-
based and n-gram-based language models,
ranks candidate extractions by the likeli-
hood that they are correct. Our experiments
show that REALM reduces extraction error
by 39%, on average, when compared with
previous work.

Because REALM pre-computes language
models based on its corpus and does not re-
quire any hand-tagged seeds, it is far more
scalable than approaches that learn mod-
els for each individual relation from hand-
tagged data. Thus, REALM is ideally suited
for open information extraction where the
relations of interest are not specified in ad-
vance and their number is potentially vast.

1 Introduction

Information Extraction (IE) from text is far from in-
fallible. In response, researchers have begun to ex-
ploit the redundancy in massive corpora such as the
Web in order to assess the veracity of extractions
(e.g., (Downey et al., 2005; Etzioni et al., 2005;
Feldman et al., 2006)). In essence, such methods uti-
lize extraction patterns to generate candidate extrac-
tions (e.g., “Istanbul”) and then assess each candi-
date by computing co-occurrence statistics between

the extraction and words or phrases indicative of
class membership (e.g., “cities such as”).

However, Zipf’s Law governs the distribution of
extractions. Thus, even the Web has limited redun-
dancy for less prominent instances of relations. In-
deed, 50% of the extractions in the data sets em-
ployed by (Downey et al., 2005) appeared only
once. As a result, Downey et al.’s model, and re-
lated methods, had no way of assessing which ex-
traction is more likely to be correct for fully half of
the extractions. This problem is particularly acute
when moving beyond unary relations. We refer to
this challenge as the task of assessing sparse extrac-
tions.

This paper introduces the idea that language mod-
eling techniques such as n-gram statistics (Manning
and Schütze, 1999) and HMMs (Rabiner, 1989) can
be used to effectively assess sparse extractions. The
paper introduces the REALM system, and highlights
its unique properties. Notably, REALM does not
require any hand-tagged seeds, which enables it to
scale to Open IE—extraction where the relations of
interest are not specified in advance, and their num-
ber is potentially vast (Banko et al., 2007).

REALM is based on two key hypotheses. The
KnowItAll hypothesis is that extractions that oc-
cur more frequently in distinct sentences in the
corpus are more likely to be correct. For exam-
ple, the hypothesis suggests that the argument pair
(Giuliani, New York) is relatively likely to be
appropriate for the Mayor relation, simply because
this pair is extracted for the Mayor relation rela-
tively frequently. Second, we employ an instance of
the distributional hypothesis (Harris, 1985), which

can be phrased as follows: different instances of
the same semantic relation tend to appear in sim-
ilar textual contexts. We assess sparse extractions
by comparing the contexts in which they appear to
those of more common extractions. Sparse extrac-
tions whose contexts are more similar to those of
common extractions are judged more likely to be
correct based on the conjunction of the KnowItAll
and the distributional hypotheses.

The contributions of the paper are as follows:
• The paper introduces the insight that the sub-

field of language modeling provides unsuper-
vised methods that can be leveraged to assess
sparse extractions. These methods are more
scalable than previous assessment techniques,
and require no hand tagging whatsoever.

• The paper introduces an HMM-based tech-
nique for checking whether two arguments are
of the proper type for a relation.

• The paper introduces a relational n-gram
model for the purpose of determining whether
a sentence that mentions multiple arguments
actually expresses a particular relationship be-
tween them.

• The paper introduces a novel language-
modeling system called REALM that combines
both HMM-based models and relational n-
gram models, and shows that REALM reduces
error by an average of 39% over previous meth-
ods, when applied to sparse extraction data.

The remainder of the paper is organized as fol-
lows. Section 2 introduces the IE assessment task,
and describes the REALM system in detail. Section
3 reports on our experimental results followed by a
discussion of related work in Section 4. Finally, we
conclude with a discussion of scalability and with
directions for future work.

2 IE Assessment

This section formalizes the IE assessment task and
describes the REALM system for solving it. An IE
assessor takes as input a list of candidate extractions
meant to denote instances of a relation, and outputs
a ranking of the extractions with the goal that cor-
rect extractions rank higher than incorrect ones. A
correct extraction is defined to be a true instance of
the relation mentioned in the input text.

More formally, the list of candidate extrac-
tions for a relation R is denoted as ER =
{(a1, b1), . . . , (am, bm)}. An extraction (ai, bi) is
an ordered pair of strings. The extraction is correct
if and only if the relation R holds between the argu-
ments named by ai and bi. For example, for R =
Headquartered, a pair (ai, bi) is correct iff there
exists an organization ai that is in fact headquartered
in the location bi.1

ER is generated by applying an extraction mech-
anism, typically a set of extraction “patterns”, to
each sentence in a corpus, and recording the results.
Thus, many elements of ER are identical extractions
derived from different sentences in the corpus.

This task definition is notable for the minimal
inputs required—IE assessment does not require
knowing the relation name nor does it require hand-
tagged seed examples of the relation. Thus, an IE
Assessor is applicable to Open IE.

2.1 System Overview

In this section, we describe the REALM system,
which utilizes language modeling techniques to per-
form IE Assessment.

REALM takes as input a set of extractions ER,
and outputs a ranking of those extractions. The
algorithm REALM follows is outlined in Figure 1.
REALM begins by automatically selecting from ER

a set of bootstrapped seeds SR intended to serve as
correct examples of the relation R. REALM utilizes
the KnowItAll hypothesis, setting SR equal to the
h elements in ER extracted most frequently from
the underlying corpus. This results in a noisy set of
seeds, but the methods that use these seeds are noise
tolerant.

REALM then proceeds to rank the remaining
(non-seed) extractions by utilizing two language-
modeling components. An n-gram language model
is a probability distribution P (w1, ..., wn) over con-
secutive word sequences of length n in a corpus.
Formally, if we assume a seed (s1, s2) is a correct
extraction of a relation R, the distributional hypoth-
esis states that the context distribution around the
seed extraction, P (w1, ..., wn|wi = s1, wj = s2)
for 1 ≤ i, j ≤ n tends to be “more similar” to

1For clarity, our discussion focuses on relations between
pairs of arguments. However, the methods we propose can be
extended to relations of any arity.

P (w1, ..., wn|wi = e1, wj = e2) when the extrac-
tion (e1, e2) is correct. Naively comparing context
distributions is problematic, however, because the
arguments to a relation often appear separated by
several intervening words. In our experiments, we
found that when relation arguments appear together
in a sentence, 75% of the time the arguments are
separated by at least three words. This implies that
n must be large, and for sparse argument pairs it is
not possible to estimate such a large language model
accurately, because the number of modeling param-
eters is proportional to the vocabulary size raised to
the nth power. To mitigate sparsity, REALM utilizes
smaller language models in its two components as a
means of “backing-off’ from estimating context dis-
tributions explicitly, as described below.

First, REALM utilizes an HMM to estimate
whether each extraction has arguments of the proper
type for the relation. Each relation R has a set
of types for its arguments. For example, the rela-
tion AuthorOf(a, b) requires that its first ar-
gument be an author, and that its second be some
kind of written work. Knowing whether extracted
arguments are of the proper type for a relation can
be quite informative for assessing extractions. The
challenge is, however, that this type information is
not given to the system since the relations (and the
types of the arguments) are not known in advance.
REALM solves this problem by comparing the dis-
tributions of the seed arguments and extraction ar-
guments. Type checking mitigates data sparsity by
leveraging every occurrence of the individual extrac-
tion arguments in the corpus, rather than only those
cases in which argument pairs occur near each other.

Although argument type checking is invalu-
able for extraction assessment, it is not suf-
ficient for extracting relationships between ar-
guments. For example, an IE system us-
ing only type information might determine that
Intel is a corporation and that Seattle is
a city, and therefore erroneously conclude that
Headquartered(Intel, Seattle) is cor-
rect. Thus, REALM’s second step is to employ an
n-gram-based language model to assess whether the
extracted arguments share the appropriate relation.
Again, this information is not given to the system,
so REALM compares the context distributions of the
extractions to those of the seeds. As described in

REALM(Extractions ER = {e1, ..., em})
SR = the h most frequent extractions in ER

UR = ER - SR

TypeRankings(UR)← HMM-T(SR, UR)

RelationRankings(UR)← REL-GRAMS(SR, UR)

return a ranking of ER with the elements of SR at the

top (ranked by frequency) followed by the elements of

UR = {u1, ..., um−h} ranked in ascending order of

TypeRanking(ui) ∗RelationRanking(ui).

Figure 1: Pseudocode for REALM at run-time.
The language models used by the HMM-T and
REL-GRAMS components are constructed in a pre-
processing step.

Section 2.3, REALM employs a relational n-gram
language model in order to accurately compare con-
text distributions when extractions are sparse.

REALM executes the type checking and relation
assessment components separately; each component
takes the seed and non-seed extractions as arguments
and returns a ranking of the non-seeds. REALM then
combines the two components’ assessments into a
single ranking. Although several such combinations
are possible, REALM simply ranks the extractions in
ascending order of the product of the ranks assigned
by the two components. The following subsections
describe REALM’s two components in detail.

We identify the proper nouns in our corpus us-
ing the LEX method (Downey et al., 2007). In ad-
dition to locating the proper nouns in the corpus,
LEX also concatenates each multi-token proper noun
(e.g.,Los Angeles) together into a single token.
Both of REALM’s components construct language
models from this tokenized corpus.

2.2 Type Checking with HMM-T

In this section, we describe our type-checking com-
ponent, which takes the form of a Hidden Markov
Model and is referred to as HMM-T. HMM-T ranks
the set UR of non-seed extractions, with a goal of
ranking those extractions with arguments of proper
type for R above extractions containing type errors.
Formally, let URi denote the set of the ith arguments
of the extractions in UR. Let SRi be defined simi-
larly for the seed set SR.

Our type checking technique exploits the distri-
butional hypothesis—in this case, the intuition that

Intel , headquartered in Santa+Clara

Figure 2: Graphical model employed by HMM-
T. Shown is the case in which k = 2. Corpus
pre-processing results in the proper noun Santa
Clara being concatenated into a single token.

extraction arguments in URi of the proper type will
likely appear in contexts similar to those in which
the seed arguments SRi appear. In order to iden-
tify terms that are distributionally similar, we train
a probabilistic generative Hidden Markov Model
(HMM), which treats each token in the corpus as
generated by a single hidden state variable. Here, the
hidden states take integral values from {1, . . . , T},
and each hidden state variable is itself generated by
some number k of previous hidden states.2 For-
mally, the joint distribution of the corpus, repre-
sented as a vector of tokens w, given a correspond-
ing vector of states t is:

P (w|t) =
∏

i

P (wi|ti)P (ti|ti−1, . . . , ti−k) (1)

The distributions on the right side of Equation 1
can be learned from a corpus in an unsupervised
manner, such that words which are distributed sim-
ilarly in the corpus tend to be generated by simi-
lar hidden states (Rabiner, 1989). The generative
model is depicted as a Bayesian network in Figure 2.
The figure also illustrates the one way in which our
implementation is distinct from a standard HMM,
namely that proper nouns are detected a priori and
modeled as single tokens (e.g., Santa Clara is
generated by a single hidden state). This allows
the type checker to compare the state distributions
of different proper nouns directly, even when the
proper nouns contain differing numbers of words.

To generate a ranking of UR using the learned
HMM parameters, we rank the arguments ei accord-
ing to how similar their state distributions P (t|ei)

2Our implementation makes the simplifying assumption that
each sentence in the corpus is generated independently.

are to those of the seed arguments.3 Specifically, we
define a function:

f(e) =
∑
ei∈e

KL(

∑
w′∈SRi

P (t|w′)
|SRi|

, P (t|ei)) (2)

where KL represents KL divergence, and the outer
sum is taken over the arguments ei of the extraction
e. We rank the elements of UR in ascending order of
f(e).

HMM-T has two advantages over a more tradi-
tional type checking approach of simply counting
the number of times in the corpus that each extrac-
tion appears in a context in which a seed also ap-
pears (cf. (Ravichandran et al., 2005)). The first
advantage of HMM-T is efficiency, as the traditional
approach involves a computationally expensive step
of retrieving the potentially large set of contexts in
which the extractions and seeds appear. In our ex-
periments, using HMM-T instead of a context-based
approach results in a 10-50x reduction in the amount
of data that is retrieved to perform type checking.
Secondly, on sparse data HMM-T has the poten-
tial to improve type checking accuracy. For exam-
ple, consider comparing Pickerington, a sparse
candidate argument of the type City, to the seed
argument Chicago, for which the following two
phrases appear in the corpus:

(i) “Pickerington, Ohio”
(ii) “Chicago, Illinois”

In these phrases, the textual contexts surrounding
Chicago and Pickerington are not identical,
so to the traditional approach these contexts offer
no evidence that Pickerington and Chicago
are of the same type. For a sparse token like
Pickerington, this is problematic because the
token may never occur in a context that precisely
matches that of a seed. In contrast, in the HMM, the
non-sparse tokens Ohio and Illinois are likely
to have similar state distributions, as they are both
the names of U.S. States. Thus, in the state space
employed by the HMM, the contexts in phrases (i)
and (ii) are in fact quite similar, allowing HMM-
T to detect that Pickerington and Chicago
are likely of the same type. Our experiments quan-
tify the performance improvements that HMM-T of-

3The distribution P (t|ei) for any ei can be obtained from
the HMM parameters using Bayes Rule.

fers over the traditional approach for type checking
sparse data.

The time required to learn HMM-T’s parameters
scales proportional to T k+1 times the corpus size.
Thus, for tractability, HMM-T uses a relatively small
state space of T = 20 states and a limited k value
of 3. While these settings are sufficient for type
checking (e.g., determining that Santa Clara is
a city) they are too coarse-grained to assess relations
between arguments (e.g., determining that Santa
Clara is the particular city in which Intel is
headquartered). We now turn to the REL-GRAMS

component, which performs the latter task.

2.3 Relation Assessment with REL-GRAMS

REALM’s relation assessment component, called
REL-GRAMS, tests whether the extracted arguments
have a desired relationship, but given REALM’s min-
imal input it has no a priori information about the
relationship. REL-GRAMS relies instead on the dis-
tributional hypothesis to test each extraction.

As argued in Section 2.1, it is intractable to build
an accurate language model for context distributions
surrounding sparse argument pairs. To overcome
this problem, we introduce relational n-gram mod-
els. Rather than simply modeling the context distri-
bution around a given argument, a relational n-gram
model specifies separate context distributions for an
arguments conditioned on each of the other argu-
ments with which it appears. The relational n-gram
model allows us to estimate context distributions for
pairs of arguments, even when the arguments do not
appear together within a fixed window of n words.
Further, by considering only consecutive argument
pairs, the number of distinct argument pairs in the
model grows at most linearly with the number of
sentences in the corpus. Thus, the relational n-gram
model can scale.

Formally, for a pair of arguments (e1, e2), a re-
lational n-gram model estimates the distributions
P (w1, ..., wn|wi = e1, e1 ↔ e2) for each 1 ≤ i ≤
n, where the notation e1 ↔ e2 indicates the event
that e2 is the next argument to either the right or the
left of e1 in the corpus.

REL-GRAMS begins by building a relational n-
gram model of the arguments in the corpus. For
notational convenience, we represent the model’s
distributions in terms of “context vectors” for each

pair of arguments. Formally, for a given sentence
containing arguments e1 and e2 consecutively, we
define a context of the ordered pair (e1, e2) to be
any window of n tokens around e1. Let C =
{c1, c2, ..., c|C|} be the set of all contexts of all ar-
gument pairs found in the corpus.4 For a pair of ar-
guments (ej , ek), we model their relationship using
a |C| dimensional context vector v(ej ,ek), whose i-th
dimension corresponds to the number of times con-
text ci occurred with the pair (ej , ek) in the corpus.
These context vectors are similar to document vec-
tors from Information Retrieval (IR), and we lever-
age IR research to compare them, as described be-
low.

To assess each extraction, we determine how sim-
ilar its context vector is to a canonical seed vec-
tor (created by summing the context vectors of the
seeds). While there are many potential methods
for determining similarity, in this work we rank ex-
tractions by decreasing values of the BM25 dis-
tance metric. BM25 is a TF-IDF variant intro-
duced in TREC-3(Robertson et al., 1992), which
outperformed both the standard cosine distance and
a smoothed KL divergence on our data.

3 Experimental Results

This section describes our experiments on IE assess-
ment for sparse data. We start by describing our
experimental methodology, and then present our re-
sults. The first experiment tests the hypothesis that
HMM-T outperforms an n-gram-based method on
the task of type checking. The second experiment
tests the hypothesis that REALM outperforms multi-
ple approaches from previous work, and also outper-
forms each of its HMM-T and REL-GRAMS compo-
nents taken in isolation.

3.1 Experimental Methodology

The corpus used for our experiments consisted of a
sample of sentences taken from Web pages. From
an initial crawl of nine million Web pages, we se-
lected sentences containing relations between proper
nouns. The resulting text corpus consisted of about

4Pre-computing the set C requires identifying in advance
the potential relation arguments in the corpus. We consider the
proper nouns identified by the LEX method (see Section 2.1) to
be the potential arguments.

three million sentences, and was tokenized as de-
scribed in Section 2. For tractability, before and after
performing tokenization, we replaced each token oc-
curring fewer than five times in the corpus with one
of two “unknown word” markers (one for capital-
ized words, and one for uncapitalized words). This
preprocessing resulted in a corpus containing about
sixty-five million total tokens, and 214,787 unique
tokens.

We evaluated performance on four relations:
Conquered, Founded, Headquartered, and
Merged. These four relations were chosen because
they typically take proper nouns as arguments, and
included a large number of sparse extractions. For
each relation R, the candidate extraction list ER was
obtained using TEXTRUNNER (Banko et al., 2007).
TEXTRUNNER is an IE system that computes an in-
dex of all extracted relationships it recognizes, in the
form of (object, predicate, object) triples. For each
of our target relations, we executed a single query
to the TEXTRUNNER index for extractions whose
predicate contained a phrase indicative of the rela-
tion (e.g., “founded by”, “headquartered in”), and
the results formed our extraction list. For each rela-
tion, the 10 most frequent extractions served as boot-
strapped seeds. All of the non-seed extractions were
sparse (no argument pairs were extracted more than
twice for a given relation). These test sets contained
a total of 361 extractions.

3.2 Type Checking Experiments

As discussed in Section 2.2, on sparse data HMM-T
has the potential to outperform type checking meth-
ods that rely on textual similarities of context vec-
tors. To evaluate this claim, we tested the HMM-T
system against an N-GRAMS type checking method
on the task of type-checking the arguments to a re-
lation. The N-GRAMS method compares the context
vectors of extractions in the same way as the REL-
GRAMS method described in Section 2.3, but is not
relational (N-GRAMS considers the distribution of
each extraction argument independently, similar to
HMM-T). We tagged an extraction as type correct iff
both arguments were valid for the relation, ignoring
whether the relation held between the arguments.

The results of our type checking experiments are
shown in Table 1. For all types, HMM-T outper-
forms N-GRAMS, and HMM-T reduces error (mea-

Type HMM-T N-GRAMS

Conquered 0.917 0.767
Founded 0.827 0.636
Headquartered 0.734 0.589
Merged 0.920 0.854
Average 0.849 0.712

Table 1: Type Checking Performance. Listed is area
under the precision/recall curve. HMM-T outper-
forms N-GRAMS for all relations, and reduces the
error in terms of missing area under the curve by
46% on average.

sured in missing area under the precision/recall
curve) by 46%. The performance difference on each
relation is statistically significant (p < 0.01, two-
sampled t-test), using the methodology for measur-
ing the standard deviation of area under the preci-
sion/recall curve given in (Richardson and Domin-
gos, 2006). N-GRAMS, like REL-GRAMS, employs
the BM-25 metric to measure distributional similar-
ity between extractions and seeds. Replacing BM-
25 with cosine distance cuts HMM-T’s advantage
over N-GRAMS, but HMM-T’s error rate is still 23%
lower on average.

3.3 Experiments with REALM

The REALM system combines the type checking
and relation assessment components to assess ex-
tractions. Here, we test the ability of REALM to
improve the ranking of a state of the art IE system,
TEXTRUNNER. For these experiments, we evalu-
ate REALM against the TEXTRUNNER frequency-
based ordering, a pattern-learning approach, and the
HMM-T and REL-GRAMS components taken in iso-
lation. The TEXTRUNNER frequency-based order-
ing ranks extractions in decreasing order of their ex-
traction frequency, and importantly, for our task this
ordering is essentially equivalent to that produced by
the “Urns” (Downey et al., 2005) and Pointwise Mu-
tual Information (Etzioni et al., 2005) approaches
employed in previous work.

The pattern-learning approach, denoted as PL, is
modeled after Snowball (Agichtein, 2006). The al-
gorithm and parameter settings for PL were those
manually tuned for the Headquartered relation
in previous work (Agichtein, 2005). A sensitivity
analysis of these parameters indicated that the re-

Conquered Founded Headquartered Merged Average
Avg. Prec. 0.698 0.578 0.400 0.742 0.605
TEXTRUNNER 0.738 0.699 0.710 0.784 0.733
PL 0.885 0.633 0.651 0.852 0.785
PL+ HMM-T 0.883 0.722 0.727 0.900 0.808
HMM-T 0.830 0.776 0.678 0.864 0.787
REL-GRAMS 0.929 (39%) 0.713 0.758 0.886 0.822
REALM 0.907 (19%) 0.781 (27%) 0.810 (35%) 0.908 (38%) 0.851 (39%)

Table 2: Performance of REALM for assessment of sparse extractions. Listed is area under the preci-
sion/recall curve for each method. In parentheses is the percentage reduction in error over the strongest
baseline method (TEXTRUNNER or PL) for each relation. “Avg. Prec.” denotes the fraction of correct
examples in the test set for each relation. REALM outperforms its REL-GRAMS and HMM-T components
taken in isolation, as well as the TEXTRUNNER and PL systems from previous work.

sults are sensitive to the parameter settings. How-
ever, we found no parameter settings that performed
significantly better, and many settings performed
significantly worse. As such, we believe our re-
sults reasonably reflect the performance of a pattern
learning system on this task. Because PL performs
relation assessment, we also attempted combining
PL with HMM-T in a hybrid method (PL+ HMM-T)
analogous to REALM.

The results of these experiments are shown in Ta-
ble 2. REALM outperforms the TEXTRUNNER and
PL baselines for all relations, and reduces the miss-
ing area under the curve by an average of 39% rel-
ative to the strongest baseline. The performance
differences between REALM and TEXTRUNNER are
statistically significant for all relations, as are differ-
ences between REALM and PL for all relations ex-
cept Conquered (p < 0.01, two-sampled t-test).
The hybrid REALM system also outperforms each
of its components in isolation.

4 Related Work

To our knowledge, REALM is the first system to use
language modeling techniques for IE Assessment.

Redundancy-based approaches to pattern-based
IE assessment (Downey et al., 2005; Etzioni et al.,
2005) require that extractions appear relatively fre-
quently with a limited set of patterns. In contrast,
REALM utilizes all contexts to build a model of ex-
tractions, rather than a limited set of patterns. Our
experiments demonstrate that REALM outperforms
these approaches on sparse data.

Type checking using named-entity taggers has
been previously shown to improve the precision of
pattern-based IE systems (Agichtein, 2005; Feld-
man et al., 2006), but the HMM-T type-checking
component we develop differs from this work in im-
portant ways. Named-entity taggers are limited in
that they typically recognize only small set of types
(e.g., ORGANIZATION, LOCATION, PERSON),
and they require hand-tagged training data for each
type. HMM-T, by contrast, performs type check-
ing for any type. Finally, HMM-T does not require
hand-tagged training data.

Pattern learning is a common technique for ex-
tracting and assessing sparse data (e.g. (Agichtein,
2005; Riloff and Jones, 1999; Paşca et al., 2006)).
Our experiments demonstrate that REALM outper-
forms a pattern learning system closely modeled af-
ter (Agichtein, 2005). REALM is inspired by pat-
tern learning techniques (in particular, both use the
distributional hypothesis to assess sparse data) but
is distinct in important ways. Pattern learning tech-
niques require substantial processing of the corpus
after the relations they assess have been specified.
Because of this, pattern learning systems are un-
suited to Open IE. Unlike these techniques, REALM

pre-computes language models which allow it to as-
sess extractions for arbitrary relations at run-time.
In essence, pattern-learning methods run in time lin-
ear in the number of relations whereas REALM’s run
time is constant in the number of relations. Thus,
REALM scales readily to large numbers of relations
whereas pattern-learning methods do not.

A second distinction of REALM is that its type
checker, unlike the named entity taggers employed
in pattern learning systems (e.g., Snowball), can be
used to identify arbitrary types. A final distinction is
that the language models REALM employs require
fewer parameters and heuristics than pattern learn-
ing techniques.

Similar distinctions exist between REALM and a
recent system designed to assess sparse extractions
by bootstrapping a classifier for each target relation
(Feldman et al., 2006). As in pattern learning, con-
structing the classifiers requires substantial process-
ing after the target relations have been specified, and
a set of hand-tagged examples per relation, making
it unsuitable for Open IE.

5 Conclusions

This paper demonstrated that unsupervised language
models, as embodied in the REALM system, are an
effective means of assessing sparse extractions.

Another attractive feature of REALM is its scal-
ability. Scalability is a particularly important con-
cern for Open Information Extraction, the task of ex-
tracting large numbers of relations that are not spec-
ified in advance. Because HMM-T and REL-GRAMS

both pre-compute language models, REALM can be
queried efficiently to perform IE Assessment. Fur-
ther, the language models are constructed indepen-
dently of the target relations, allowing REALM to
perform IE Assessment even when relations are not
specified in advance.

In future work, we plan to develop a probabilistic
model of the information computed by REALM. We
also plan to evaluate the use of non-local context for
IE Assessment by integrating document-level mod-
eling techniques (e.g., Latent Dirichlet Allocation).

Acknowledgements

This research was supported in part by NSF grants
IIS-0535284 and IIS-0312988, DARPA contract
NBCHD030010, ONR grant N00014-05-1-0185 as
well as a gift from Google. The first author is sup-
ported by an MSR graduate fellowship sponsored by
Microsoft Live Labs. We thank Michele Banko, Jeff
Bilmes, Katrin Kirchhoff, and Alex Yates for helpful
comments.

References
E. Agichtein. 2005. Extracting Relations From Large

Text Collections. Ph.D. thesis, Department of Com-
puter Science, Columbia University.

E. Agichtein. 2006. Confidence estimation methods for
partially supervised relation extraction. In SDM 2006.

M. Banko, M. Cararella, S. Soderland, M. Broadhead,
and O. Etzioni. 2007. Open information extraction
from the web. In Procs. of IJCAI 2007.

D. Downey, O. Etzioni, and S. Soderland. 2005. A Prob-
abilistic Model of Redundancy in Information Extrac-
tion. In Procs. of IJCAI 2005.

D. Downey, M. Broadhead, and O. Etzioni. 2007. Locat-
ing complex named entities in web text. In Procs. of
IJCAI 2007.

O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu,
T. Shaked, S. Soderland, D. Weld, and A. Yates.
2005. Unsupervised named-entity extraction from the
web: An experimental study. Artificial Intelligence,
165(1):91–134.

R. Feldman, B. Rosenfeld, S. Soderland, and O. Etzioni.
2006. Self-supervised relation extraction from the
web. In ISMIS, pages 755–764.

Z. Harris. 1985. Distributional structure. In J. J. Katz,
editor, The Philosophy of Linguistics, pages 26–47.
New York: Oxford University Press.

C. D. Manning and H. Schütze. 1999. Foundations of
Statistical Natural Language Processing.

M. Paşca, D. Lin, J. Bigham, A. Lifchits, and A. Jain.
2006. Names and similarities on the web: Fact extrac-
tion in the fast lane. In Procs. of ACL/COLING 2006.

L. R. Rabiner. 1989. A tutorial on hidden markov models
and selected applications in speech recognition. Pro-
ceedings of the IEEE, 77(2):257–286.

D. Ravichandran, P. Pantel, and E. H. Hovy. 2005. Ran-
domized Algorithms and NLP: Using Locality Sensi-
tive Hash Functions for High Speed Noun Clustering.
In Procs. of ACL 2005.

M. Richardson and P. Domingos. 2006. Markov Logic
Networks. Machine Learning, 62(1-2):107–136.

E. Riloff and R. Jones. 1999. Learning Dictionaries for
Information Extraction by Multi-level Boot-strapping.
In Procs. of AAAI-99, pages 1044–1049.

S. E. Robertson, S. Walker, M. Hancock-Beaulieu,
A. Gull, and M. Lau. 1992. Okapi at TREC-3. In
Text REtrieval Conference, pages 21–30.

